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Abstract Model free tests for constant parameters often fail to detect structural changes
in high dimensions. In practice, this corresponds to a portfolio with many assets and
a reasonable long time series. We reduce the dimensionality of the problem by look-
ing a compressed panel of time series obtained by cluster analysis and the principal
components of the data. Using our methodology we are able to extend a test for a
constant correlation matrix from a sub portfolio to whole indices and exemplify the
procedure with the NASDAQ-100 index.
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1 Introduction

Portfolio optimization is most often based on the empirical moments of the portfolio
constituents’ returns, where the diversification effect is based on some measure of
pairwise co-movement between the constituents, e.g. correlation. Whenever the char-
acteristics of either the individual moments or the correlation changes, the portfolios
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optimality is affected. Thus, it is important to test for the occurrence of changes in
these parameters and there exist tests for detecting retrograde structural breaks, (see
Andreou & Ghysels (2009); Aue & Horváth (2013) for an overview). In the last few
years, there is a growing interest in the literature for detecting breakpoints in depen-
dence measures, especially for the case that the time of potential breaks need not be
known for applying the test. People look, e.g., at the whole copula of different ran-
dom variables (Bücher et al. 2014), but also at the usual bivariate correlation (Wied
et al. 2012). The motivation for such approaches comes from empirical evidence that
correlations are in general time-varying (see Longin & Solnik (1995) for a seminal
paper on this topic), but it is unclear whether this is true for both conditional and
unconditional correlations.

In this paper, we investigate in detail potential changes in correlation using the
nonparametric fluctuation test for a constant correlation matrix proposed by Wied
(2015). This test, as many others constructed in similar fashion, needs a high number
of time observations relative to the number of assets for sufficient size and power
properties. In practice, a typical multi asset portfolio has several hundreds of assets
under management, but the joint time series for all assets is considerably smaller.

So how can we test for a structural break of the correlation structure of a portfolio
where the number of assets is large and possibly larger than the number of obser-
vations? Our approach is to reduce the dimensionality and then applying the Wied
(2015) test to the reduced problem. We consider two classical approaches to reduce
the dimension of the problem, in order to check, if they can be used, or not. In the lat-
ter, more advanced methods like the Multi-way principal components analysis (Wold
et al. 1987) could be used.

First, we employ cluster analysis, second principal component analysis, cf. e.g.
Fodor (2002) for a discussion of their use in dimensionality reduction. Cluster anal-
ysis has a wide range of applications such as biology (Eisen et al. 1998), medicine
(Haldar et al. 2008) and finance, resp. econophysics (Bonanno et al. 2004; Brida &
Risso 2010; Mantegna & Stanley 1999; Mantegna 1999; Tumminello et al. 2010),
where it is also applied in portfolio optimization (Onnela et al. 2002, 2003; Tola et al.
2008). Yet, as far as we know, we are the first to combine clustering and tests for
structural breaks, which might be an interesting contribution to the existing litera-
ture on portfolio optimization. The principal component analysis (PCA) dates back
to Pearson (1901) and is one of the most useful and most popular techniques of mul-
tivariate analysis (Hallin et al. 2014) with wide applications in finance, cf. Greene
(2008) or Alexander (1999). It is suitable for reducing the dimensionality of a prob-
lem (Fodor 2002), since its central idea is the transformation and dimension reduction
of the data, while keeping as much variance as possible (Jolliffe 2002).

The structure of the paper is as follows: In section 2 we develop the test for
structural changes in a large portfolio context. In section 3 we apply the test to a real-
life data set, report the resulting clusters and present the result of our analyses, while
the final section 4 concludes.
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2 Methodology

In this section we develop the test approach to detect structural breaks in a large
portfolios correlation structure. The basis for our analysis is the correlation matrix:

ρ = (ρi, j)i, j=1,...,n where ρi, j =
E
(
(xi−µi)(x j−µ j)

)√
σ2

j σ2
i

(1)

with µi as the first moment and σ2
i as the variance of the corresponding time

series. For the estimator ρ̂ we use the empirical average µ̂i and the empirical variance
σ̂2

i . Since the estimated correlation matrix has to be positive definite (Kwan 2010),
we need more observations than assets. Looking at n assets with T observations,
a sequence of random vectors Xt = (X1,t ,X2,t , . . . ,Xn,t), we alculate the correlation
matrix from the first k observations according to equation 1 and denoted as ρ̂

k
.

