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1. Introduction

This paper proposes residual based self-normalized monitoring procedures for structural
change in a system of homogeneous cointegrating regressions. Such procedures might
be useful to detect deviations from stable economic relationships, e.g. macroeconomic
equations for housing prices or financial equations for exchange rates. There is recent
empirical evidence that such relationships might collapse (Anundsen, 2015, for the
subprime bubble, Reynolds et al., 2021, and Reynolds et al., 2018, for cryptocurrencies)
and we provide a methodological contribution to formally detect such collapses as early
as possible. This is relevant from an economic point of view, but also for potential
subsequent econometric analyses (see, e.g., Arsova and Örsal, 2021). As we assume that
N is small and T is large, our procedure is typically most relevant for financial data.

Our asymptotically valid panel data method is an extension of the single equation moni-
toring procedure of Wagner and Wied (2017). Specifically, on the one hand, we assume
homogeneous parameters and cross-sectional independent and identically distributed
errors. On the other hand, we discuss extensions to the cases of heterogenous parameters
and cross-sectional dependence. Our procedures are consistent if the cointegrating re-
lationship turn to a spurious regression or if there is a break in the trend and/or slope
parameters. The date of the potential change points does not need to be known a priori.
Our monitoring procedures require parameter estimates and a monitoring statistic. We
follow the ideas of Chu et al. (1996) and base the parameter estimates on a break-free
(or assumed to be break-free) calibration period as a fraction of the whole sample size.
The monitoring procedures use residuals calculated from these parameter estimates
to calculate cointegration test statistics over expanding windows. Since the limiting
distributions of our test statistics depend on the fraction of the calibration period, we in
fact propose “closed-end” monitoring procedures, i.e. the monitoring horizon has to be
specified beforehand.

We use the pooled fully modified OLS (PFM-OLS) estimator by Phillips and Moon
(1999) to obtain nuisance parameter free null limiting distributions of the monitoring
statistics and a pooled fully modified feasible GLS (PFM-GLS) estimator as well as the
fully modified SUR (FM-SUR) estimator by Moon (1999) in case of cross-sectionally
dependent cointegrating regressions. The limiting distributions also depend on the choice
of deterministic regressors as well as the number of I(1)-regressors. Our monitoring
statistics are based on the properly scaled partial sum process of FM-OLS-type residuals
and inspired by the statistics in Wagner and Wied (2017) which are based on the statistic
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of the Shin (1994) test. We analyze our approach with respect to different transformations
from a multivariate partial sum process to a scalar test statistic.

A simulation study assesses the performance of the PFM-OLS procedure in terms
of rejection probabilities under the null hypothesis as well as power and detection
delays under various alternatives, including influence of regressor endogeneity and serial
correlation, sample size and fraction of the calibration period m. Under the null hypothesis
the procedures work well in terms of null rejection probabilities close to the chosen
significance level. We further investigate how the PFM-GLS and FM-SUR procedures
work under cross-sectional dependence assumptions. For a variety of alternatives we
investigate both power and detection times, which serve as natural estimates of potential
breakpoints. Finally, we provide simulations which indicate that, in terms of null rejection
probabilities, one is advised to choose a monitoring period as long as possible such that
the calibration period is as little a fraction of the whole period as possible.

We provide a test for stability in bivariate systems of homogeneous cointegrating rela-
tionships in triangular arbitrage parities for logarithmic exchange rate triplets including
Bitcoin as an illustrative application example. We apply the procedures to a stochastic
variant of the aforementioned parity arising from no-arbitrage assumptions between
triplets of currency exchange rates such that there is no profit in instantaneous circular
transactions. We assume that violations of triangular arbitrage parities under normal
market conditions are stationary and a turn to non-stationary deviations is a sign of
mispricing not due to financial frictions – also referred to as financial market dislocation.
Reynolds et al. (2021) find empirical evidence of such mispricing in currency triplets
including Bitcoin using the Wagner and Wied (2017) monitoring for single equation
cointegrating relationships and use their results for a currency portfolio strategy. Our
sample ranges from 1 May 2013 until 31 December 2015, with the calibration period
ranging until 8 November 2013, assuming a break free calibration period due to stable
Bitcoin prices. The monitoring statistics indicate structural change in May to August
2014 and in January to May 2015 for some pairs of exchange rate triplets. Important
dates during monitoring and prior to the detected breaks are the ending of the cap
on euro-swiss franc exchange rates by the Swiss National Bank in January 2015 and,
in February 2014, the closing of Mt. Gox, a Japanese Bitcoin exchange where 70% of
all tradings took place up to its closing (Decker and Wattenhofer, 2014), which in turn
resulted in the loss of 850, 000 Bitcoin with a total value of 473 million USD at that
time (Fink and Johann, 2014). Reynolds et al. (2021) do not account for testing several
cointegrating relationships at a time, in contrast, these monitoring procedures do. We
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apply our results to construct a portfolio trading strategy using the detected breaks as a
sign of currency market instabilities.

The paper is organized as follows: Section 2 presents the model, the assumptions as
well as the monitoring statistics. Section 3 presents the results from the simulation
study, whilst Section 4 is dedicated to the application. Section 5 briefly summarizes
and concludes. Three appendices follow the main text: Appendix A contains all proofs,
Appendix B describes the simulation of critical values and Appendix C shows additional
results on error covariances of the application and selected simulation cases.

2. Monitoring Systems of Cointegrating Regressions

We consider monitoring a potential structural change in a system of N cointegrating
relationships (which we refer to as cointegrating regressions or cointegrating equations)

yn,t =

D′
tθD,n + X ′

n,tθX,n + un,t , t = 1, . . . , [rT ],

D′
tθD,1,n + X ′

n,tθX,1,n + un,t , t = [rT ] + 1, . . . , T,
(1)

and

∆Xn,t = vn,t, t = 1, . . . , T, (2)

for n = 1, . . . , N . Throughout the paper, we assume a break-free calibration period of
length [mT ] at the sample beginning and consider the case of small N and large T , i.e.
for asymptotics, N is fixed and T → ∞. yn,t is scalar, Dt ∈ Rp is the deterministic trend
function, Xn,t is a non-cointegrated k-dimensional random vector of I(1) regressors, un,t

is a zero mean error process and 0 < m ≤ r < 1. We allow for endogeneous regressors
and serial correlation in the zero mean errors vn,t = [vn,t,1, . . . , vn,t,k]′ of Xn,t as well as
correlation across k and n. Let θn = [θ′

D,n, θX,n]′ and θ1,n = [θ′
D,1,n, θX,1,n]′.

We test the following pair of hypotheses:

H0 :

θn = θ1,n for all m ≤ r < 1, n = 1, . . . , N, and

{un,t}t=1,...,T is I(0) for all n = 1, . . . , N
(3)

and

H1 :


θn ̸= θ1,n for some m ≤ r < 1, n ∈ {1, . . . , N} or

{un,t}t=1,...,[rT ] is I(0) and {un,t}t=[rT ]+1,...,T is I(1)

for some m ≤ r < 1, n ∈ {1, . . . , N}

(4)
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Figure 1: Own illustration of the monitoring procedure

Under the null hypothesis no structural change occurs, i.e. θD,n = θD,1,n and θX,n = θX,1,n

and {un,t}t=1,...,T is I(0) for all n = 1, . . . , N . Under the alternative there is either a
change in the parameter or a turn from cointegrating to spurious regression in at least
one cointegrating relationship at a sample fraction [rT ] greater or equal to [mT ] and
our procedures test for all potential breakpoints uniformly. A crucial question is how
to choose m in practice. The decision might be based on economic arguments and it is
possible to support such a choice with a retrospective panel cointegration test as reviewed
in Breitung and Pesaran (2008). Our simulations (Figures 4 and 5) indicate that m

should be rather small to have good size properties and it might be good practice to
choose a fraction of 1/10 such as 0.2 or 0.3.

Regarding the trend function we impose the following assumption:

Assumption 1. There exists a sequence of p × p scaling matrices GD,T > 0, satisfying
||GD,T || → 0 for T → ∞ (|| · || any matrix norm), and a p-dimensional vector of functions
D(z) with 0 <

∫ s
0 D(z)D(z)′dz < ∞ for 0 ≤ s ≤ 1, such that

lim
T →∞

sup
0≤s≤1

∣∣∣∣∣∣T 1/2GD,T D[sT ] − D(s)
∣∣∣∣∣∣

2
= 0 (5)

for || · ||2 the Euclidean norm.

This assumption is essentially the same as in Phillips and Hansen (1990, p. 102)
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and ensures a well defined limit of the scaled deterministic regressors. In case of
a polynomial trend Dt = [1, t, t2, . . . , tp−1]′ the assumption is satisfied by GD,T =
diag

(
T −1/2, T −1, . . . , T −p/2

)
and D(s) = [1, s, s2, . . . , sp−1]′.

Let ηt := [u′
t, vt]′ be the stacked errors with ut = [u1,t, . . . , uN,t]′ and vt = [v′

1,t, . . . , v′
N,t]′.

Regarding the error process {ηt} we assume that a functional central limit theorem
holds:

Assumption 2.
(a): The stationary process {ηt} fulfills

T −1/2
[sT ]∑
t=1

ηt = T −1/2
[sT ]∑
t=1

[
ut

vt

]
⇒ B(s) := BM(Ω) = Ω1/2W (s) (6)

with W (s) = [Wu·v(s)′, Wv(s)′]′ an N(k+1)-dimensional vector of standard Brownian
motions and 0 < Ω < ∞, where

Ω =
[
Ωuu Ωuv

Ωvu Ωvv

]
:=

∞∑
h=−∞

E(η0η′
h). (7)

(b): Denoting Sη
t :=

∑t
j=1 ηj it holds that

T −1
[sT ]∑
t=1

Sη
t η′

t ⇒
∫ s

0
B(r)dB(r)′ + ∆ (8)

with ∆ :=
∑∞

h=0E(η0η′
h).

(c): (a) and (b) hold jointly.

