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Fakultät für Physik, Universität Duisburg-Essen, 47048 Duisburg, Germany

Dominik Wied
Fakultät Statistik, TU Dortmund, 44221 Dortmund, Germany

Thomas Guhr
Fakultät für Physik, Universität Duisburg-Essen, 47048 Duisburg, Germany



2 Thilo A. Schmitt et al.

1 Introduction

The covariance matrix of stock returns plays a crucial role for portfolio opti-
mization, see Markowitz (1952). Finding the portfolio weights that yield mini-
mum risk given a desired portfolio return requires the best possible estimation
of the future covariance matrix. A natural approach is to estimate the sam-
ple covariance matrix using historical data, assuming that the recent past is a
good predictor for the future. The length of the historical time series which can
be used for covariance estimation is often rather short. In particular in emerg-
ing markets, the total length of the available time series may be the limiting
factor. Another consideration is the non-stationarity of the financial markets,
see, e.g., Longin and Solnik (1995), Bekaert and Harvey (1995) and Münnix
et al (2012): The correlation structure changes with time. Hence, to achieve
a decent estimate of the current or future covariance matrix, we should only
take into account rather recent data. However, since the sample covariance
matrix for n assets requires n(n+ 1)/2 parameters to be estimated, the finite-
ness of the time series leads to a considerable amount of measurement noise,
see Laloux et al (1999), Bouchaud and Potters (2009), Plerou et al (1999) and
Plerou et al (2002). As pointed out by, e.g., Pafka and Kondor (2002, 2003),
this has dire consequences for portfolio optimization, but can be mitigated to
a large extent by noise reduction techniques. Here we will concentrate on one
such technique, the power mapping, which has been introduced in Guhr and
Kälber (2003) and further studied in Schäfer et al (2010). We also take the
shrinkage estimator of Ledoit and Wolf (2003) as a reference into account.

An alternative approach to reducing the noise in sample covariance matri-
ces is to consider a model for the correlation or covariance matrix which entails
fewer parameters. Many models have been proposed to reduce the number of
parameters which have to be estimated, see Pantaleo et al (2011). Here we
consider a simple one-factor model, see Sharpe (1963), where 2n + 1 param-
eters have to be estimated. In addition, we study the spatial autoregressive
model for stock returns, which was recently introduced by Arnold et al (2013).
One particular feature of the spatial model is its ability to produce reliable
Value-at-Risk (VaR) forecasts. This is partly due to the fact that the model
captures a lot of dependence with a small number of parameters. It involves
only n+ 3 parameters, 3 for the dependence and n parameters describing the
individual volatilities.

A specific issue we want to address in this paper concerns the empirically
observed time-varying trends and volatilities of financial time series. We are
going to study the influence of sudden changes in local trends and volatilities
on the covariance estimation methods described above. In particular, we inves-
tigate how the estimation of the spatial parameters is affected. We suggest the
following refinements to substantially improve covariance estimation methods:
The well known GARCH(1,1) model (see Bollerslev (1986) and Bollerslev et al
(1988)) can be utilized to remove the fluctuating volatilities in the return time
series and to predict future volatilities. This approach is compared to a local
normalization method, recently introduced by Schäfer and Guhr (2010), and a
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short-term historical prediction of the individual volatilities. Moreover, we ap-
ply the above mentioned power mapping to reduce the noise in the correlation
matrices. We study the influence of these refinements on each of the covari-
ance estimation methods and the implications for portfolio optimization. To
this end we consider the stocks of the Euro Stoxx 50 and use the out-of-sample
realized portfolio variances as a risk measure. We compare the results to the
predicted portfolio variances. We analyze the VaR forecast quality in more de-
tail by comparing it to predicted and realized variances. Comparing different
models with respect to their VaR forecast ability is a quite common approach
in the literature, see e.g., Santos et al (2013). While it were basically possible
to include still other models like a multivariate DCC model, see Engle (2002),
in the study or to account for possible structural breaks in the model param-
eters (in the spirit of Wied (2013)), we have decided to focus on the present
models in order to keep the presentation clear. In fact, the current analysis
is in our opinion sufficient for the main results: It is extremely important for
covariance estimation to take into account time-varying trends and volatilities
of financial time series and the measurement noise. And while using GARCH
residuals and volatility forecasts yields comparable results, the combination of
local normalization and short term historical volatilities requires much shorter
time series.

The paper is structured as follows: Section 2 presents the above mentioned
methods for estimating the covariance matrix of stock returns. In Section 3
we discuss the refinements to these methods, which aim at removing changes
in local trends and volatilities, improving the quality of volatility predictions,
and reducing estimation noise. Section 4 details the portfolio optimization
technique and the data set under consideration. In Section 5 we discuss the
results of the covariance estimation and VaR forecasts, and we summarize our
findings in Section 6.