We set the hypotheses as
H0 : ρ

t
= ρ

t+τ
∀t = 1, . . . ,T τ = 1, . . . ,T − t vs.

H1 : ∃t,τ : ρ
t
6= ρ

t+τ

and define the difference to the correlation matrix from all T observations as

P̂k,T = vech
(

ρ̂
k
− ρ̂

T

)
, (2)

where the operator vech(A) denotes the half-vectorization:

vech(A) = (ai, j)1≤i< j≤dim(A) (3)

The test statistic is given by Wied (2015) as

ÂT := max
2≤k≤T

k√
T

∥∥∥∥Ê−
1
2 P̂k,T

∥∥∥∥
1
, (4)

where ‖ · ‖1 denotes the L1 norm. The null is rejected if ÂT exceeds the threshold
given by the 95% quantile of A with the following definition:

A := sup
0≤s≤1

∥∥∥B
n(n−1)

2 (s)
∥∥∥

1
(5)

Here Bk(s) is the vector of k independent standard Brownian Bridges. If the test
statistic exceeds this threshold, we define the structural break date k as the following
time point:

argmax
k

k√
T

∣∣P̂k,T
∣∣ (6)

For the limiting distribution of the statistic we need a ’scaling’ matrix Ê, which can
be obtained by bootstrapping in the following way:

• We define a block length l and devide the data into T − l−1 overlapping blocks:

B1 = (X1, . . . ,Xl) ,B2 = (X2, . . . ,Xl+1) , . . .



4 Peter N. Posch et al.

• In each repetition b ∈ [1,B] for some large B, we sample
⌊T

l

⌋
times with re-

placement one of the blocks and merge them all to a time series of dimension
l ·
⌊T

l

⌋
×n.

• For each bootstrapped time series we calculate the covariance matrix. We convert
the scaled elements above the diagonal to the vector v̂b =

√
T
(

ρ̂
i, j
b,T

)
1≤i< j≤n

• We denote the covariance of all these vectors with Ê :=Cov(v̂1, . . . , v̂B)

For the original test to provide a good approximation of the limiting distribution the
ratio of observations to assets needs to be much larger than one. A portfolio with
a large number of assets and insufficient time length of observation thus cannot be
analyzed with the present test for structural changes in its correlation matrix.

To quantify this problem, we simulate for 4, 6 and 10 assets time series with
length 200, 500, 1000 and 2000 observations. To assess the power and size of the
test, we simulate in one case with a constant correlation matrix and in another with
a break in the middle of the time series. For the latter, we choose randomly with
replacement n/2 correlations (ρ∗i, j) in the given correlation matrix randomly to a new
correlation in [-1,1]. We transform the resulting matrix into a positive definite matrix,
and consequently the resulting matrix differs from the original one in all cases, but
most prominently in the randomly selected ρ∗i, j.

The result of the simulation study is shown in table 1. Thereby we use the critical
values 4.47, resp. 9.13, resp. 23.21 for the number of assets being equal to 4, resp. 6,
resp. 10. Our simulations runs 2500 times.

< Insert table 1 about here >

We find comparable results as in Wied (2015) for the size distortions. It seems
that the level converges to the 5% level. Concerning the power, we find an increase in
the number of observations and a decrease with the number of assets. A very extreme
decrease can be found for 500 observations and the shift from 6 to 10 assets. Whereas
in the former case we find a rejection rate of about 72% it drops in the latter case to
only about 20%. Such drops seem to exist for all cases, but are not that prominent.
The lower rejection rate in the case of 4 assets can be explained in the random choice
of pairwise correlations. Since we draw with replacement, the chance of a given pair
is drawn twice considerably higher than for 6 and 10 dimensions and thus the size
of the break in the correlation structure is smaller when compared to the number of
assets.