Wu·v(s) = [Wu·v,1(s), . . . , Wu·v,N (s)]′ is an N -dimensional vector of standard Brownian
motions and Wv(s) = [Wv,1(s)′, . . . , Wv,N (s)′]′ consists of N different k-dimensional
vectors of standard Brownian motions. We partition B(s) = [Bu(s)′, Bv(s)′]′, where
Bv(s) = [Bv,1(s)′, . . . , Bv,N (s)′]′ and Bv,n(s) is a k-dimensional vector of Gaussian pro-
cesses for n = 1, . . . , N . The decomposition B(s) = Ω1/2W (s) holds with

Ω1/2 :=

(Ωuu − ΩuvΩ−1
vv Ωvu)1/2 ΩuvΩ−1/2

vv

0kN×N Ω1/2
vv

 , (9)
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where 0kN×N is a kN by N matrix of zeros. The assumption Ωvv > 0 excludes cointegra-
tion among the regressors Xt which is typically assumed for FM-OLS estimation.

We detail our notion of I(0) and I(1) processes and call a univariate stochastic process
{ξt}t∈Z I(0) if it fullfills (potentially after demeaning) a functional central limit theorem,
i.e. if it holds for 0 ≤ s ≤ 1 that T −1/2∑[sT ]

t=1 ξt ⇒ ωW (s), where W (s) denotes a
standard Brownian motion and 0 < ω < ∞ is the long-run varaince ω2 :=

∑∞
t=−∞E(ξ0ξt)

of {ξt}t∈Z. Therefore, an I(1) process {ζt}t∈Z with ζt − ζt−1 = ξt, i.e. a summed up I(0)
process, fulfills T −1/2ζ[sT ] ⇒ ωW (s) for all 0 ≤ s ≤ 1 and ω and W (s) as above.

The monitoring procedures are based on consistent estimators of the parameter vectors
θn and (co-)variance parameters. Similar to Chu et al. (1996) we allow structural change
only after a break-free calibration period of size [mT ] (0 < m < 1) at the beginning of
the monitoring in all N cointegrating regressions (c.f. Figure 1). We obtain residuals
via an estimator θ̂m of the fully modified type, which has been studied in detail with
regards to panel data structures, based on the calibration period and the corresponding
N -dimensional residuals û+

t;m. The monitoring procedure evaluates whether the properly
scaled partial sum process of these residuals

T −1/2
[sT ]∑
t=1

û+
t;m (10)

becomes “too large”. In view of Assumption 2, the partial sum process (10) serves as a
natural basis for our monitoring procedure. We show that (10) converges to a mixture of
Gaussian processes with nuisance parameters. The number of nuisance parameters and
the precise limiting distribution depend on the set of considered assumptions. Further,
the limiting distribution depends on m, the deterministic trend Dt and the number of
regressors k as well.

The bases of scalar test statistics are three detectors constructed by different real-valued
transformations of the N -dimensional residual process, i.e. mappings: RN → R, and we
derive their asymptotic behaviour. The detectors are

Ĥm,+
1 (s) :=

∣∣∣∣∣∣T −1/2∑[sT ]
t=[mT ]+1 û+

t;m

∣∣∣∣∣∣2
2∣∣∣∣∣∣T −1/2∑[mT ]

t=1 û+
t;m

∣∣∣∣∣∣2
2

=
∑N

n=1

(
T −1/2∑[sT ]

t=[mT ]+1 û+
n,t;m

)2

∑N
n=1

(
T −1/2∑[mT ]

t=1 û+
n,t;m

)2 , (11)
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Ĥm,+
2 (s) :=

T −1∑[sT ]
i=[mT ]+1

∣∣∣∣∣∣T −1/2∑i
t=1 û+

t;m

∣∣∣∣∣∣2
2

T −1∑[mT ]
i=1

∣∣∣∣∣∣T −1/2∑i
t=1 û+

t;m

∣∣∣∣∣∣2
2

=
∑N

n=1 T −1∑[sT ]
i=[mT ]+1

(
T −1/2∑i

t=1 û+
n,t;m

)2

∑N
n=1 T −1∑[mT ]

i=1

(
T −1/2∑i

t=1 û+
n,t;m

)2

(12)

and

Ĥm,+
3 (s) :=

∣∣∣∣∣∣T −1∑[sT ]
i=[mT ]+1 T −1/2∑i

t=1 û+
t;m

∣∣∣∣∣∣2
2∣∣∣∣∣∣T −1∑[mT ]

i=1 T −1/2∑i
t=1 û+

t;m

∣∣∣∣∣∣2
2

=
∑N

n=1

(
T −1∑[sT ]

i=[mT ]+1 T −1/2∑i
t=1 û+

n,t;m

)2

∑N
n=1

(
T −1∑[mT ]

i=1 T −1/2∑i
t=1 û+

n,t;m

)2 ,

(13)

with û+
t;m = [û+

1,t;m, . . . , û+
N,t;m]. Clearly, the numerator in (12) turns into the detector

used by Wagner and Wied (2017) by setting n = 1 and into the Shin (1994) statistic by
additionally setting m = 0 and s = 1.

In the following Sections 2.1 – 2.3 we derive the limiting distribution Wu·v(s) of the
partial sum process (10), such that

1√
T

[sT ]∑
t=1

û+
t;m ⇒ Wu·v(s), (14)

where Wu·v(s) = [Wu·v,1, . . . , Wu·v,N]′ is a functional of Brownian motions and depends
on the set of assumptions specified in the respective Sections. All detectors are continuous
mappings of the scaled partial sum process (10) and we use (14) along with the continuous
mapping theorem to construct statistical hypothesis tests by the following Lemma 1
which is valid for three sets of assumptions and refers to three different convergence
results for (14), Lemma 3 in Section 2.1 for cross-sectional independence, Lemma 5 in
Section 2.2 for homogeneity and cross-sectional dependence and Lemma 7 in Section 2.3
for heterogeneity and cross-sectional dependence.

Lemma 1. Let the assumptions of Lemma 3, 5 or 7 be in place, respectively, and let N

be fixed. Then it holds that

Ĥm,+
1 (s) ⇒

∑N
n=1 (Wu·v,n(s) − Wu·v,n(m))2∑N

n=1 Wu·v,n(m)2
=: Hm,+

1 (s), (15)

– 8–



Ĥm,+
2 (s) ⇒

∑N
n=1

∫ s
m (Wu·v,n(t))2 dt∑N

n=1
∫m

0 (Wu·v,n(t))2 dt
=: Hm,+

2 (s) (16)

and

Ĥm,+
3 (s) ⇒

∑N
n=1 (

∫ s
m Wu·v,n(t)dt)2∑N

n=1 (
∫m

0 Wu·v,n(t)dt)2 =: Hm,+
3 (s), (17)

for T → ∞, where the specific form of Wu·v,n(s) depends on which of the three situations
is considered. (15) - (17) are only valid provided the denominators of (11) - (13) and
their respective limits are invertible.

We reject the null hypothesis if the weighted detector Ĥm,+(s)
g(s) exceeds a critical value for

the first time where Ĥm,+(s) is any of the above detectors. This point in time is referred
to as detection time, i.e.

τm := min
s:[mT ]+1≤[sT ]≤T

{
Ĥm,+(s)

g(s) > c

}
, (18)

where g(s) is a weighting function that has to be chosen. If Ĥm,+(s)
g(s) ≤ c for all m ≤ s ≤ 1,

set τm := ∞. Hence, a finite value of τm implies a rejection of the null hypothesis and
serves as an immediate estimate of the potential breakpoint. The critical value c and the
weighting function g(s) have to be chosen such that under the null hypothesis it holds
that

lim
T →∞

P (τm < ∞) = lim
T →∞

P

(
min

s:[mT ]+1≤[sT ]≤T

{
Ĥm,+(s)

g(s) > c

}
< ∞

)

= lim
T →∞

P

(
sup

s:[mT ]+1≤[sT ]≤T

Ĥm,+(s)
g(s) > c

)

= P
(

sup
m≤s≤1

Hm,+(s)
g(s) > c

)
= α,

(19)

where α denotes the chosen significance level. We only allow continuous, positive and
bounded weighting functions. Clearly, τm and c depend on the chosen detector as well as
on m, the deterministic trend Dt and the number of regressors k. According to (19), the
decision rule to reject the null hypothesis if τm < ∞ is equivalent to rejecting the null
hypothesis if sups:[mT ]+1≤[sT ]≤T

Ĥm,+(s)
g(s) > c.

Using the established limits and the continuous mapping theorem we derive:

Theorem 1. Let the assumptions of Lemma 1 be in place and assume that g(s) is
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Detector Dt = 1 Dt = [1, t]′

E(Hm,+
1 (s)) s2 s4

E(Hm,+
2 (s)) s3 s5

E(Hm,+
3 (s)) s4 s6

Table 1: Order of the expected values of the limiting distributions (15) - (17) in the
case of intercept only (Dt = 1) or linear trend (Dt = [1, t]′) and no regressors,
dim Xt = 0.

continuous with 0 < g(s) < ∞ for m ≤ s ≤ 1. Then, under the null hypothesis there exist
for any 0 < α < 1 critical values c = c(α, g, Ĥm,+

i ), such that

lim
T →∞

P

(
τm(g, c(α, g, Ĥm,+

i )) < ∞
)

= α, (20)

for i = 1, . . . , 3.

We calculate the order of the expected value of the three limit processes to motivate our
choice of g(s) for intercept and linear trend since optimal weighting functions, e.g. in the
sense of minimum detection delay, are in general not deducible (see Chu et al., 1996).
Hence, we use the monoms matching the respective detector displayed in Table 1 for the
cases intercept only or linear trend, and arbitrary number of regressors k. In order to
calculate the critical value c(α, g, Ĥm,+

i ) we need to simulate the limiting distribution
Hm,+

i (s)
g(s) by approximating the functionals of Brownian motions by the corresponding

functions of random walks.

Finally, we introduce some additional notation. With the stacked errors ηn,t := [un,t, v′
n,t]′

associated to individual cointegrating regressions we define long-run and one-sided long-
run covariances of ηn,t as

Ωm,n =
(

Ωm,n
uu Ωm,n

uv

Ωm,n
vu Ωm,n

vv

)
:=

∞∑
h=−∞

E(ηm,0η′
n,h),

∆m,n =
(

∆m,n
uu ∆m,n

uv

∆m,n
vu ∆m,n

vv

)
:=

∞∑
h=0

E(ηm,0η′
n,h),

Ωm,·
ij := [Ωm,1

ij , . . . , Ωm,N
ij ]

and

∆m,·
ij := [∆m,1

ij , . . . , ∆m,N
ij ]
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for i, j = u and v and m, n = 1, . . . , N . In what follows we denote consistent estimators
of the (one-sided) long-run variance based on the calibration period with a subscript m

and “∧” on top. By (A)n,· we denote the n-th row of a matrix A. In is an n × n unity
matrix and 1n×m is an n × m matrix of ones.