2 Covariance estimation

The covariance matrix is a crucial input parameter for many risk assessing
methods in finance, such as portfolio optimization. The estimation of the
covariance matrix is a non-trivial task due to the time-varying trends and
volatilities of financial time series. The natural way is to calculate the sam-
ple covariance matrix from the time series. As usual, we use the definition
Ĉov(yt) = 1

T−1
∑T
t=1(yt − ȳ)(yt − ȳ)′, where ȳ is the mean of the time series.

The sample covariance matrix requires the estimation of n(n + 1)/2 parame-
ters. If the covariance matrix is calculated on a short time horizon it contains
a great degree of noise. For larger time horizons the predictive power of the
covariance matrix decreases as the market constantly changes. In Section 2.1
and 2.2 we discuss two models that require less parameters to be estimated to
determine the covariance matrix.
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2.1 One-factor model

The simple one-factor model radically reduces the amount of parameters to
estimate by assuming that the change of all assets is tied to one factor, e.g.,
a market index. It was first used to improve portfolio optimization by Sharpe
(1963) and decreases the amount of parameters to estimate to 2n+ 1. A com-
prehensive description of the model is given by Jorion (2007), p. 192 ff. The
one-factor model assumes that the stock returns can be described by

yt = α+ βym,t + ηt , (1)

where the n-dimensional vector yt contains the returns for all stocks 1 . . . n at
time t. The scalar ym,t describes the market return, e.g., is calculated from
a stock market index. The vector β = (β1, . . . , βn) contains a constant for
each stock which must be estimated, for example with a linear fit (ordinary
least squares-estimator) separately for all stocks. The fixed intercepts’ vector
α can be neglected in the context of risk estimation as it contains no random-
ness. Assuming that the error terms in ηt are uncorrelated to each other the
covariance matrix of yt is given by

Cov(yt) = ββ′σ2
m +Dη (2)

with a matrix Dη = diag(σ2
η1, . . . , σ

2
ηn) that contains the variances of ηt on

its diagonal and which can be estimated by standard ordinary least squares
methods. The one-factor model requires an estimation of n entries for the β
vector and the n diagonal elements of Dη, plus one for the market volatility
σm.

Given the parameter estimates, we can directly obtain a parametric esti-
mate for Cov(yt).

2.2 Spatial dependence model

The spatial dependence model introduced by Arnold et al (2013) is based
on the assumption that a lot of the cross-sectional dependence between the
stock returns can be captured by three different types of dependence: A gen-
eral dependence, dependence within industrial branches and dependence based
on geographic locations. For an overview of spatial dependence modeling see
Anselin (1988), Cressie (1993) and LeSage and Pace (2009). Formally, we have
the spatial autoregressive model

yt = ρgWgyt + ρbWbyt + ρlWlyt + εt , t = 1, . . . , T (3)

where ρg is a scalar parameter measuring the general dependence, ρb is a scalar
parameter measuring the dependence between industrial branches and ρl is a
scalar parameter measuring the dependence based on geographic locations.
Wg, Wb and Wl are spatial weighting matrices. The stochastic component in
this model stems from the error vector εt. Given the basic model assumption
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it is plausible to assume that its covariance matrix has uncorrelated entries
although heteroscedasticity is allowed.

The non-diagonal elements of the matrix Wg are set to the normalized
market capitalization of the corresponding assets. For the matrices Wb and
Wl the element in the i-th row and j-th column is non-zero if the i-th and j-th
asset are in the same branch (Wb) or country (Wl). The non-zero elements are
set to the normalized market capitalization of the asset in each row.

If the three parameters are known, the covariance matrix of the vector yt
is given by

Cov(yt) = (In − ρgWg − ρbWb − ρlWl)
−1Σ(In − ρgW ′g − ρbW ′b − ρlW ′l )−1 ,

(4)

where Σ is the covariance matrix of the error term εt and In is an n×n identity
matrix. The error terms are assumed to be uncorrelated, so all off-diagonal
elements of Σ are zero. This leads to n additional parameters. The model uses
n + 3 parameters which are best estimated by a two-step procedure that is
based on the generalized methods of moments (GMM) approach, see Arnold
et al (2013) and in addition Lee and Liu (2009) and Lin and Lee (2010). Again,
given the parameter estimates, we can directly obtain a parametric estimate
for Cov(yt).

3 Refined methods of covariance estimation

We discuss four approaches to enhance the predictive capabilities of the meth-
ods discussed in Section 2. The GARCH residuals (Section 3.1) and local nor-
malization (Section 3.2) reduce the empirically observed time-varying trends
and volatilities of return time series with regard to the volatility. The power
mapping method discussed in Section 3.3 is aimed at decreasing the noise in a
correlation matrix. In Section 3.4 we explore additional methods to estimate
the volatilities of the individual stocks.