In the following, we analyze how the use of dimension reduction techniques be-
fore applying the test changes these findings. We discuss two techniques, clustering
and principal component analysis, to reduce the dimensionality of the problem and
apply the test afterwards. A first approach is to use exogenous clusters such as e.g. in-
dustry sectors which, however, imposes an exogenous structure possibly not present
in the data. Clustering endogenously based on the present correlation structure in-
stead preserves this information cf. Mantegna (1999), an approach which is applied
widely, e.g. in financial markets by Brida & Risso (2010), in medicine by Eisen et al.
(1998).

The first step is to transform the correlation into a distance metric d fulfilling
the following four requirements (7)–(10) where in the application of a clustering
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algorithm (10) is replaced by the stronger (11), since an ultra-metric is used.

d(x,y)≥ 0 (7)
d(x,y) = 0⇔ x = y (8)
d(x,y) = d(y,x) (9)
d(x,z)≤ d(x,y)+d(y,z) (10)
d(x,z) = max{d(x,y),d(y,z)} (11)

Following Anderberg (2014) and Mantegna (1999) we use

d(xi,x j) =
√

2(1−ρi, j), (12)

which is the Euclidean distance between the standardized data points xi and x j. The
metric is bounded in the interval d ∈ [0,2] and smaller values correspond to a smaller
distance and thus to more similarity. The clustering algorithm itself runs as follows:

1. Find the pair i, j which satisfies: d(xi,x j) = min
m,n

d(xn,xm)

2. Merge the pair i and j into a single cluster
3. Calculate the distance to the other clusters
4. Repeat steps 1 and 2 as often as desired

To calculate the distance in step 3, there exist several algorithms, which all re-
sult in different cluster constituents. In order to choose the ’best’ one, we use the
concept of equally sized clusters: If we seek to form m clusers out of n assets and
one of them contains n−m+1 assets, we end up with the most unequal cluster size
possible. In this extreme case the likelihood for a randomly chosen asset to be in the
one large cluster is highest and its cluster weight lowest. In contrast clusters are uni-
formly distributed in size the sensitivity of the cluster formation is higher. To gain a
homogenously sized clustering we use the (Herfindahl) Hirschman index (Hirschman
(1964, 1980)).

In our application, the ward algorithm, where the criterion for selecting two clus-
ters to merge is such that the variance within them becomes minimal (Anderberg
(2014); Murtagh & Legendre (2014); Ward Jr (1963)) is the one which satisfies best
our specifications. In general, it leads to the most homogeneous clusters, due to the
minimal variance criterion, while other linkage algorithms like complete linkage, sin-
gle linkage or average linkage are based on the correlation. Complete linkage is re-
acting most conservative to correlation, the single linkage most aggressively and the
average linkage providing a middle way between these two. All algorithms result in
a hierarchical, which does not make any statement about the clusters itself. Instead
they are formed by cutting the hierarchical tree horizontally at a height such that the
desired amount of clusters is formed.

In a final step we transform the each cluster into a cluster-portfolio, which is a
sub-portfolio of the initial portfolio of all assets. In general the weights needed are
free parameters and a choice for their determination is needed. As examples one can
use the market capitalization, like in the NASDAQ-100 index, weights according to
the position in the portfolio observed or simple equal weights. Since the first two
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methods impose an external structure, which prefers some assets to others, we use
the third option of equally weighting all assets within each cluster-portfolio.

This concludes the clustering approach. We now turn to the PCA as an alternative
technique to reduce the dimensionality. Here the given data X in the high dimensional
Cartesian coordinate system are projected onto another orthonormal coordinate sys-
tem, which is based on the eigenvalue decomposition of the data’s covariance matrix.

Let Σ = Var(X)∈Rn×n denote the empirical covariance matrix. Than there exists
a transformation (Bronstein 2012) as:

Σ = PΛ P′, Λ ∈ Rn×n, P ∈ Rn×n (13)

where P is the matrix formed by the eigenvectors of Σ and Λ as a diagonal matrix
with the eigenvalues λi on its diagonal. The matrix of principle components is cal-
culated as Z = XP. This is the representation of the given data in the eigenvector
coordinate system. For the variance of the rotated data we get