2.1. Uncorrelated Homogeneous Cointegrating Regressions

We consider homogeneous cointegrating relationships by imposing the following additional
assumption of cross-sectionally identical parameters:

Assumption 3. θD = θD,n and θX = θX,n for all n = 1, . . . , N .

Assumption 3 implies

yn,t =

D′
tθD + X ′

n,tθX + un,t, t = 1, . . . , [rT ],

D′
tθD,1,n + X ′

n,tθX,1,n + un,t, t = [rT ] + 1, . . . , T,
(21)

and

∆Xn,t = vn,t, t = 1, . . . , T, (22)

for n = 1, . . . , N , and simplifies the null hypothesis and alternative with regards to
the parameters θD and θX . Under the null hypothesis no structural change occurs, i.e.
θ := [θ′

D, θ′
X ]′ = [θ′

D,1,n, θ′
X,1,n]′ =: θ1,n and under the alternative there is a change in at

least one cointegrating regression. Consequently,

H0 :

θ = θ1,n for all m ≤ r < 1, n = 1, . . . , N, and

{un,t}t=1,...,T is I(0) for all n = 1, . . . , N
(23)

and

H1 :


θ ̸= θ1,n for some m ≤ r < 1, n ∈ {1, . . . , N} or

{un,t}t=1,...,[rT ] is I(0) and {un,t}t=[rT ]+1,...,T is I(1)

for some m ≤ r < 1, n ∈ {1, . . . , N}

(24)

Note that under the alternative of a parameter change the system may turn heterogeneous,
i.e. θ1,i ̸= θ1,j for some i, j ∈ {1, . . . , N}, or stay homogeneous with θ1,i = θ1,j for all
i, j ∈ {1, . . . , N}.

With regards to the errors we assume a naive i.i.d. setting at first, namely:
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Assumption 4. The stacked error processes {ηn,t := [un,t, v′
n,t]′}t=1,...,T are independent

and identically distributed for all n.

Note that by Assumption 4

Ωn,n = Ων,ν ,

∆n,n = ∆ν,ν

for all n, ν = 1, . . . , N and

Ωn,ν = ∆n,ν = 0

for all n, ν = 1, . . . , N, n ̸= ν. Due to the above implication the decomposition of B(s)
collapses to

B(s) = Ω1/2W (s) =
[
IN ⊗ Ω1,1

uu IN ⊗ Ω1,1
vu

IN ⊗ Ω1,1
uv IN ⊗ Ω1,1

vv

]1/2

W (s),

a simpler linear transformation of standard Brownian motions where

Ω1/2 :=
[

IN ⊗ ωu·v IN ⊗ λuv

IN ⊗ 0k×1 IN ⊗ Ω1/2
vv

]
and

(
Ω1,1

)1/2
:=
[

ωu·v λuv

0k×1 (Ω1,1
vv )1/2

]
(25)

with ω2
u·v := Ω1,1

uu − Ω1,1
uv (Ω1,1

vv )−1Ω1,1
vu and λuv := Ω1,1

uv (Ω1,1
vv )−1/2. Then Ω1/2

(
Ω1/2

)′
= Ω

and[
IN ⊗ ωu·v IN ⊗ λuv

IN ⊗ 0k×1 IN ⊗ (Ω1,1
vv )1/2

] [
IN ⊗ ωu·v IN ⊗ λuv

IN ⊗ 0k×1 IN ⊗ (Ω1,1
vv )1/2

]′

=
[
IN ⊗ Ω1,1

uu IN ⊗ Ω1,1
vu

IN ⊗ Ω1,1
uv IN ⊗ Ω1,1

vv

]

hold, respectively. Here, the assumption Ω1,1
vv > 0 suffices to exclude cointegration among

the regressors Xn,t for fixed n which is typically assumed for FM-OLS estimation. Then,
Assumption 4 implies no cointegration across Xt.

In order to obtain nuisance parameter free asymptotic distributions of the monitoring
statistics we use the PFM-OLS estimator of Phillips and Moon (1999, Section 5.2) for
systems of homogeneous cointegrating regressions.
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Define Zn,t := [D′
t, X ′

n,t]′ and Zt := [Z1,t, . . . , ZN,t] and we have

yt =


y1,t

...
yN,t

 =


D′

t X ′
1,t

...
...

D′
t X ′

N,t


[
θD

θX

]
+


u1,t

...
uN,t

 = Z ′
tθ + ut

due to Assumption 3. Since we assume cross-sectional homogeneity and independence,
we can modify the dependent variables by using

y+
n,t;m :=yn,t − Ω̂1,1

uv;m(Ω̂1,1
vv;m)−1∆Xn,t (26)

and

∆̂+
vu;m :=∆̂1,1

vu;m − ∆̂1,1
vv;m(Ω̂1,1

vv;m)−1Ω̂1,1
vu;m, (27)

where all estimators indicate the arithmetic mean of the respective non-parametric kernel
estimators based on the cointegrating regressions and the pre-break sample 1, . . . , [mT ],
e.g. Ω̂1,1

vv;m = N−1∑N
n=1 Ω̂1,1

vv,n;m, where Ω̂1,1
vv,n;m is based solely on cointegrating regression

n. Long-run variances are estimated using the stacked error processes η̂n,t := [ûn,t;m, v′
n,t]′

for t = 2, . . . , [mT ] with ûn,t;m the OLS residuals resulting from individual estimation
using the calibration period. We assume that long-run variances are estimated consistently,
e. g. under the assumptions of Jansson (2002). The PFM-OLS estimator is given by

θ̂m,PFM :=

[mT ]∑
t=1

N∑
n=1

Zn,tZ
′
n,t

−1[mT ]∑
t=1

N∑
n=1

Zn,ty
+
n,t;m − N [mT ]

[
0p×1

∆̂+
vu;m

]
=
( [mT ]∑

t=1
ZtZ

′
t

)−1( [mT ]∑
t=1

Zty
+
t;m − N [mT ]

[
0p×1

∆̂+
vu;m

])
,

(28)

where y+
t;m = [y+

1,t;m, . . . , y+
N,t;m]′.

Note, that Phillips and Moon (1999) consider a panel structure with simultaneously
{T, N} → ∞, while we confine ourselves to the case T → ∞ and N fixed. Another
methodological difference is that they work with random linear error processes (VMA(∞)-
processes with random coefficients) and show in their Lemma 3 that they fulfill a panel
functional central limit theorem under certain assumptions on the random coefficients
(Assumption 1 and 2 in their paper, mainly an i.i.d. assumption and moment conditions;
for homogeneous panel cointegration they strengthen these to non-random coefficients).
That means Phillips and Moon (1999) work with “low-level” assumptions on the error
structure while we employ the “high-level” Assumption 2 that the errors follow a functional
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central limit theorem, which in fact is a result based on structural assumptions on the
errors. Any set of assumptions that implies Assumption 2 is suitable for our purpose.

We derive (c.f. Phillips and Hansen, 1990) the following result concerning the asymptotic
behaviour of the PFM-OLS estimator:

Lemma 2. Let the data be generated by (21) and (22) with Assumptions 1 - 4 in place.
Then

G−1
T

(
θ̂m,PFM − θ

)
⇒ ωu·v

(
N∑

n=1

∫ m

0
Jn(r)Jn(r)′dr

)−1

×
(

N∑
n=1

∫ m

0
Jn(r)dWu·v,n(r)

)
,

(29)

as T → ∞ with Jn(r) := [D(r)′, Bv,n(r)′]′, GT := diag(GD,T , GX,T ) and GX,T := T −1Ik.

The corresponding N -dimensional residuals are given by û+
t;m,PFM := y+

t;m − Z ′
tθ̂m,PFM =

ut − V ′
t (Ω̂1,1

vv;m)−1Ω̂1,1
vu;m − Z ′

t(θ̂m,PFM − θ) with Vt := [v1,t, . . . , vN,t] and we obtain the
following limiting distribution for the scaled partial sum process:

Lemma 3. Let the data be generated by (21) and (22) with Assumptions 1 - 4 in place.
Then it holds under the null hypothesis and for 0 ≤ s ≤ 1

T −1/2
[sT ]∑
t=1

û+
t;m,PFM ⇒ ωu·v

{
Wu·v(s) −

∫ s

0
J(r)′dr

(
N∑

n=1

∫ m

0
Jn(r)Jn(r)′dr

)−1

×
(

N∑
n=1

∫ m

0
Jn(r)dWu·v,n(r)

)}
=: ωu·vŴu·v(s)

(30)

for T → ∞ with J(r) := [J1(r), . . . , JN (r)] and Jn(r) = [D(r)′, Wv,n(r)′]′.

Note that the process Ŵu·v(s) depends on m, the deterministic trend Dt and the number
of regressors k as well but we do not reflect this in our notation.

Under Assumptions 3 and 4 self-normalization cancels out the long-run variance in
the detector limit. Hence, we get rid of the well-known and unwanted finite sample
size distortions induced by long-run variance estimation. A crucial ingredient here is
the homogeneity of long-run variances. Assume for this paragraph that ω2

u·v,n is the
conditional long-run variance in cointegrating relation n and that the conditional long-run
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variances are not homogeneous across cointegrating relations, i.e. ω2
u·v,1 ̸= ω2

u·v,n for some
n ∈ {2, . . . , N}. Then, (29) changes to

G−1
T (θ̂m,PFM − θ) ⇒

(
N∑

n=1

∫ m

0
Jn(r)Jn(r)′dr

)−1( N∑
n=1

ωu·v,n

∫ m

0
Jn(r)dWu·v,n(r)

)

for T → ∞, and the j-th component of (30), T −1/2∑[sT ]
t=1 û+

j,t;m,PFM, converges weakly
to

ωu·v,jWu·v,j(s)

−
∫ s

0
Jj(r)′dr

(
N∑

n=1

∫ m

0
Jn(r)Jn(r)′dr

)−1( N∑
n=1

ωu·v,n

∫ m

0
Jn(r)dWu·v,n(r)

)

for T → ∞, where the convergence still holds jointly for all j = 1, . . . , N . The nuisance
parameters ωu·v,n cannot be scaled out in the detectors due to their heterogeneity.