3.1 GARCH residuals

The return time series has a fluctuating volatility which can lead to estimation
errors in parameters derived from the time series. To improve the estimation
it is desirable to remove these fluctuations from the return time series. This
is possible by modeling the returns with a GARCH process introduced by
Bollerslev (1986) as a generalization of the ARCH process invented by Engle
(1982). We fit the GARCH(1,1)-model

Xt =σtεt (5)

σ2
t =α0 + α1X

2
t−1 + β1σ

2
t−1 (6)

to the historical data to estimate the parameters α0, α1 and β1. Here, (εt)t∈Z
is a strong white noise process with var εt = 1 and E[εt] = 0. The conditional



6 Thilo A. Schmitt et al.

variances σ2
t can replicate the fluctuating volatilities in empirical time series.

Hansen and Lunde (2005) have shown that in most cases a GARCH(1,1) is
sufficient to capture the return time series. Then we use the GARCH residuals

εt =
Xt

σt
(7)

to receive a return time series, where the volatility fluctuations are removed
to the degree the return time series fits the GARCH process.

For the comparison in Section 5, we use a rolling window of T = 100
trading days to estimate model parameters. This window is too small for the
GARCH fit to converge. Therefore we use a rolling window of TGARCH = 1000
trading days to estimate the GARCH parameters. We emphasize that this
larger window is only used to estimate the GARCH parameters.

3.2 Addressing local trends and changes in volatility: local normalization

Estimating the GARCH parameters requires a rather large time window.
Therefore we use a second method called local normalization introduced by Schäfer
and Guhr (2010). It removes local trends and changes in volatility without al-
tering the cross-correlations between time series. The local average of a func-
tion is defined as

〈ft〉m =
1

m

m−1∑

j=0

ft−j∆t , (8)

where ∆t is the return interval. Then the locally normalized returns are given
by

ρmt =
rt − 〈rt〉m√
〈r2t 〉m − 〈rt〉2m

, (9)

where we first subtract the local mean value 〈rt〉m from the return rt and then
divide by the local volatility. As shown by Schäfer and Guhr (2010) a value of
m = 13 yields optimal results for daily stock returns.

3.3 Noise-reduction

The correlation matrix of financial assets contains a significant amount of
noise, which can be seen by comparing the eigenvalue density of a correla-
tion matrix to a random matrix, see Laloux et al (1999). The part of small
eigenvalues, called the bulk part, exhibits the same shape for both matrices.
They only differ for larger eigenvalues, which can be associated to industrial
branches. The natural method to reduce the noise would be to increase the
length of the time series to calculate the correlation matrix from. This is not
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a feasible way to predict the future correlation matrix, because the relation-
ships between companies constantly change, as they start competing on new
markets or discontinue their activities in one field. Several methods have been
proposed in the past to reduce the noise, while keeping the times series short,
e.g., see Gopikrishnan et al (2001) and Giada and Marsili (2001).

Here we discuss the power mapping method introduced by Guhr and Kälber
(2003) to reduce the noise in a correlation matrix. Every entry of the correla-
tion matrix C is substituted by

C
(q)
ij = sign(Cij) |Cij |q (10)

yielding the noise reduced correlation matrix C(q). Notice that the diagonal
elements are equal to one and thus not affected by power mapping. In general,
the optimal value for the parameter q depends on the time horizon T on which
the correlation matrix is calculated, i.e., the degree of noise in the correlation
matrix. However, power mapping is a very robust method which yields good
results for a wide range of q values around the optimal one, as discussed in
Schäfer et al (2010). Here, we use q = 1.5.

As a reference we also study the shrinkage method of Ledoit and Wolf
(2003, 2004b). This method uses a single-index covariance matrix, i.e., a mar-
ket covariance matrix, as a shrinkage target and provides a method to estimate
the optimal shrinkage parameter from the historical return time series, see page
613 in Ledoit and Wolf (2003). For covariance matrices where the length of the
time series is smaller than the dimension of the matrix an improved technique
exists by Ledoit and Wolf (2004a), which is not necessary here. By its design
the shrinkage target is estimated by a Sharpe-like one-factor model. In order
to combine shrinkage estimator with other methods, for example, the spa-
tial dependence model, it would be necessary to change the shrinkage target,
yielding a completely new method. Therefore, we restrict ourselves to study
the shrinkage method on its own and provide the results as a reference. How-
ever, we do also estimate the shrinkage parameter from the GARCH residuals
and locally normalized returns instead of the original returns.