Var(Z) = Cov
(
(X P)′,X P

)
= Cov

(
P′X ,X P

)
= P′Cov

(
X ′,X

)
P = P′Σ P = Λ (14)

which is a diagonal matrix and therefore uncorrelated data in the rotated system.
By using only the k largest eigenvalues, we can now reduce the dimensions in the

orthonormal base. The obtained data is an approximation of the original data but with
only k dimensions in the orthonormal base and n dimensions in the Cartesian space,
cf. Hair et al. (2006). But the following concern comes with the application of the
PCA: As the dimensions increases, we have to neglect relatively more dimensions,
since only a rather small number of time series in the basis of the eigenvectors. We
are then left only with the high volatile dimensions and a structural break detected
therein can be regarded as a rather big and thus most obvious break. In this light we
like to address the error made in neglecting small volatile dimensions. In general, the
variation in the small eigenvalues corresponds to noise in the estimation of the true
correlation matrix, cf. Laloux et al. (1999, 2000); Plerou et al. (2002). As a result one
can obtain a more accurate estimate when intentionally not using these dimensions.
Thus is not true that a reduction in the percentage of variation represented by the
first k eigenvalues likewise reduces the likelihood of detecting a structural break.
Improving the accuracy of the estimated correlation may even occur, since noise has
been neglected. Concluding, we only have to worry about the information associated
with eigenvalues, which are smaller than the fourth largest eigenvalue and larger then
this threshold eigenvalue.

3 Limiting distribution and finite sample evidence

The two methods of clustering and PCA are two approaches to reduce the dimension
of the problem at hand resulting in a linear transformation of the given data and
forming actually indices or sub-portfolios, which are analyzed in the Euclidean or
another ”Eigen” space. Both transformations are linear. Thus the limiting distribution
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should not change. An economic interpretation is the following: Suppose one chooses
stocks from a given universe and creates portfolios thereof. This investor then could
use a test to analyze the correlation structure, resp. breaks in the structure between her
portfolios. No matter how the weights are constructed, e.g. all weights are unequal to
zero (PCA case) or some of them are zero (hierarchical tree case), a valid financial
time series is created.

To test this, we simulate 2500 realizations of 1000 assets with 1500 time points
and a fixed random correlation matrix. We randomly choose the eigenvalues in the
interval [1,10] and use the columns of a random orthogonal matrix as the correspond-
ing eigenvectors. Figure 1 shows the histogram of the test statistic on the left hand
side and the corresponding empirical p values on the right hand side.

< Insert figure 1 about here >

We do not find deviations from the original limiting distribution in Wied (2015)
for both methods. The p values seem to be uniformly distributed, so we conclude,
that the limiting distribution does not change. Since these transformations are all
linear, this result is what one can expect and the test seems to have the same validity
as the original. Furthermore, we replace the generic correlation matrix from above
with an empirical estimate from a sample of 50 stocks from the NASDAQ-100 index.
Applying the same methodology as above, we find a very similar shape of the test
statistic and of the distribution of the p-values.

The finite sample properties of the proposed test using a Monte-Carlo simula-
tion clarifies what breaks are detected, resp. what it means, if the test statistic ex-
ceeds the critical value. We illustrate these for different number of observations per
time series t ∈ {500,1000,2000,4000}, and simulate such from a 100-dimensional
normal distribution. In one case the correlation matrix is kept fix, in the other case
we include a break in the middle of the time series. To do so, we change randomly
nρ∗i, j
∈ {100,1000} entries in the correlation matrix and transform it in a positive def-

inite matrix. It is then used for the second half of the time series. We use 3, 4 and
5 clusters (with corresponding critical values of 2.27, 4.47 and 6.60) and check if
the maximum of the test statistic is larger than the corresponding critical value. We
repeat this process 2500 times. The result is shown in table 2. In all cases we find
an increasing power in the number of reduced dimensions, but as a trade off the size
distortion increases as well.