Homogeneous parameters are a crucial assumption for (30) as in case of heterogeneous
parameters (29) is no longer valid and θ̂m,PFM is only consistent for the average parameter
across all equations (c.f. Phillips and Moon, 1999, p. 1080, remark (c), and recall we do
not consider random, but fixed parameters).

The limiting distributions depend on different parameters and we obtain critical values
for a selection of them, namely Dt = 1 or Dt = [1, t]′, using the weighting function
corresponding to Dt and the respective detector (c.f. Table 1), m-values ranging from
0.1 to 0.9 with mesh 0.01, N = 1, 2, 3, 5, 10, 20, 30 and k = 1, . . . , 4. We provide further
details on simulating the critical values in the additional material.

2.2. Correlated Homogeneous Cointegrating Regressions

As in Section 2.1, the data are generated by (21) and (22) as we consider monitoring
homogeneous cointegrating relationships. Regarding the errors we abandon Assumption
4 of independent and identically distributed error vectors ηt but allow for arbitrary
dependence among the regressors – except cointegration among the regressors, i.e. Ωn,n

vv >

0 and Ωvv > 0 hold. In this case, the modified dependent variable is y+
t;m,GLS :=

yt − Ω̂uv;mΩ̂−1
vv;m∆Xt and due to cross-sectional dependence we use the bias correction
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term

δ̂m :=
N∑

n=1

[
0p×1

(∆̂n,·
vu;m)((Ω̂−1

u·v;m)n,·)′ − ∆̂n,·
vv;m((Ω̂−1

u·v;mΩ̂uv;mΩ̂−1
vv;m)n,·)′

]
. (31)

Ω̂u·v;m is an estimator of Ωu·v := Ωuu−ΩuvΩ−1
vv Ωvu, the long-run covariance of the modified

system error u+
t;m,GLS := ut − Ω̂uv;mΩ̂−1

vv;m∆Xt. In order to deal with an arbitrary error
structure, we use the pooled feasible GLS estimator

θ̂m,PFM-GLS :=
( [mT ]∑

t=1
ZtΩ̂−1

u·v;mZ ′
t

)−1( [mT ]∑
t=1

ZtΩ̂−1
u·v;my+

t;m,GLS − [mT ]δ̂m

)
(32)

of the modified system.

Lemma 4. Let the data be generated by (21) and (22) with Assumptions 1 - 3 in place.
Then

G−1
T (θ̂m,PFM-GLS − θ) ⇒

(∫ m

0
J(r)Ω−1

u·v;mJ(r)′dr

)−1 (∫ m

0
J(r)Ω−1/2

u·v;mdWu·v(r)
)

(33)

as T → ∞ with Jn(r) = [D(r)′, B(r)′
v,n]′, J(r) := [J1(r), . . . , JN (r)], GT = diag(GD,T , GX,T )

and GX,T = T −1Ik.

Here, the residual vector is û+
t;m,PFM-GLS := y+

t;m,GLS −Z ′
tθ̂PFM-GLS = ut − Ω̂uv;mΩ̂−1

vv;mvt −
Z ′

t(θ̂PFM-FGLS − θ) and the following Lemma holds for the scaled partial sum process:

Lemma 5. Let the data be generated by (21) and (22) with Assumptions 1 - 3 in place.
Then it holds under the null hypothesis and for 0 ≤ s ≤ 1

T −1/2
[sT ]∑
t=1

û+
t;m,PFM-GLS ⇒ Ω1/2

u·v;mWu·v(s)−
∫ s

0
J(r)′dr

(∫ m

0
J(r)Ω−1

u·v;mJ(r)′dr

)−1

×
(∫ m

0
J(r)Ω−1/2

u·v;mdWu·v(r)
) (34)

as T → ∞ with Jn(r) = [D(r)′, B(r)′
v,n]′ and J(r) = [J1(r), . . . , JN (r)].

The limiting distribution does not only depend on the deterministic trend Dt, the
weighting function g and the parameters m, N and k but on the long-run covariance
structure as well. This renders tabulating simulated critical values infeasible. In order
to perform hypotheses tests we need to estimate Ω consistently and replace nuisance
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parameters in the limiting distribution by consistent estimators. Then, we simulate
critical values under the null hypothesis based on independent copies of W (s) that we
can easily transform into B(s) to calculate independent copies of J(s) by plugging in
covariance estimates performed on the calibration period.

2.3. Seemingly Unrelated Cointegrating Regressions

Suppose now that the cointegrating regressions have individual parameters and the error
vectors are not cross-sectionally independent, i.e. we abandon Assumptions 3 and 4
and the data are generated by (1) and (2). By defining Zt := diag(Z1,t, . . . , ZN,t) and
θ := [θ′

1, . . . , θ′
N ]′ we have

yt = Z′
tθ + ut. (35)

For fully modified estimation we use the GLS modified dependent variable y+
t;m,GLS and

the bias correction term ϕ̂m := [ϕ̂′
1;m, . . . , ϕ̂′

N ;m]′ with ϕ̂n;m := [0p×1
′, ((∆n,·

vu;m)+)′]′ and

(∆n,·
vu;m)+ := (∆̂n,·

vu;m)((Ω̂−1
u·v;m)n,·)′ − ∆̂n,·

vv;m((Ω̂−1
u·v;mΩ̂uv;mΩ̂−1

vv;m)n,·)′. (36)

Moon (1999) discusses three different estimators for this model where the fully modified
SUR estimator

θ̂FM-SUR :=

[mT ]∑
t=1

ZtΩ̂−1
u·v;mZ′

t

−1[mT ]∑
t=1

ZtΩ̂−1
u·v;my+

t;m,GLS − [mT ]ϕ̂m

 , (37)

is the feasible GLS estimator and efficient among those three estimators (c.f. Park and Ogaki,
1991, for additional details on the efficiency).

Lemma 6. Let the data be generated by (1) and (2) with Assumptions 1 and 2 in place.
Then

G−1
T (θ̂FM-SUR − θ) ⇒

(∫ m

0
J(r)Ω−1

u·v;mJ(r)′dr

)−1 (∫ m

0
J(r)Ω−1/2

u·v;mdWu·v(r)
)

(38)

as T → ∞ with Jn(r) = [D(r)′, Bv,n(r)′]′, J(r) := diag(J1(r), . . . JN (r)) and GT :=
IN ⊗ diag(GD,T , GX,T ), GX,T = T −1Ik.
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Here, the residual vectors are given by û+
t;m,FM-SUR := y+

t;m,GLS − Z′
tθ̂FM-SUR = ut −

Ω̂uv;mΩ̂−1
vv;mvt − Z′

t(θ̂FM-SUR − θ) and the scaled partial sum process of the modified
residuals has the following probability limit:

Lemma 7. Let the data be generated by (1) and (2) with Assumptions 1 and 2 in place.
Then it holds under the null hypothesis and for 0 ≤ s ≤ 1

T −1/2
[sT ]∑
t=1

û+
t;m,FM-SUR ⇒ Ω1/2

u·v;mWu·v(s)−
∫ s

0
J(r)′dr

(∫ m

0
J(r)Ω−1

u·v;mJ(r)′dr

)−1

×
(∫ m

0
J(r)Ω−1/2

u·v;mdWu·v(r)
) (39)

as T → ∞ with Jn(r) = [D(r)′, B(r)′
v,n]′ and J(r) = diag(J1(r), . . . JN (r)).

Note that,
∑[mT ]

i=1
∑i

t=1 û+
t,FM-SUR = 0 if the regression contains an intercept and a linear

trend, and
∑[mT ]

t=1 û+
t,FM-SUR = 0 if the regression contains an intercept. Thus, (15) and

(17) are not valid in the respective cases.

As in Lemma 5, the limiting distribution depends on the long-run covariance structure and
renders tabulating simulatd critical values infeasible. Again, we estimate Ω consistently,
replace nuisance parameters in the limiting distribution by consistent estimators and
simulate critical values under the null hypothesis based on independent copies of W (s)
and covariance estimates from the calibration period.

3. Finite Sample Performance

We investigate the finite sample properties of the monitoring procedures based on the
different detectors and estimators by means of a simulation study. First, we consider the
detectors from Section 2.1 for cross-sectional independence and homogenous parameters,
then we move to the detectors from Section 2.2 and 2.3. We extend the data generating
process used by Vogelsang and Wagner (2014) and Wagner and Wied (2017):

yn,t = µ + γt + xn,t,1β1 + xn,t,2β2 + un,t,

xn,t,i = xn,t−1,i + vn,t,i, xn,0,i = 0, i = 1, 2,
(40)

– 18–



where

un,t = ρ1un,t−1 + εn,t + ρ2(en,t,1 + en,t,2), un,0 = 0,

vn,t,i = en,t,i + 0.5en,t−1,i, i = 1, 2,
(41)

for t = 1, . . . , [mT ]. εn,t, en,t,1 and en,t,2 are i.i.d. standard normal random variables
independent of each other. The chosen parameter values are µ = 3, β1, β2, γ = 1. The
values for ρ1 and ρ2 are chosen from the set {0.3, 0.6}. The parameter ρ2 controls the
serial correlation in the regression error and is set to ρ1 = 1 under the alternative of I(1)
errors, whereas the parameter ρ2 controls whether the regressors are endogenous (ρ2 ≠ 0)
or not (ρ2 = 0).

By this simulation study we investigate which of the detectors Ĥm,+
1 , Ĥm,+

2 and Ĥm,+
3 is

best in the sense of finite sample size control under the null hypothesis as well as power
and detection delay under different alternatives. We are interested in how heterogeneous
parameters affect the detectors and investigate what happens if we consider alternatives
with different regression parameters cross-sectionally by using alternative parameter
estimators discussed in Sections 2.2 and 2.3. An additional important question is how
the detectors perform if structural breaks occur only in a fraction of the cointegrating
regressions.