3.4 Volatility forecast

The correlation matrix needed for the power mapping method can be calcu-
lated from the covariance matrix by dividing each element of the covariance
matrix

Cij =
Cov(yt)ij
σiσj

(11)

by the respective volatilities σi and σj . In case of the sample covariance matrix
we use the standard deviations of the returns calculated on the rolling window
of T = 100 trading days. For the one-factor and the spatial dependence model
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we use the model specific volatilities from the diagonal of the covariance ma-
trix in Equation (2) and (4), respectively. If local normalization or GARCH
residuals are used the volatilities are calculated from these time series.

At this stage we may apply power mapping to the correlation matrix if
we choose to. Applying power mapping will change the correlation matrix C,
otherwise the correlation matrix C remains the same between Equation (11)
and (12).

Regardless of the fact whether power mapping is applied or not we need
the covariance matrix for the portfolio optimization in Section 4.2. We proceed
by calculating the covariance matrix from the correlation matrix

Cov(yt)ij = Cij σ̂iσ̂j . (12)

At this point we use the volatilities σ̂i,j which are the historical volatilities in
case of the sample covariance matrix or the volatilities of the corresponding
model estimated from the original returns.

However, it is also possible to use other methods to estimate the volatilities.
There is a plethora of possible methods or models to forecast volatility, see
Poon and Granger (2003) for a review. Here, we limit ourselves to two common
methods.

First, we calculate the standard deviation from the original returns, i.e.,
with no further methods applied to them, in a rolling window of Tvol = 14
trading days. Here we assume that the volatility in the past three weeks is
a better indicator for the future standard deviation compared to the longer
horizon of T = 100 trading days.

Second, we can use the parameters from the GARCH fit of the original
returns described in Section 3.1 to predict the volatilities for the next trading
day according to Equation (6).

The reference results for the shrinkage estimator only use historical volatil-
ities calculated from the original returns.

4 Application to portfolio optimization

4.1 The data set

We use the adjusted daily closing prices for a collection of 49 stocks contained
in the Euro Stoxx 50. It includes companies from various countries in the
eurozone and spans across different branches. We had to remove GDF Suez
because of incomplete data due to the merger. The data is taken from Thomson
Reuters Datastream. A complete list of the stocks including their industrial
branch and country as used in the spatial dependence model is given in Table 1.
Nokia and CRH from Finland and Ireland are put together in the country
group “others” because groups are not allowed to contain only one entry to
avoid singularities. The observation period ranges from January 2001 to May
2012. We calculate the logarithmic returns from the adjusted prices. Table 1
gives an overview of the used stocks.



Spatial dependence in stock returns - Local normalization and VaR forecasts 9

Table 1 The data set

Automobile BMW (Germany), Daimler (Germany), VW (Germany)
Basic industry Arcelor Mittal (Benelux), CRH (Ireland), Saint-Gobain

(France), Vinci (France)
Consumer electronics Nokia (Finland), Philips (Benelux), SAP (Germany), Schnei-

der (France), Siemens (Germany)
Consumer Retail Anheuser Busch (Benelux), Carrefour (France), Danone

(France), Inditex (Spain), L’Oreal (France), LVMH (France),
Unilever (Benelux)

Energy E.ON (Germany), ENEL (Italy), ENI (Italy), Iberdrola
(Spain), RWE (Germany), Repsol (Spain), Total (France)

Finance AXA (France), Allianz (Germany), BNP (France), Banco
Bilbao (Spain), Banco Santander (Spain), Deutsche Bank
(Germany), Deutsche Brse (Germany), Generali (Italy), ING
(Benelux), Intesa (Italy), Mnchener Rck (Germany), Socit Gn-
rale (France), Unicredit (Italy), Unibail-rodamco (France)

Pharma and chemicals Air Liquide (France), BASF (Germany), Bayer (Germany),
Sanofi (France)

Telecom and media Deutsche Telekom (Germany), France Telecom (France), Tele-
com Italia (Italy), Telefonica (Spain), Vivendi (France)

4.2 Portfolio optimization

We compare the effects of the methods discussed in Section 3 on the covariance
estimation techniques of Section 2. For each covariance matrix, we perform
a portfolio optimization to determine the minimum variance portfolio, see
Markowitz (1952) and also Markowitz (1959) and Elton et al (2006).

We estimate each covariance matrix Cov(yt) =: V on a rolling window of
100 trading days. The covariance matrix yields the portfolio weights

ω =
V̂ −1τ

τ ′V̂ −1τ
(13)

for the minimum variance portfolio, where τ is a vector composed of ones. The
predicted portfolio variance is then

σ̂2
port :=

(
τ ′V̂ −1τ

)−1
. (14)

The estimated portfolio variance is then used to calculate a Gaussian Value-
at-Risk (VaR) for a given α-quantile uα

V̂aRα = uα

√
σ̂2
port . (15)

In this setup it is possible to calculate the VaR on a daily basis and compare
it to the out-of-sample realized portfolio returns.