< Insert table 2 about here >

The upper part of the table shows the empirical rejection rate given H0 holds.
For the PCA case, the size distortion seems to converge monotonously to the level
of 5%. For the hierarchical tree, we find comparable sizes of size distortions but the
convergence process seems not to be monotonous. The middle part corresponds to
the case, where the break in the correlation structure of size nρ∗i, j

= 100 occurs. Keep-
ing in mind that in a portfolio of 100 assets, a change in 100 pairwise correlations
corresponds to roughly one asset changing its correlation to all other assets. So this is
a rather small break in our setting. We find for nearly all cases a higher rejection rate
for the hierarchical tree approach than for the PCA. The lower part corresponds to
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the break size of nρ∗i, j
= 1000. Compared to the 100 · 99/2 = 4950 pairwise correla-

tions overall, this is a rather big break. We find higher rejection rates compared to the
small break before. This is what one expects, since the L1 norm increases and thus
the probability of an exceedance of the critical value. In contrast to the case before,
the rejection rates are higher for the PCA than for the hierarchical tree approach. This
suggest that no approach dominates the other and when using both approaches one
can create two information sets, with a non-empty overlap. Compared with the orig-
inal test, we find comparable rejection rates and size distortions for a break in 1000
pairwise correlations. This suggests that when dealing with big breaks in a large port-
folio the upstream clustering creates time series which can be treated as in the original
test, such that the test has comparable finite sample properties.

4 Correlations within and between clusters

In the following we answer the question which correlation breaks we are able to
detect. Using the notation of figure 2, we check for the correlation between clusters
(ρ) and not for correlations within cluster (ρi, j) in the first place.

< Insert figure 2 about here >

An implicit assumption is that the correlation changes within a cluster are trans-
mitted to the clustered time series and thus are implicitly detectable. Consider the
situation in figure 2. We have 4 assets (symbolized as circles) and form 2 clusters
(symbolized as ellipses). Suppose the time series of the single assets are denoted as
xi for i ∈ {1,2,3,4} with zero mean and finite variance. Using the constant cluster
weights wi, the clustered time series yi are calculated as follows:

y1 = w1x1 +w2x2 (15)
y2 = w3x3 +w4x4 (16)

For the correlation between the clusters, it holds:

ρ := Cor(y1,y2) = w1w3ρ13 +w1w4ρ14 (17)
+w2w3ρ23 +w2w4ρ24 (18)

(19)

Since the weights are constant over time, a change in this correlation is then a
consequently a weighted sum of the single pairwise correlation changes:

dρ = dCor(y1,y2) = w1w3dρ13 +w1w4dρ14 (20)
+w2w3dρ23 +w2w4dρ24 (21)

It follows that the change of correlations within a cluster does not change the
correlation between clusters per se, since dρ is independent of e.g. dρ1,2. Besides
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a very low probability of a change of one asset with solely one another within the
cluster, there is also the condition of a positive definite correlation matrix of the whole
xi. So a change of e.g. ρ1,2 cannot be independent of all other things, so that the other
correlations are affected as well.

To check if the cluster formation is a stable process over time, we use a sample
of 50 stocks over a timespan of 1500 observations and calculate the cluster members
for each time point t ∈ [100,1500]. We choose a lag of 100 data points to get a stable
first estimate. We can conclude that cluster changes occur frequently especially at the
beginning of the time interval which corresponds to the stability of the correlation
matrix estimation. Also there exist many breaks in the correlation structure, which
are so big, that assets would leave the cluster. In the following we simulate such
breaks. We use 4 normal distributed variables correlated with a given correlation
matrix with lengths of 500,1000,1500 and 2000 data points. To simulate a larger
cluster, in which only one asset changes the within correlation, we set the weights
randomly in the interval (i) [0.1,0.5], (ii) [0.01,0.05] and (iii) [0.01,0.5]. So we can
compare the behavior for small (i) and large (ii) clusters. Case (iii) serves as an overall
assessment.

As a starting point we chose the matrix

ρ
0
=


1

0.7717 1
0.2597 0.1328 1
−0.0589 0.1665 0.8523 1


which is positive semi definite and has a high correlation between assets 1 and

2 and assets 3 and 4. This matrix results in the desired clusters, so we create the
situation shown in figure 2. This is our starting position in each simulation and we
now distinguish the following cases:

(a) We change only ρ12: This corresponds to fluctuations within a cluster that are not
so large that the asset would leave the cluster. To do this, we set this value to a
random number in the interval [0.7,1.0].