We consider different versions (or in some cases modifications) of (40) and (41) for
t = [mT ] + 1, . . . , T to answer the posed questions. In some scenarios we vary the model
in the calibration period t = 1, . . . , [mT ] as well. All hypothesis tests are performed on
a 5% significance level and we consider combinations of m ∈ {0.10, 0.11, . . . , 0.89, 0.90}
and N ∈ {1, 2, 3, 5, 10, 20, 30}.

3.1. Null Rejection Probability in Uncorrelated Homogeneous Cointegrating
Regressions

In this section, we analyze the behavior of the detectors from Section 2.1 based on
PFM-OLS estimation. We additionally assume (40) and (41) for t = [mT ] + 1, . . . , T to
investigate the finite sample performance under the null hypothesis. In particular we
are interested whether the null rejection probability is reasonably close to the nominal
significance level of 5%.

In general the null rejection probability is close to the significance level. The detectors
suffer from larger long-run variances induced by higher regressor endogeneity and higher
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Figure 2: Null rejection probability in uncorrelated homogeneous cointegrating regressions
(Section 3.1) with T = 500, ρ1 = ρ2 = 0.3 and PFM-OLS estimation. The lines
represent Ĥm,+

1,PFM (solid), Ĥm,+
2,PFM (dashed) and Ĥm,+

3,PFM (dotdashed).
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Figure 3: Null rejection probability in uncorrelated homogeneous cointegrating regressions
(Section 3.1) with T = 500, ρ1 = ρ2 = 0.6 and PFM-OLS estimation. The lines
represent Ĥm,+

1,PFM (solid), Ĥm,+
2,PFM (dashed) and Ĥm,+

3,PFM (dotdashed).

error serial correlation. For N = 2, 3, 5 the detectors work reasonably well and the null
rejection probability decreases in m, size distortions come up for N = 10 and get even
larger for N = 20, 30. All size distortions we observe decrease in m as we use [mT ]
observations for estimation in the calibration period. Ĥm,+

1,PFM seems to perform best in
the sense of null rejection probability in this case. Note that Ĥm,+

1,PFM and Ĥm,+
3,PFM do not

work for N = 1 due to the presence of an intercept and a linear trend in Dt (see Lemma
1 and the remark after Lemma 7 which holds for PFM-OLS and N = 1 as well).

In Figure 2 the case T = 500 and ρ1 = ρ2 = 0.3 is shown. The detectors behave similarly
well and the null rejection probabilities are close to the significance level ranging between
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0.04 and 0.07. In the case of T = 500 and ρ1 = ρ2 = 0.6 (Figure 3) Ĥm,+
1,PFM and Ĥm,+

3,PFM
behave similarly and Ĥm,+

2,PFM is slightly oversized for N = 2, 3. For N = 5, 10, 20 Ĥm,+
2,PFM

and Ĥm,+
3,PFM work similarly, slightly above the chosen significance level, only Ĥm,+

1,PFM has a
lower null rejection probabilty, closer to the significance level. In case of N = 30 Ĥm,+

1,PFM
is closer to the significance level as Ĥm,+

2,PFM which is closer than Ĥm,+
3,PFM. In all cases of

N size distortions vanish for larger m.

3.2. Null Rejection Probability with Fixed Calibration Period

We looked at finite sample performance by fixing the combined calibration and monitoring
period T and compared different sets of parameter values, e.g. the influence of m on the
performance of the procedure. This is only helpful in a case of retrospective analysis
where we have to specify this value ex post. In the practical case of having a data set
and a stream of newly incoming data we cannot specify m a priori independently of T .
Merely, we have an assumed to be break free calibration period of a fixed length [mT ].
Thus, we need to figure out how to specify m and T jointly since there are, in principle,
uncountably infinite combinations possible.

In this scenario we simulated under (40) and (41) for t = 1, . . . , T and applied the
detectors from Section 2.1. We fixed the value [mT ] and simulated time series using pairs
(m, T ) such that the length of the calibration period is constant displayed in Figures 4 and
5. The smaller m and consequently the larger T is, the better the performance is in the
sense of small size distortion (level 5%). Larger values of T yield better approximations
of the test statistics asymptotic distributions since the procedure is built on large T

asymptotics and m is a fixed parameter. That means, we recommend choosing T as large
as possible for monitoring newly incoming data.

3.3. Null Rejection Probability in Correlated Homogeneous Cointegrating
Regressions

We abandon Assumption 4 of independent cointegrating regressions and consider the
detectors from Sections 2.2 and 2.3 based on PFM-GLS and FM-SUR estimation, re-
spectively. We use a data generating process that has a similar covariance and long-run
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Figure 4: Null rejection probability with a fixed calibration period (Section 3.2) with
[mT ] = 25, ρ1 = ρ2 = 0.3 and PFM-OLS estimation. The lines represent
Ĥm,+

1,PFM (solid), Ĥm,+
2,PFM (dashed) and Ĥm,+

3,PFM (dotdashed).
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Figure 5: Null rejection probability with a fixed calibration period (Section 3.2) with
[mT ] = 50, ρ1 = ρ2 = 0.3 and PFM-OLS estimation. The lines represent
Ĥm,+

1,PFM (solid), Ĥm,+
2,PFM (dashed) and Ĥm,+

3,PFM (dotdashed).
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covariance structure as the data in the application section, namely

yn,t = µ + xn,t,1β1 + xn,t,2β2 + un,t,

xn,t,i = xn,t−1,i + vn,t,i, xn,0,i = 0, i = 1, 2,
(42)

where

un,t = ρ1un,t−1 + (εn,t + ρ2(en,t,1 + en,t,2))/10, un,0 = 0,

vn,t,i = (en,t,i + 0.5en,t−1,i + 0.25en,t−2,i)/103/2, i = 1, 2,
(43)

for t = 1, . . . , [mT ]. εn,t is an i.i.d. standard normal random variable independent of et =
[e1,t,1, e1,t,2, e2,t,1, . . . eN,t,2]′. et is serially independent and follows a multivariate normal
distribution with expected value 0 and covariance matrix Cov(et) = (1 − ρ̃)IN + ρ̃1N×N,
where 1N×N is the N ×N matrix of ones. ρ̃ controls the instantaneous correlation among
regressors vn,t and error term un,t for a single cointegrating regression as well as the
instantaneous correlation of regressors and error terms in the cross-section dimension.
Further, it holds that Ωuu = (1−ρ1)−2((1+2ρ2

2(1+ ρ̃)−4ρ̃ρ2
2)IN +4ρ̃ρ2

21N×N)10−2, Ωvv =
3.0625((1 − ρ̃)IkN + ρ̃1kN×kN)10−3 and Ωuv = 1.75ρ2(1 − ρ1)−1((1 − ρ̃)Ik ⊗ 11×N +
2ρ̃1N×kN)10−5/2. We choose µ = 3 and β1 = β2 = 1 again as well as ρ̃ = 0.9. The errors
are scaled such that they mimic the magnitude and covariance structure of the errors in
the application in Section 4.

This data generating process violates the assumption of independence across cointegrating
relations. By allowing for cross-sectional dependence and heterogeneous (co-)variances
the number of additional long-run variance parameters increases from 1

2(k + 1)(k + 2) to
1
2(N + 1)k((N + 1)k + 1). S feasible simplification to reduce the number of parameters
for large values of N or k is to assume homogeneous long-run variances across un,t and
homogeneous long-run variances across vn,t,i. Further, assuming Ωi,j

uu = Ωh,l
uu, Ωi,j

uv = Ωh,l
uv ,

Ωi,i
uv = Ωh,h

uv , Ωi,j
vv = Ωh,l

vv and Ωi,i
vv = Ωh,h

vv for i ̸= j, h ̸= l ∈ {1, . . . , N} results in
1
2(3k2 + 5k + 4) parameters to be estimated. We realize the estimation of the simplified
long-run variance structure for N > 2 by pairwisely estimating the long-run variance of
all bivariate systems of cointegrating regressions n1, n2 ∈ {1, . . . , N} and averaging over
all possible pairs.

Figures 6 and 7 display the null rejection probability for T = 500, ρ1 = ρ2 = 0.3, 0.6, ρ̃ =
0.9 and N ∈ {2, 3, 5, 10, 20, 30} of the detectors based on PFM-GLS and FM-SUR
estimation. We focus on the detectors which have reasonable empirical sizes. The size
distortions are larger than in the case of the PFM-OLS estimator and they depend on

– 25–



0.2 0.4 0.6 0.8

0.00

0.05

0.10

0.15

0.20

0.25

N = 2

m

nu
ll 

re
je

ct
io

n 
pr

ob
ab

ili
ty

0.2 0.4 0.6 0.8

0.00

0.05

0.10

0.15

0.20

0.25

N = 3

m

nu
ll 

re
je

ct
io

n 
pr

ob
ab

ili
ty

0.2 0.4 0.6 0.8

0.00

0.05

0.10

0.15

0.20

0.25

N = 5

m

nu
ll 

re
je

ct
io

n 
pr

ob
ab

ili
ty

0.2 0.4 0.6 0.8

0.00

0.05

0.10

0.15

0.20

0.25

N = 10

m

nu
ll 

re
je

ct
io

n 
pr

ob
ab

ili
ty

0.2 0.4 0.6 0.8

0.00

0.05

0.10

0.15

0.20

0.25

N = 20

m

nu
ll 

re
je

ct
io

n 
pr

ob
ab

ili
ty

0.2 0.4 0.6 0.8

0.00

0.05

0.10

0.15

0.20

0.25

N = 30

m

nu
ll 

re
je

ct
io

n 
pr

ob
ab

ili
ty

Figure 6: Null rejection probability in correlated homogeneous cointegrating regressions
(Section 3.3) with T = 500, ρ1 = ρ2 = 0.3, ρ̃ = 0.9 and PFM-GLS and
FM-SUR estimation. The lines represent Ĥm,+

1,PFM-GLS (solid), Ĥm,+
2,PFM-GLS

(dashed), Ĥm,+
3,PFM-GLS (dotdashed), Ĥm,+

2,FM-SUR (long-dashed) and Ĥm,+
3,FM-SUR

(two-dashed).
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Figure 7: Null rejection probability in correlated homogeneous cointegrating regressions
(Section 3.3) with T = 500, ρ1 = ρ2 = 0.6, ρ̃ = 0.9 and PFM-GLS and
FM-SUR estimation. The lines represent Ĥm,+