In addition, we discuss two portfolio metrics. First, the Sharpe ratio, see Sharpe
(1994),

Sp =
1
T

∑T
t=1 r̂a,t − r̂b,t√

var(r̂a,t − r̂b,t)
, (16)
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where r̂a,t is the portfolio return and r̂b,t is the portfolio return of a port-
folio with homogeneous weights at time t. Second, we calculate the portfolio
turnover

Tp =
1

K

K∑

k=1

1

T − 1

T−1∑

t=1

|ωk,t+1 − ωk,t| , (17)

which is the average of changes for the portfolio weights after each restructur-
ing of the portfolio.

5 Results

5.1 Spatial parameters

Figure 1 shows the influence of local normalization on the parameter estima-
tion for the spatial dependence model. The three parameters of the spatial
dependence model are calculated for a rolling time window of T = 250 days.
The dashed lines show the parameters calculated from the original returns.
The solid lines present the three parameters with local normalization applied
to the returns. Especially during the financial crisis of 2008 a strong jump is
noticeable in the general and branch spatial parameters. This coincides with
the peaking volatility during this turbulent time. The artifact which has the
same width as the rolling window vanishes when applying the local normal-
ization. We note that the use of GARCH residuals yields similar results.
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Fig. 1 The parameters ρg , ρb and ρl are shown from top to bottom estimated at each
trading day for an interval of 250 days. The solid lines are with local normalization applied
to the returns, while the dotted lines are estimated from the unaltered returns.
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5.2 Portfolio variances

First, we discuss the impact of each method presented in Section 3 on the
realized portfolio variances. Then, we examine how combinations of the meth-
ods affect the risk assessment. The realized portfolio variances are given in
Table 2. The table is structured as follows: The second column states which
returns were used. We can use the original returns, the GARCH residuals or
the locally normalized returns. The volatility forecast method is specified in
the third column. The fourth column indicates whether or not power mapping
was used to suppress the estimation noise. The last three columns show the re-
sults of the realized portfolio variances for the spatial dependence model, the
one-factor model and the sample covariance matrix. Variances smaller than
0.0009 are underlined.

Table 2 Realized portfolio variances

volatility noise realized portfolio variances
returns forecast reduction sdep 1-factor sample

1 original hist no 0.000241 0.000093 0.000121
2 GARCH hist no 0.000171 0.000171 0.000115
3 normalized hist no 0.000172 0.000148 0.000127
4 original hist power mapping 0.000256 0.000087 0.000086
5 GARCH hist power mapping 0.000133 0.000207 0.000086
6 normalized hist power mapping 0.000135 0.000190 0.000093
7 original GARCH no 0.000100 0.000087 0.000126
8 GARCH GARCH no 0.000087 0.000142 0.000119
9 normalized GARCH no 0.000087 0.000121 0.000132

10 original GARCH power mapping 0.000097 0.000086 0.000098
11 GARCH GARCH power mapping 0.000084 0.000160 0.000095
12 normalized GARCH power mapping 0.000084 0.000143 0.000101
13 original hist† no 0.000101 0.000086 0.000116
14 GARCH hist† no 0.000091 0.000138 0.000119
15 normalized hist† no 0.000088 0.000119 0.000120
16 original hist† power mapping 0.000099 0.000084 0.000092
17 GARCH hist† power mapping 0.000085 0.000156 0.000093
18 normalized hist† power mapping 0.000086 0.000139 0.000097

19 original hist shrinkage - - 0.000076
20 GARCH hist shrinkage - - 0.000077
21 normalized hist shrinkage - - 0.000077

Using the GARCH residuals (row 2) or local normalization (row 3) yields
similar effects for all models. The spatial dependence model benefits from both
methods in a similar way, while the portfolio variances for the one-factor model
get worse. There is no significant effect on the sample covariance matrix. Power
mapping (row 4) slightly increases the portfolio variance in case of the spatial
dependence model.

The one-factor model improves a little bit, but is very good from start.
The strength of power mapping unveils when applied to the sample covariance
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matrix. Here power mapping greatly reduces the realized portfolio variance.
However, it does not match the lowest observed portfolio variances obtained
by the shrinkage estimator (row 19-21). The GARCH predicted volatilities
(row 7) enormously decrease the portfolio variance for the spatial dependence
model. They have a minor positive effect on the one-factor model, while a
minuscule negative effect on the sample covariance matrix.

By combining different methods it is possible to further reduce the portfolio
variance. The GARCH predicted volatilities with either GARCH residuals or
local normalization (row 8,12 and 9,11) improve the spatial dependence model
to be on par with the sample covariance matrix. The one-factor model does not
benefit and the sample covariance matrix only gets better if power mapping
(row 11,12) or the shrinkage estimator (row 19-21) is used. The effect of power
mapping is marginal in case of the spatial dependence model.