(b) We decrease ρ12 and increase ρ23,ρ24: This corresponds to a change of the cluster
members in a way, that assets 2, 3 and 4 build a cluster. In order to simulate this,
we set ρ12 ∈ [−0.2,0.2],ρ32 ∈ [0.6,1.0],ρ42 ∈ [0.6,1.0].

(c) We change the correlations of assets 2 and 3: This corresponds to a situation
where a new clustering would result in a cluster of asset 1 and 3 and a cluster of
asset 2 and 4. Thus we set ρ12 ∈ [−0.2,0.2],ρ13 ∈ [0.6,1.0],ρ24 ∈ [0.6,1.0],ρ34 ∈
[−0.2,0.2].

In all cases we draw from the given interval until a positive semi definite matrix
with the desired entries is obtained which is then used to change the time series
correlation at the middle of the simulated time span. Table 3 reports the detection
of test, where ’BC’ refers to the situation where we have just two equally weighted
assets in each of the two clusters.

< Insert table 3 about here >
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The table shows the cases (a) to (c) with the corresponding definitions from above.
In general the size of the change in the correlation structure increases from (a) to (c).
So we find a general tendency for higher rejection rates when moving from the left to
the right hand side of the table.

The table is split up into four horizontal parts. The upper one, labeled with ’BC’
is our base case, where we simulate only 2 assets in the two clusters. we find rejection
rates of about 4%− 5% for the 95% significance level, which is a very poor power.
When to size of break increases, the power converges to 1. also we find a general
convergence with an increasing number of observations. For the second part, labeled
with (i) we simulate a larger portfolio of 2-10 assets in the corresponding cluster. We
find lower rejection rates as in the base case in general, which is expected, since the
break size, relative to the number of other assets decreases. When dealing with a big
break, we find for a sufficient number of observations high detection rates. The third
part, labeled with (ii) simulates a portfolio of 20-100 clustered assets. Thus the rela-
tive size of the break decreases even more and the rejection rates drop further. Only
in the case (c), where the break is such, that a re-clustering would lead to a switch
of assets, rejection rates converge to 1 for a realistic length of the time series. The
last part, labeled with (iii) we simulate a portfolio with 2-100 in the corresponding
cluster. Thus it is located between (i) and (ii), with rejection rates in between (i) and
(ii) for the corresponding observations and scenarios.

Concluding we find that the structural break test is not only able to detect breaks
between clusters, but it may also be able to detect larger fluctuations within (un-
changed) clusters. But this does not mean that finding no breaks between clusters
means that there are no breaks within clusters.

5 Application to a real-life problem

We now turn to the application of the before mentioned methods. We use the stock
prices of the constituent of the NASDAQ100 index as of November 11th, 2015. Our
observations span from January 2000 to December 2016. Thus we proxy a rather large
portfolio, although it does not represent the NASDAQ100 index at all times, since we
do not adjust for fluctuations in the index constituents. We calculate log returns for
all series and cluster them into 3, 4 and 5 clusters. We use the algorithm described in
Galeano & Wied (2014) to detect multiple breaks in the correlation matrix.

Figure 3 to 5 show the clustered time series for reduced dimension of 3, 4 and 5.
The left hand side corresponds to the hierarchical clustering and the right hand side
to the PCA. It can be seen that, while the volatility in the time series decreases in the
PCA case with decreasing eigenvalues, this is not necessarily the case for the hierar-
chical tree. In the former case, we can preserve 40.8%, 44.1% and 46.8% percent of
the total variation in the original data.

< Insert figure 3 about here >

< Insert figure 4 about here >

< Insert figure 5 about here >
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At the beginning of our time interval from 2000 onwards to roughly 2003, we
find very volatile time series. This could be connected to the Dot-Com Bubble which
affected most the technology companies. Another obvious peak in volatility is located
in the year 2008 and corresponds roughly to the default of Lehman Brothers, which is
probably the best known starting point of the global financial crisis in public. As the
NASDAQ index does not contain financial companies, figure 3 to figure 5 illustrate
the distress in the whole market, not only in the financial sector.

The breaks in the correlation are indicated by the vertical lines in the figures and
are listed in table 4.