1,PFM-GLS (solid), Ĥm,+
2,PFM-GLS

(dashed), Ĥm,+
3,PFM-GLS (dotdashed), Ĥm,+

2,FM-SUR (long-dashed) and Ĥm,+
3,FM-SUR

(two-dashed).
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Table 2: Power in uncorrelated homogeneous cointegrating regressions (Section 3.4) with
T = 100, ρ1 = ρ2 = 0.3, N = 5 and PFM-OLS estimation. The number of
breaks is 2 in the first six rows and 4 in the last six rows.

breaks Ĥm,+
1,PFM Ĥm,+

2,PFM Ĥm,+
3,PFM

2

m = 0.25 r = 0.25 0.52 0.72 0.58
r = 0.50 0.30 0.41 0.26
r = 0.75 0.13 0.13 0.09

m = 0.50 r = 0.50 0.85 0.93 0.86
r = 0.75 0.59 0.65 0.32

m = 0.75 r = 0.75 0.91 0.93 0.85

4

m = 0.25 r = 0.25 0.77 0.92 0.82
r = 0.50 0.47 0.65 0.43
r = 0.75 0.21 0.20 0.11

m = 0.50 r = 0.50 0.97 1.00 0.97
r = 0.75 0.83 0.87 0.54

m = 0.75 r = 0.75 0.99 1.00 0.97

which particular estimator is used. The size curves show the interesting pattern that the
empirical size declines linearly in m. To some extent, this effect could be expected due
to the necessity to estimate nuisance parameters. Still, we believe that the detectors are
useful as the size distortions are moderate.

3.4. Power under Slope Breaks in Uncorrelated Homogeneous Cointegrating
Regressions

Now, we turn to power evaluation under slope breaks by which we mean a change in the
parameters β1 or β2. We consider the detectors from Section 2.1 and simulate under
(40) and (41) for t = 1, . . . , [rT ] and from [rT ] + 1 on a subset of the parameters in
(40) changes. More precisely, there is a break in a different number of the cointegrating
relationships and β1 and β2 change to β1,n = β2,n = 1 − δ in the first half of the breaking
cointegrating relationships and change to β1,n = β2,n = 1 + δ in the second half with
δ = 0.05. Thus, the system is no longer homogeneous after the structural break. Note
that we consider T = 100 under this alternative as the power is 1 in almost all the cases
we study below for T = 500 (as under the null hypothesis).

In Table 2, we see that Ĥm,+
2,PFM has higher power than the other detectors except for

the case m = 0.25, r = 0.5 and two breaks (Ĥm,+
1,PFM has higher power) and for the case

m = 0.25, r = 0.75 and four breaks (Ĥm,+
1,PFM has higher power). Keeping in mind that

Ĥm,+
2,PFM has higher size distortions than Ĥm,+

1,PFM and Ĥm,+
3,PFM this is no surprise. In general,
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Table 3: Power in uncorrelated homogeneous cointegrating regressions (Section 3.4) with
T = 100, ρ1 = ρ2 = 0.3, N = 10 and PFM-OLS estimation. The number of
breaks is 2 in the first six rows and 4, 6, 8, 10 for each of the following six rows.

breaks Ĥm,+
1,PFM Ĥm,+

2,PFM Ĥm,+
3,PFM

2

m = 0.25 r = 0.25 0.70 0.78 0.72
r = 0.50 0.42 0.44 0.35
r = 0.75 0.17 0.13 0.10

m = 0.50 r = 0.50 0.93 0.94 0.90
r = 0.75 0.72 0.63 0.41

m = 0.75 r = 0.75 0.93 0.90 0.82

4

m = 0.25 r = 0.25 0.94 0.97 0.95
r = 0.50 0.70 0.73 0.61
r = 0.75 0.28 0.18 0.11

m = 0.50 r = 0.50 1.00 1.00 0.99
r = 0.75 0.94 0.88 0.65

m = 0.75 r = 0.75 1.00 0.99 0.97

6

m = 0.25 r = 0.25 0.99 1.00 0.99
r = 0.50 0.86 0.90 0.78
r = 0.75 0.43 0.26 0.13

m = 0.50 r = 0.50 1.00 1.00 1.00
r = 0.75 0.99 0.97 0.82

m = 0.75 r = 0.75 1.00 1.00 1.00

8

m = 0.25 r = 0.25 1.00 1.00 1.00
r = 0.50 0.94 0.96 0.89
r = 0.75 0.54 0.35 0.15

m = 0.50 r = 0.50 1.00 1.00 1.00
r = 0.75 1.00 0.99 0.91

m = 0.75 r = 0.75 1.00 1.00 1.00

10

m = 0.25 r = 0.25 1.00 1.00 1.00
r = 0.50 0.97 0.98 0.94
r = 0.75 0.65 0.43 0.18

m = 0.50 r = 0.50 1.00 1.00 1.00
r = 0.75 1.00 1.00 0.96

m = 0.75 r = 0.75 1.00 1.00 1.00
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Table 4: Power in uncorrelated homogeneous cointegrating regressions (Section 3.5) with
T = 100, ρ1 = ρ2 = 0.3, N = 5 and PFM-OLS estimation. The number of
breaks is 1 in the first six rows and 2, 3, 4, 5 for each of the following six rows.

breaks Ĥm,+
1,PFM Ĥm,+

2,PFM Ĥm,+
3,PFM

1

m = 0.25 r = 0.25 0.47 0.59 0.45
r = 0.50 0.20 0.24 0.15
r = 0.75 0.08 0.10 0.08

m = 0.50 r = 0.50 0.66 0.76 0.59
r = 0.75 0.23 0.23 0.10

m = 0.75 r = 0.75 0.58 0.61 0.38

2

m = 0.25 r = 0.25 0.71 0.84 0.71
r = 0.50 0.32 0.41 0.24
r = 0.75 0.10 0.10 0.08

m = 0.50 r = 0.50 0.87 0.94 0.85
r = 0.75 0.41 0.41 0.17

m = 0.75 r = 0.75 0.81 0.84 0.62

3

m = 0.25 r = 0.25 0.83 0.94 0.85
r = 0.50 0.44 0.54 0.30
r = 0.75 0.10 0.10 0.07

m = 0.50 r = 0.50 0.96 0.99 0.93
r = 0.75 0.52 0.54 0.20

m = 0.75 r = 0.75 0.91 0.93 0.75

4

m = 0.25 r = 0.25 0.90 0.98 0.91
r = 0.50 0.52 0.64 0.38
r = 0.75 0.12 0.12 0.09

m = 0.50 r = 0.50 0.99 1.00 0.97
r = 0.75 0.65 0.67 0.27

m = 0.75 r = 0.75 0.97 0.98 0.86

5

m = 0.25 r = 0.25 0.95 0.99 0.95
r = 0.50 0.60 0.73 0.44
r = 0.75 0.15 0.13 0.09

m = 0.50 r = 0.50 1.00 1.00 0.99
r = 0.75 0.74 0.76 0.33

m = 0.75 r = 0.75 0.99 0.99 0.91
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power is higher in the case m = r than in the case m < r, i.e. the monitoring works most
succesfully when the structural break occurs directly after the end of the calibration
period. Between Ĥm,+

1,PFM and Ĥm,+
3,PFM there is no clear ranking visible regarding power in

this scenario.

Table 3 underlines that in most cases Ĥm,+
2,PFM has the highest power. The weakness of

this detector lies in the case m = 0.25, r = 0.75 (or generally in breaks “long” after the
calibration period). In this case, Ĥm,+

1,PFM has higher power than Ĥm,+
2,PFM and Ĥm,+

3,PFM. All
detectors get higher power for higher breakpoint counts where Ĥm,+

3,PFM has the worst
performance.

3.5. Power and Detection Time under Breaks in Uncorrelated Homogeneous
Cointegrating Regressions

In this scenario, we consider the detectors from Section 2.1 and (40) holds for t = 1, . . . , T

and (41) holds for t = 1, . . . , [rT ] where the parameter ρ1 changes to ρ1 = 1 from
t = [rT ] + 1 on for a subset of the cointegrating relationships. Thus, a fraction of the
error processes {un,t}t=[rT ]+1,...,T are random walks and, therefore, the corresponding
cointegrating relationships are no longer valid.

In Table 4 Ĥm,+
2,PFM has the highest power in most cases, Ĥm,+

1,PFM and Ĥm,+
3,PFM behave

similarly with some exceptions where Ĥm,+
3,PFM has substantially less power. Overall,

Ĥm,+
1,PFM has power not far off Ĥm,+

2,PFM and keeping in mind the size distortions of Ĥm,+
2,PFM

makes Ĥm,+
1,PFM favourable. In general, the power is higher for a higher number of

cointegrating relationships with breaks. A weakness lies in the case m = 0.25 and
r = 0.75 where the power is low.