Estimating the shrinkage parameter from locally normalized returns (row
20), or alternatively GARCH residuals (row 21), does not significantly affect
the realized portfolio variances. The same behavior is observable for power
mapping, where local normalization and GARCH residuals only have a minor
impact.

Again, we notice that the one-factor model works best if used together with
the original returns (row 10), while the spatial dependence model benefits from
the GARCH volatility forecast. Local normalization or the GARCH residuals
improve the spatial dependence model (row 5,6), but not to the same extent
as a better volatility forecast (row 7-12 and 13-18).

If we shorten the time interval on which the volatility is estimated (denoted
by a dagger in the table) we can observe comparable results to the GARCH
predicted volatilities (row 13-18 and 7-12). In particular, local normalization
in combination with the shorter historical volatilities achieve matching re-
sults compared to GARCH residuals with GARCH predicted volatilities and
requires far shorter time series (row 12 and 18).

With regard to the realized portfolio variances we can conclude that the
spatial dependence model works best in combination with methods that im-
prove the volatility estimation, like GARCH predicted volatilities or local nor-
malization with a shorter horizon for the volatility calculation. The one-factor
works best without any refinements with the exception of minor improvements
in combination with power mapping. For the sample covariance matrix only
power mapping or the shrinkage estimator is required to achieve the best per-
formance.

For comparing the predicted variances and the Sharpe ratios of the differ-
ent return series resulting from the different optimizations and a benchmark
series, respectively, we performed a simple bootstrap-based test in the spirit
of Ledoit and Wolf (2008). In the first step, for each series, the difference of
the quantity of interest (predicted variance or Sharpe ratio) between the series
and the benchmark is calculated. This difference yields the nominator of the
test statistic. For the denominator, we first obtain B = 1000 new bivariate
time series of length T , respectively, which are obtained by a non-overlapping
block bootstrap similarly to Wied (2015+). This means that we draw with
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replacement blocks of bivariate vectors of the original time series. The block
length is T 1/3. For each of the B series, we calculate the quantity of interest.
The denominator of the test statistic is then given by the empirical standard
deviation of the B quantities. Similarly to Wied (2015+), we make use of
the asymptotic normality of this test statistic. Thus, the approximate p-value
of the one-sided tests is given by F (T ) for the variance and 1 − F (−T ) for
the Sharpe ratio test, where T is the test statistic and F is the distribution
function of the standard normal distribution.

We utilize two different scenarios as a benchmark in case of the variances.
First, we compare the variances to the variances of a portfolio with homoge-
neous weights. We find that all models and methods beat the homogeneous
portfolio with one exception. The spatial dependence model with power map-
ping applied does not yield significantly lower portfolio variances compared to
the homogeneous portfolio. Second, with the Shrinkage estimator as a bench-
mark none of the improved models provide lower portfolio variances.

Table 3 Relative predicted portfolio variances in percent

volatility noise realized−predicted
predicted

in %

returns forecast reduction sdep 1-factor sample

1 original hist no 57 203 426
2 GARCH hist no 64 45 362
3 normalized hist no 73 53 397
4 original hist power mapping 80 195 180
5 GARCH hist power mapping 32 206 174
6 normalized hist power mapping 39 234 184
7 original GARCH no 137 256 581
8 GARCH GARCH no 141 847 515
9 normalized GARCH no 144 452 564

10 original GARCH power mapping 108 260 283
11 GARCH GARCH power mapping 119 1330 267
12 normalized GARCH power mapping 121 755 276
13 original hist† no 323 401 903
14 GARCH hist† no 297 953 877
15 normalized hist† no 233 480 727
16 original hist† power mapping 186 319 353
17 normalized hist† power mapping 187 765 359
18 GARCH hist† power mapping 183 1345 350

19 original hist shrinkage - - 111
20 GARCH hist shrinkage - - 114
21 normalized hist shrinkage - - 114

We compare the predicted variances with the realized portfolio variances
shown in Table 3. Values smaller than 150 are underlined. The prediction error
of the sample covariance matrix is greatly reduced by the use of power mapping
or the shrinkage estimator. Local normalization yields a small enhancement for
the spatial dependence model, while there is no improvement for the one-factor
model and the sample covariance matrix if used in combination with power
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mapping. The one-factor model and the sample covariance matrix are not
very well suited to predict the realized variance, while maintaining competitive
realized portfolio variances. The spatial dependence model and the shrinkage
estimator are the best predictors for the realized portfolio variances.