< Insert table 4 about here >

In most cases, we find comparable results for the two clustering algorithms, for a
given dimension. In two of the three cases, we find the same number of breaks, but we
find deviations in the time location in general. A very short time difference is a break
identified in 3 dimensions in 2013. Here the time difference is roughly one month
when comparing the PCA with the hierarchical tree. As a more general example, for
dimensions 4 and 5 the break date differs in about a year time difference. In the case
of 3 dimensions, the first break is located in 2002 for PCA, whereas it is located
in 2008 for the hierarchical tree. The latter case corresponds to 12 days before the
bankruptcy of Lehman Brothers.

Keeping the clustering algorithm and looking at different dimensions, we find
very similar break dates. For the hierarchical tree, a break in the second half of 2008
is indicated for all dimensions, as well as a break at the beginning, reps. middle of
August 2015. For the PCA case, a break in the 3rd quarter of 2007, one in September
2014 and in September 2015 is located. Thus we are confident that these are actual
breaks. Additionally there are four other breaks in the range from end 2010 to end
2012. The break in 2010 is only indicated once, as well as the one in 2011. The two
breaks in 2012 for the PCA case in 4 and 5 reduced dimensions have a five month
time difference.

On the other hand, we also find some outliers. As mentioned before, the first
break in 2002 in the PCA case for 3 dimensions is not indicated by any of the other
5 tests. Another example is the break in 2016 detected by the hierarchical tree with 4
dimensions.

6 Conclusion

Monitoring the correlation matrix of a portfolio is a daily task in financial portfolio
management and modern portfolio optimization heavily relies on the matrix in calcu-
lating the portfolio weights. Likewise triggers the occurrence of changes in this cor-
relation structure, a structural break, a portfolio adjustment. While test for structural
breaks are readily available and discussed in the literature, they can only deal with a
low number of assets, e.g. Wied (2015) with only four assets. In practice, however,
we most commonly have a situation in which the number of assets by far exceeds
the available time series. Thus so far no test on structural changes in the correlation
structure of typical portfolios was possible.
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In order to tackle this dimensionality problem, we propose the use of a hierar-
chical tree as foundation for cluster formation. This technique has already applied to
cluster financial markets, especially in the econophysics literature. As an alternative,
the standard principal component analysis is used to form sub-portfolios. In a second
stage a test on structural changes is then applied to the reduced problem.

Using a Monte Carlo simulation, we showed that we are able to extend the orig-
inal test to a larger portfolio in the sense that we can reproduce the power with the
corresponding size distortion as the original test for a sufficient big break in the corre-
lation matrix for a large portfolio. Although we check for breaks between clusters we
showed that, due to the fact of a positive semi definite correlation matrix, a change in
the correlation structure within a cluster translates to some extend to the correlation
between the clusters. We quantified this effect through a simulation as well.

Finally we applied both techniques to the case of constituents of the NASDAQ-
100 index over a time period of 17 years. We do not check the index itself (since
there are fluctuating constituents), but simulate a rather large portfolio compared to
the 4 assets in the example in Wied (2015). We found some breaks in the correlation
structure, which are independent of the reduced dimensionality and one, which is
independent of the clustering approach at the first stage.
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7 Figures and Tables

Fig. 1 Empirical p values for the cluster and PCA approach. The figure shows the p values of the test
statistic for both the cluster and the PCA approach. The original test statistic of Wied (2015) with 4 assets
is denoted with bc.

Fig. 2 Notation for correlations within and between cluster. Shown are 4 assets (circles), where 2 assets
are included in a cluster (ellipse). The correlation between clusters is denoted as ρ and the correlation
between assets i, j as ρi, j
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Fig. 3 Break detection dates for 3 reduced dimensions. The figure shows the three clustered time series
together with the associated break dates. The left hand side corresponds to the hierarchical clustering and
the right hand side to the PCA.
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Fig. 4 Break detection dates for 4 reduced dimensions. The figure shows the three clustered time series
together with the associated break dates. The left hand side corresponds to the hierachical clusteing and
the right hand side to the PCA.
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Fig. 5 Break detection dates for 5 reduced dimensions. The figure shows the three clustered time series
together with the associated break dates. The left hand side corresponds to the hierachical clusteing and
the right hand side to the PCA.
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Table 1 Empirical rejection rate (in percent) of H0 of the test in Wied (2015) based on 2500 simulations.