In Table 5 we display the mean detection delay conditional on detecting a break point
and see that the detection delay is negative in most cases of m = 0.25 and r = 0.75,
suggesting that a lot of false alarms in comparison to correct alarms occur in this case.
The negative delays get closer to 0 when the number of breaks is greater indicating
that the rate of correct alarms gets higher. The detection delay declines in m with the
exception of m = 0.25, r = 0.75. Note that the detection delay is bounded by (m − r)T
and (1 − r)T . The smaller detection delay in the case m = r = 0.75 is not contributed to
the fact that there are fewer observations left in this case than in the case m = r = 0.25
because we see in Table 4 that the power is nearly identical in the two cases. Overall,
we can say the more breaks occur the smaller the detection delay is. When m < r the
detection delay is lower but the power is substantially lower as well. In almost all cases
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Table 5: Mean detection delay in uncorrelated homogeneous cointegrating regressions
(Section 3.5) provided the monitoring procedure detects a break point with
T = 100, ρ1 = ρ2 = 0.3, N = 5 and PFM-OLS estimation. The number of
breaks is 1 in the first six rows and 2, 3, 4, 5 for each of the following six rows.

breaks Ĥm,+
1,PFM Ĥm,+

2,PFM Ĥm,+
3,PFM

1

m = 0.25 r = 0.25 24.74 26.48 32.17
r = 0.50 21.32 25.44 24.68
r = 0.75 -15.77 -8.77 -10.71

m = 0.50 r = 0.50 20.87 22.01 27.82
r = 0.75 12.30 14.51 12.00

m = 0.75 r = 0.75 13.44 16.25 17.89

2

m = 0.25 r = 0.25 21.22 21.60 28.77
r = 0.50 21.09 27.28 27.14
r = 0.75 -10.17 -5.11 -9.94

m = 0.50 r = 0.50 17.19 17.46 24.84
r = 0.75 13.16 15.12 13.13

m = 0.75 r = 0.75 11.73 13.54 17.08

3

m = 0.25 r = 0.25 18.30 17.40 25.77
r = 0.50 23.26 27.14 29.28
r = 0.75 -5.21 -3.72 -10.40

m = 0.50 r = 0.50 14.04 14.51 22.23
r = 0.75 13.51 15.63 15.35

m = 0.75 r = 0.75 10.58 12.38 16.53

4

m = 0.25 r = 0.25 16.11 15.36 23.76
r = 0.50 23.14 26.64 29.31
r = 0.75 -3.46 -2.58 -5.62

m = 0.50 r = 0.50 12.43 12.61 20.44
r = 0.75 13.20 15.26 15.69

m = 0.75 r = 0.75 9.39 11.29 15.84

5

m = 0.25 r = 0.25 14.22 12.60 20.79
r = 0.50 22.25 26.12 29.64
r = 0.75 1.05 -1.20 -5.14

m = 0.50 r = 0.50 10.63 11.25 18.82
r = 0.75 12.67 14.94 16.26

m = 0.75 r = 0.75 8.34 10.38 15.13
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Ĥm,+
1,PFM has a smaller detection delay than Ĥm,+

2,PFM and Ĥm,+
3,PFM. There is no clear ranking

between Ĥm,+
2,PFM and Ĥm,+

3,PFM visible.

3.6. Power under Breaks in Correlated Homogeneous Cointegrating Regressions

We consider the detectors from Sections 2.2 and 2.3 based on PFM-GLS and FM-SUR
estimation, respectively, and revisit the data generating process (42) for t = 1, . . . , T and
(43) for t = 1, . . . , [rT ] with cross-sectionally dependent errors. From [rT ] + 1 onwards
for a fraction of the cointegrating relationships the parameter ρ1 changes to ρ1 = 1 such
that a fraction of the error processes {un,t}t=[rT ]+1,...,T are random walks.

We display our results in Table 6. The PFM-GLS detectors have higher power than
the FM-SUR ones, but it should be kept in mind that the empirical size is also higher.
Similarly as in the case of Table 4, the power is higher for a higher number of cointegrating
relationships with breaks and the power is rather low for m = 0.25 and r = 0.75.

4. Application

We consider the cointegrating relation between triplets of logarithmic currency exchange
rates. We computed exchange rates between Bitcoin and real-world non-cryptocurrencies
(USD, EUR, AUD, RUB, etc.) and perform three distinct bivariate analyses meaning
that we consider two cointegrating relationships a time. In the analysis, we first consider
the detectors from Section 2.1. There is statistical evidence that the assumption of
cross-sectional independence is not fulfilled, but simulations for robustness using the same
data generating process as in Section 3.3 indicate that it might still be appropriate to use
these detectors (see Appendix C). Under the assumption of cross-sectional dependence,
we could use the detectors from Section 2.2 and 2.3, but would have to estimate additional
parameters. Nevertheless, we run the analysis also for the other estimators and observed
slightly different results which are also presented.

We use our methods to simultaneously search for instabilities in multiple parities and to
our best knowledge there exists no such analysis in the literature, yet. Other authors only
consider one currency triplet at a time and therefore just one cointegrating regression.
We assume violations of triangular arbitrage parity under normal market conditions to
be stationary and a turn to non-stationary deviations or a change in parameters is a
sign of mispricing not due to financial frictions – also referred to as financial market
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Table 6: Power in correlated homogeneous cointegrating regressions (Section 3.6) with
T = 200, ρ1 = ρ2 = 0.3, ρ̃ = 0.9, N = 5 and PFM-GLS and FM-SUR estimation.
The number of breaks is 1 in the first six rows and 2, 3, 4, 5 for each of the
following six rows.

breaks Ĥm,+
1,PFM-GLS Ĥm,+

2,PFM-GLS Ĥm,+
3,PFM-GLS Ĥm,+

2,FM-SUR Ĥm,+
3,FM-SUR

1

m = 0.25 r = 0.25 0.86 0.90 0.81 0.68 0.48
r = 0.50 0.69 0.72 0.55 0.44 0.25
r = 0.75 0.35 0.31 0.21 0.21 0.14

m = 0.50 r = 0.50 0.90 0.94 0.84 0.81 0.59
r = 0.75 0.60 0.62 0.34 0.34 0.11

m = 0.75 r = 0.75 0.79 0.79 0.62 0.80 0.55

2

m = 0.25 r = 0.25 0.97 0.98 0.96 0.89 0.70
r = 0.50 0.88 0.90 0.75 0.63 0.32
r = 0.75 0.47 0.36 0.22 0.24 0.15

m = 0.50 r = 0.50 0.99 1.00 0.97 0.97 0.85
r = 0.75 0.84 0.84 0.51 0.56 0.20

m = 0.75 r = 0.75 0.96 0.96 0.85 0.96 0.79

3

m = 0.25 r = 0.25 0.99 1.00 0.99 0.97 0.84
r = 0.50 0.95 0.97 0.88 0.74 0.41
r = 0.75 0.56 0.46 0.25 0.22 0.15

m = 0.50 r = 0.50 1.00 1.00 0.99 1.00 0.94
r = 0.75 0.94 0.92 0.61 0.70 0.25

m = 0.75 r = 0.75 0.99 0.99 0.94 0.99 0.90

4

m = 0.25 r = 0.25 1.00 1.00 1.00 0.99 0.91
r = 0.50 0.98 0.99 0.94 0.84 0.48
r = 0.75 0.67 0.56 0.26 0.25 0.13

m = 0.50 r = 0.50 1.00 1.00 1.00 1.00 0.96
r = 0.75 0.97 0.96 0.69 0.81 0.27

m = 0.75 r = 0.75 1.00 1.00 0.97 1.00 0.96

5

m = 0.25 r = 0.25 1.00 1.00 1.00 1.00 0.94
r = 0.50 0.99 1.00 0.96 0.89 0.53
r = 0.75 0.75 0.63 0.28 0.27 0.16

m = 0.50 r = 0.50 1.00 1.00 1.00 1.00 0.99
r = 0.75 0.98 0.99 0.81 0.87 0.34

m = 0.75 r = 0.75 1.00 1.00 0.98 1.00 0.98
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dislocation. We find empirical evidence of such mispricing in currency triplets including
Bitcoin and use our results in a portfolio trading strategy.

Financial market dislocations are difficult to define and measure, yet arbitrage parities
are a less controversial matter (Pasquariello, 2014) and were investigated, for instance,
by Yu and Zhang (2017) with a focus on Bitcoin and the relationship between triangular
arbitrage parity deviations and cross-country differences in capital controls which can be
linked to different demand on foreign currency across countries. Corbet et al. (2018) link
Bitcoin prices to fundamentals that seem to drive the price until 2017; after that their
model signals bubble-type behaviour. Such bubble-type behaviour can be modeled using
the theory of Cretarola and Figà-Talamanca (2021). Cheah and Fry (2015) link Bitcoin
prices to fundamentals as well, show that Bitcoin prices are prone to speculative bubbles
and find empirical evidence that the fundamental price of Bitcoin is zero; Dong and Dong
(2014) conclude that Bitcoin is an immature currency; and Lintilhac and Tourin (2017)
use Bitcoin to construct portfolio strategies. Reynolds et al. (2021) investigate the
time series properties of Bitcoin and fiat currency logarithmic exchange rates. Their
findings suggest these are unit root processes and they consider univariate cointegrating
relationships between triplets of logarithmic currency exchange rates. They present
empirical evidence of mispricings in currency triplets including Bitcoin investigating one
cointegrating relation at a time and use their result for a currency portfolio strategy.

The law of one price is implied by the assumptions of arbitrage-free markets in modern
financial theory meaning prices of related assets are fundamentally linked and should
inhibit arbitrage parities. Consider a currency triplet (A-V-B) consisting of three
currencies A, B and V (the vehicle currency). Let SA/B,t denote the units of currency A

received for one unit of currency B. In the absence of arbitrage, for any triplet of spot
exchange rates the triangular arbitrage parity

SA/B,t = SA/V,tSV/B,t ⇔ ln SA/B,t = ln SA/V,t + ln SV/B,t (44)

holds. In real data we never observe the validity of (44). This is suspectedly due to
market frictions such as transactions cost. In order to compensate for these frictions
we include a stationary error term in (44) and assume that deviations from triangular
arbitrage parity are stationary transforming (44) to

ln SA/B,t = ln SA/V,t + ln SV/B,t + ut, (45)

where ut is the stationary error due to market frictions.
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Currency triplets sharing more than one currency imply identical regressors and therefore
we cannot apply our monitoring procedures: On the one hand, cross-sectional inde-
pendence would be outruled by construction, on the other hand, a fixed correlation of
one would not allow for simplifying the estimator of the long-run variance as described
in Section 3.3. We consider three examples of two currency triplets a time with Bit-
coin (XBT) as vehicle currency V in every triplet. US Dollar (USD) and Euro (EUR)
are fixed currencies in each of the two triplets while the third currency varies among
Australian Dollar (AUD), Canadian Dollar (CAD), Pound Sterling (GBP), Russian
Ruble (RUB) and Swedish Krona (SEK). This choice is motivated by the fact that
USD and EUR can be considered as global leading currencies from large economies
and that the chosen currencies are most actively traded in our sample period. The
triplets are (USD-XBT-CAD)–(EUR-XBT-GBP), (USD-XBT-SEK)–(GBP-XBT-EUR)
and (USD-XBT-AUD)–(RUB-XBT-EUR).