5.3 VaR forecast

We calculate the VaR forecast according to Equation (15) on a daily basis
for each α. The probability that the realized portfolio return is smaller than
the VaR forecast is shown in Figure 2 for α ∈ (0, 0.5]. The probability is
calculated from all trading days in the observation period. For a perfect model
the probability P (yport < V̂aRα) should be equal to α, which is indicated by
a straight line.
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Fig. 2 The probability of a portfolio return being smaller than the Value-at-Risk given a
fixed quantile of α. The dashed lines show the results without any refinements for the spatial
dependence model (diamond), the one-factor model (square) and the sample covariance
matrix (circle). The solid lines show the effect of improved covariance estimation methods
(see text for details). The shrinkage estimator (triangle) is a noise-reduced refinement of the
sample covariance matrix (circle).

We do not show the results for each case presented in Table 2; instead
we limit ourselves to one case per model, where the realized portfolio vari-
ances are lowest. For the spatial dependence model (diamond) we present the
VaR forecast with GARCH residuals, GARCH-predicted volatilities and ap-
plied power mapping. The one-factor model (squares) uses a combination of
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original returns, historical volatilities and power mapping, while the sample
covariance matrix (circle) uses GARCH residuals instead, historical volatilities
and power mapping. In addition, we show the sample covariance matrix with
the shrinkage estimator applied, where the shrinkage parameter is estimated
from the original returns. The dashed lines show the original models without
any refinements while the solid lines show the refined cases.

Without any refinements the spatial dependence model produces the best
VaR forecasts in the observed period, while the results for the one-factor model
and the sample covariance matrix are rather poor in comparison. The large
improvement with regard to the realized portfolio variances leads to a poorer
VaR forecast. In contrast the sample covariance matrix not only gains better
realized variances by applying power mapping and using GARCH residuals
but also leads to a better VaR forecast. For the one-factor model there is no
significant change to the predictive power of the VaR forecast. The shrinkage
estimator provides a serious improvement for the sample covariance matrix
with regard to the VaR prediction, which is slightly better compared to the
spatial model with applied refinements.

Nonetheless, the sample covariance matrix with power mapping and the
one-factor model do not surpass the spatial dependence model and the shrink-
age estimator in their risk estimation.

5.4 Portfolio turnover and Sharpe ratios

Table 4 shows the portfolio turnover, see Equation (17), for all cases. The un-
modified spatial dependence and one-factor model have a very small turnover
compared to the sample covariance matrix (row 1). However, only the one-
factor model shows a competitive variance for the realized portfolio returns.
Improving the portfolio variance in case of the spatial dependence model re-
sults at best in a three times increase of the portfolio turnover (row 11,12).
The biggest impact stems from the alternative volatility forecast methods.
While they improve the portfolio variance for the spatial dependence model
they have a severe effect on the portfolio turnover. The one-factor model with
power mapping applied results in the smallest observed portfolio turnover,
while also providing a competitive portfolio variance (row 4). The shrinkage
method doubles the portfolio turnover and provides a slightly better portfo-
lio variance (row 19). In general, power mapping has a positive effect on the
portfolio turnover, while the improved volatility forecasts result in an elevated
portfolio return. The shrinkage yields a one third smaller portfolio turnover
compared to power mapping.

The Sharpe ratios with a homogeneously weighted portfolio as reference
are presented in Table 5. The original returns yield poor results for the Sharpe
ratio in case of the spatial dependence model, where even negative ratios occur
(row 1, 4, 10). The one-factor model has a high Sharpe ratio out of the box (row
1) and yields the highest Sharpe ratio if combined with the GARCH volatility
forecast (row 7). The shrinkage method provides a higher Sharpe ratio com-
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Table 4 Portfolio turnover

volatility noise portfolio turnover
returns forecast reduction sdep 1-factor sample

1 original hist no 0.14 0.11 0.69
2 GARCH hist no 0.10 0.50 0.67
3 normalized hist no 0.11 0.62 0.71
4 original hist power mapping 0.05 0.09 0.29
5 GARCH hist power mapping 0.07 0.35 0.27
6 normalized hist power mapping 0.08 0.42 0.29
7 original GARCH no 0.83 0.43 1.27
8 GARCH GARCH no 0.59 0.28 1.22
9 normalized GARCH no 0.58 0.50 1.34

10 original GARCH power mapping 0.68 0.32 0.66
11 GARCH GARCH power mapping 0.46 0.19 0.62
12 normalized GARCH power mapping 0.45 0.35 0.67
13 original hist† no 0.93 0.59 1.35
14 GARCH hist† no 0.77 0.34 1.31
15 normalized hist† no 0.75 0.53 1.39
16 original hist† power mapping 0.83 0.48 0.83
17 GARCH hist† power mapping 0.66 0.25 0.79
18 normalized hist† power mapping 0.64 0.39 0.83

19 original hist shrinkage - - 0.20
20 GARCH hist shrinkage - - 0.19
21 normalized hist shrinkage - - 0.19