number of assets

4 6 10

number of observations ∆ρ∗i, j = 0

200 4.60 2.16 0.80
500 4.33 3.29 0.75
1000 4.07 4.01 1.30
2000 5.44 4.11 4.20

number of observations ∆ρ∗i, j 6= 0

200 39.48 31.77 4.73
500 70.31 71.98 19.73
1000 72.84 84.22 75.93
2000 79.64 96.49 95.13

Table 2 Empirical rejection rate (in percent) of H0 given a portfolio of 100 assets and different number of
clusters, given the 95% quantile.

reduced dimensions PCA reduced dimensions HT

number of observations 3 4 5 3 4 5

∆ρ∗i, j = 0

500 3.28 2.88 2.18 5.12 3.78 3.87
1000 4.58 3.81 2.66 4.54 4.67 3.13
2000 4.74 3.97 4.00 4.10 4.42 5.51
4000 4.80 4.67 4.14 4.32 4.93 3.97

∆ρ∗i, j 6= 0, nρ∗i, j
= 100

500 6.06 10.31 16.56 11.76 12.75 19.43
1000 5.30 10.81 26.00 12.88 27.18 23.18
2000 7.75 17.00 35.31 16.38 14.56 43.56
4000 13.69 23.56 50.88 22.50 42.50 50.69

∆ρ∗i, j 6= 0, nρ∗i, j
= 1000

500 75,14 97.43 99.86 46.29 60.85 77.57
1000 74.86 98.57 100 68.14 92.86 96.43
2000 84.14 99.43 100 87.00 98.29 99.43
4000 92.43 99.86 100 88.43 100 100
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Table 3 Empirical rejection rate (in percent) of H0 given two clusters of different assets. Base case has four assets, (i) 10-20 assets, (ii) 20-100 assets and (iii) 10-100 assets.
The correlation structure was changed in the middle of the time series, depending on the scenario (a) with fluctuation within, (b) with an asset outflow or (c) with a switch of
assets.

(a) (b) (c)

observations observations observations
α/% 200 500 1000 2000 200 500 1000 2000 200 500 1000 2000

BC 90 8.28 8.94 9.62 9.84 86.62 99.84 100 100 87.76 99.98 100 100
95 4.26 4.54 4.66 4.52 77.06 99.62 100 100 75.38 99.86 100 100
99 0.84 0.70 0.78 0.88 47.54 97.28 100 100 37.16 98.02 99.98 100

(i) 90 8.72 8.12 9.08 9.46 39.60 61.02 71.86 80.68 77.60 98.48 99.98 100
95 3.82 3.92 4.52 4.98 29.76 53.52 66.96 77.30 62.64 96.72 99.86 100
99 0.72 0.62 0.74 0.90 12.94 39.62 57.92 70.28 29.02 89.42 99.38 100

(ii) 90 8.18 8.32 8.76 8.68 8.68 8.84 9.73 12.44 61.24 92.96 99.56 100
95 3.64 3.76 4.26 4.18 4.06 4.42 5.01 6.63 46.57 88.12 99.04 100
99 0.56 0.56 0.56 0.98 1.04 0.70 1.04 1.87 20.11 71.95 96.39 99.96

(iii) 90 8.89 8.83 8.89 9.41 39.79 61.20 72.27 80.12 76.32 98.35 99.91 100
95 4.31 4.29 4.25 4.87 29.69 54.12 67.56 76.24 61.51 96.92 99.85 100
99 0.73 1.01 0.93 0.93 12.51 40.36 58.29 69.19 27.99 89.03 99.31 100
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Table 4 Detected structural breaks in the correaltion matrix of the NASDAQ 100 index according to
different clustering algorithms and number of reduced dimensions.

reduced dimensions cluster break dates

3 ht 3.9.2008 2.5.2013 18.8.2015
pca 22.5.2002 9.4.2013 9.10.2014 17.9.2015

4 ht 5.6.2008 8.9.2010 18.8.2015 30.9.2016
pca 30.7.2007 9.10.2012 24.9.2014 18.9.2015

5 ht 5.6.2008 21.6.2011 30.7.2015
pca 31.10.2007 3.5.2012 19.9.2014
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