Table 5 Sharpe ratio

volatility noise sharpe ratio
returns forecast reduction sdep 1-factor sample

1 original hist no -0.0081 0.0118 -0.0001
2 GARCH hist no 0.0058 -0.0037 -0.0085
3 normalized hist no 0.0090 0.0080 -0.0034
4 original hist power mapping -0.0219 0.0114 0.0049
5 GARCH hist power mapping 0.0040 -0.0079 -0.0012
6 normalized hist power mapping 0.0077 0.0111 0.0016
7 original GARCH no 0.0029 0.0140 -0.0021
8 GARCH GARCH no 0.0097 0.0009 -0.0063
9 normalized GARCH no 0.0115 0.0012 0.0004

10 original GARCH power mapping -0.0015 0.0129 0.0039
11 GARCH GARCH power mapping 0.0070 0.0022 0.0018
12 normalized GARCH power mapping 0.0092 0.0022 0.0044
13 original hist† no 0.0014 0.0071 0.0050
14 GARCH hist† no 0.0081 0.0057 -0.0052
15 normalized hist† no 0.0095 0.0066 0.0016
16 original hist† power mapping 0.0005 0.0091 0.0079
17 GARCH hist† power mapping 0.0075 0.0074 0.0023
18 normalized hist† power mapping 0.0089 0.0085 0.0052

19 original hist shrinkage - - 0.0075
20 GARCH hist shrinkage - - 0.0093
21 normalized hist shrinkage - - 0.0089
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pared to power mapping (row 4, 19). In most cases power mapping lowers the
Sharpe ratio if used with the spatial dependence or one-factor model. In case
of the sample covariance matrix power mapping has in each case a positive
effect on the Sharpe ratio. The shrinkage method yields a better Sharpe ratio
if the shrinkage parameter is estimated from the locally normalized returns or
GARCH residuals (row 20, 21). On the other hand local normalization and
GARCH residuals in combination with the sample covariance matrix or the
one-factor model yield lower results for the Sharpe ratio. Without noise re-
duction applied the sample covariance matrix has rather poor results for the
Sharpe ratio.

We conduct the same bootstrap approach as discussed in section 5.2. How-
ever, the homogeneous portfolio is not an option here, because it is already
used as the reference in the calculation of the Sharpe ratio. Therefore, we only
use the Shrinkage estimator as a benchmark and find that the three models do
not yield significantly higher Sharpe ratios. This is even true for the Shrink-
age estimator calculated from GARCH residuals or locally normalized returns
(row 20, 21).

6 Conclusion

We compare three approaches for covariance estimation: The spatial depen-
dence model, a one-factor model and the sample covariance matrix. As a
benchmark for the quality of the covariance estimation, we use portfolio op-
timization. The realized portfolio variances and the relative prediction error
are scrutinized. In addition to the original approaches, we investigate several
refinement methods. An estimation error can arise from fluctuating volatili-
ties; they can be removed from the return time series either by employing a
GARCH fit and using the residuals, or by using a local normalization method.
Volatilities of the individual return time series can be better predicted using a
short-term historical estimate. This is due to the slowly decaying autocorrela-
tion of empirical volatilities. Alternatively, we can use the volatility predictions
of the GARCH fits. There is a large statistical estimation error, if the length
of the time series is not much larger than the parameters to be estimated.
This measurement noise can be reduced by noise reduction techniques such as
power mapping.

Given that a noise reduction of the covariance matrix has no big impact,
we draw the conclusion that the spatial dependence model captures the cor-
relation between assets well. However, the realized portfolio variances can be
immensely reduced by combining the spatial dependence model with better
methods for volatility forecasting, and using locally normalized returns for the
regression. The cost for this is that the prediction errors increase (with the ex-
ception of locally normalized returns in combination with historical volatility
forecast and power mapping). We conjecture that the large impact of differ-
ent methods for volatility forecasting are due to the fact that the dependence
structure is basically captured by weighting matrices whereas the only stochas-
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tic component is the error vector. The one-factor model produces quite good
realized portfolio variances on its own: This may be attributed to the fact that
the market factor is an additional stochastic component (one can interpret the
term ρgWgyt in the spatial model as a market factor as well, but in this case,
there is no additional randomness). It works best with the original returns
and should not be used with GARCH residuals or locally normalized returns.
Slight improvements are possible with better volatility forecast methods or
noise reduction. The sample covariance matrix suffers from noise due to the
finite length of the time series. Noise reduction methods such as power map-
ping are sufficient to achieve results that are equally good or better in case of
the shrinkage estimator compared to the other approaches.

Local normalization and the GARCH residuals effectively remove fluctu-
ations in the volatility and reduce estimation artifacts for the spatial param-
eters. With the right choice of refinements all three approaches are capable
of producing good realized portfolio variances, though the spatial dependence
model and the shrinkage estimator provide the smallest prediction error for
portfolio variances and VaR forecasts.
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