We use daily spot exchange rates among fiat currencies as reported by the Pacific
Exchange Rate Service (Bank of Canada, c.f. Antweiler, 2015).The exchange rates are
the averages of transaction prices or price quotes from financial institutions between
11:59 a.m. and 12:02 p.m. Eastern time (ET). We use Bitcoin transaction prices between
11:59 a.m. and 12:01 p.m. ET as reported by Bitcoincharts (2017) to calculate noon
exchange rates between Bitcoin and fiat currencies.

The chosen triplets leads to three bivariate systems of cointegrating relationships,
namely

yt =
[
ln SUSD/CAD,t

ln SEUR/GBP,t

]
=
[
1 ln SUSD/XBT,t ln SXBT/CAD,t

1 ln SEUR/XBT,t ln SXBT/GBP,t

]
θ + ut = X ′

tθ + ut, (46)

yt =
[

ln SUSD/SEK,t

ln SGBP/EUR,t

]
=
[
1 ln SUSD/XBT,t ln SXBT/SEK,t

1 ln SGBP/XBT,t ln SXBT/EUR,t

]
θ + ut = X ′

tθ + ut, (47)

and

yt =
[
ln SUSD/AUD,t

ln SRUB/EUR,t

]
=
[
1 ln SUSD/XBT,t ln SXBT/AUD,t

1 ln SRUB/XBT,t ln SXBT/EUR,t

]
θ + ut = X ′

tθ + ut, (48)

where θ = [0, 1, 1]′ in each of them. The homogeneity of these three systems is a direct
consequence of the triangular arbitrage parities.

The sample ranges from 1 May 2013 until 31 December 2015 due to high Bitcoin trading
frequency and thus more reliable Bitcoin prices in this time frame, leading to a small
N = 2, large T = 667 setting. We choose m = 0.2, i.e. calibration until 8 November 2013,
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in order to have a rather small calibration period, compare the discussion after equation
(4), and assume the cointegrating relation to be break free due to rather stable Bitcoin
prices. For a further discussion of this matter the reader is referred to Reynolds et al.
(2021). They investigate the time series properties of logarithmic Bitcoin exchange
rates and demonstrate that logarithmic exchange rates including Bitcoin behave like
I(1) processes. They perform unit root tests (Augmented-Dickey-Fuller and Phillips-
Perron) and the KPSS test on logarithmic exchange rates including Bitcoin indicating
that they indeed have a unit root. Furthermore, they perform the same tests on the
series of first differences illustrating that these can be assumed to be stationary. For
logarithmic exchange rates among fiat currencies I(1) behaviour is well established in the
literature. For monitoring we apply Ĥm,+

1,PFM, Ĥm,+
2,PFM and Ĥm,+

3,PFM for the PFM-OLS-case,
Ĥm,+

1,PFM-GLS, Ĥm,+
2,PFM-GLS and Ĥm,+

3,PFM-GLS for the PFM-GLS-case and Ĥm,+
2,FM-SUR and

Ĥm,+
3,FM-SUR for the FM-SUR-case. In all cases, we use Dt = 1 and g(s) according to

Table 1. We detect structural breaks in all three pairs of currency triplets (c.f. Table 7),
whereas most breaks can be found for the second triple. Figure 8 displays the observed
process of all test statistics for all triplets. Important dates for the Bitcoin and financial
market during our monitoring and prior to the detected breaks are the shut down of Mt.
Gox, a Tokyo-based Bitcoin exchange, in February 2014 and the ending of the cap on
euro-swiss franc exchange rates by the Swiss National Bank on 15 January 2015.

Given the entanglement of exchange rates the question of independent cointegrating
regressions arises naturally. An application of Breusch and Pagan (1980) gives statistical
evidence that the assumption of cross-sectional independence might not be reasonable.
Similarly as in Section 3.3, we have conducted a robustness check investigating the

Table 7: Breakpoint detection dates in the three pairs of currency triplets
(USD-XBT-CAD) (USD-XBT-SEK) (USD-XBT-AUD)
(EUR-XBT-GBP) (GBP-XBT-EUR) (RUB-XBT-EUR)

Ĥm,+
1,PFM - - -

Ĥm,+
2,PFM - 09-05-2014 12-02-2015

Ĥm,+
3,PFM - 11-07-2014 -

Ĥm,+
1,PFM-GLS - - -

Ĥm,+
2,PFM-GLS - 13-08-2014 -

Ĥm,+
3,PFM-GLS - 19-01-2015 -

Ĥm,+
2,FM-SUR 07-05-2015 16-04-2015 08-05-2015

Ĥm,+
3,FM-SUR - - -
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Figure 8: Processes of the test statistics divided by the respective critical values are dis-
played for (46) - (48). Bold lines represent test statistics based on Ĥm,+

1,PFM (solid),
Ĥm,+

2,PFM (dashed) and Ĥm,+
3,PFM (dotdashed), and non-bold lines represent test

statistics based on Ĥm,+
1,PFM-GLS (solid), Ĥm,+

2,PFM-GLS (dashed), Ĥm,+
3,PFM-GLS (dot-

dashed), Ĥm,+
2,FM-SUR (long-dashed) and Ĥm,+

3,FM-SUR (two-dashed). The dashed
vertical lines indicate the detected breakpoints in the respective systems of
cointegrating relationships. – 38–



PFM-OLS detectors for dependent cointegrating regressions of the form (42) and (43).
It shows that the detectors work for N = 2 even under violation of the independence
assumption and behave similarly to the PFM-GLS and FM-SUR detectors for N = 2 in
this case. In the application examples, the long-run correlation among the first differences
of the regressors of different cointegrating regressions ∆X1,t and ∆X2,t varies from 0.85
to 0.99 in absolute value and the longrun correlation in (43) is 0.9 among these first
differences while the variances are of a similar magnitude of 0.0025 in the finite sample
case and 0.004 to 0.006 in the application cases. The correlation between the errors
u1,t and u2,t in the simulation is 0.2 while the estimated correlation in the applications
is between 0.5 and 0.8. The correlations between the first differences of the regressors
and the errors u1,t and u2,t vary beween 0.01 and 0.15 in the applications while they are
roughly 0.5 in the simulation study. The longrun covariance and correlation matrices
of the application examples and details about the econometric test for cross-sectional
independence can be found in Appendix C.

We use our results to implement a portfolio trading strategy and compare, first, the
three different pairs of triplets and, second, each of the different pairs to a benchmark
portfolio using a simple buy-and-hold strategy. Each of the portfolios is equally-weighted
among the five currencies included in a pair of currency triplets. USD serves as the
domestic currency and we exchange one fifth of the portfolio volume to each of the
four foreign currencies present in the respective pair of currency triplets at the start of
monitoring on 12 November 2013. We assume that we earn the local risk free rate in
each of the currencies which we proxy by the local deposit interest rate given by Euribor
(European Money Markets Institute, 2020) as EUR deposit interest rate and LIBOR
(Board of Governors of the Federal Reserve System, 2020) as USD deposit interest rate
while we obtained AUD, CAD and RUB deposit interest rates from the World Bank
(2020) and GBP and SEK deposit interest rates from the Bank of England (2020) and
the Bank of Korea (2020), respectively.

The buy-and-hold benchmark portfolios hold the foreign currencies until the end of
monitoring on 31 December 2015 and exchange them back to USD. The monitoring
based portfolios exchange the foreign currencies back to USD on the detected breakdates
and earn the local risk free USD rate until the end of monitoring. We neglect the
effects of trading costs. In Table 8 we see that in case of the pair (USD-XBT-SEK)–
(GBP-XBT-EUR) the monitoring based strategy achieves a substantial excess return
compared to the benchmark strategy if we exchange back to USD on any of the first
three breaks detected in 2014. Interestingly, trading back to USD on the later detected
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Table 8: Returns of buy-and-hold strategy compared to monitoring based portfolio strat-
egy for the three breakpoints

currency triplet breakdate benchmark return excess return
(USD-XBT-CAD) 07-05-2015 −0.0655 −0.0713
(EUR-XBT-GBP)
(USD-XBT-SEK) 09-05-2014 −0.0581 +0.1211
(GBP-XBT-EUR) 11-07-2014 +0.2148

13-08-2014 +0.2386
19-01-2015 −0.0940
16-04-2015 −0.1100

(RUB-XBT-EUR) 12-02-2015 −0.1377 −0.0908
(USD-XBT-AUD) 08-05-2015 −0.0451

breaks in 2015 leads to less return compared to the benchmark strategy. As for the pairs
(USD-XBT-CAD)–(EUR-XBT-GBP) and (USD-XBT-AUD)–(RUB-XBT-EUR), where
only some detectors signal a break, the benchmark strategy generates more return for all
three breakdates.

5. Summary and Conclusions

We proposed extensions of the monitoring procedures by Wagner and Wied (2017).
Again, these extensions are closed-end monitoring procedures designed for a system
of cointegrating relationships. Inspired by Chu et al. (1996) we employ parameter
estimation over a break-free calibration period and base our procedures on the properly
scaled partial sum process while using a functional central limit theorem. We use pooled
fully modified OLS estimation in order to construct detectors with nuisance parameter
free limiting distributions despite error serial correlation and regressor endogeneity in case
of homogeneous parameters and independent cointegrating relations. On the one hand,
for dependent cointegrating regressions we utilize a pooled fully modified GLS estimator
and on the other hand for dependent and heterogeneous cointegrating regresions we
employ the fully modified SUR estimator.

In a simulation study it turns out that the detectors show decent behaviour under the null
hypothesis with controlled size and have power against two alternatives under different
data generating processes. Self-normalization mitigates the impact of long-run variance
estimation on the performance of the detectors based on PFM-OLS estimation. Note
that, although no estimator of the long-run variance is necessary in these detector, we
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still need one to perform pooled FM-OLS estimation and obtain residuals. The detectors
depend on the assumption of homogeneous parameters and independent cointegrating
regressions and under violation of these assumptions PFM-GLS and FM-SUR estimation
based detectors show proper behaviour under the null hypothesis as well under the
alternative hypothesis. Note that a higher number of parameters must be estimated for
the detectors based on the latter estimators.

As an illustrative application we test for stability in systems of homogeneous cointegrat-
ing relationships in triangular arbitrage parities for logarithmic exchange rate triplets
including Bitcoin. We use PFM-OLS based detectors as well as PFM-GLS and FM-SUR
detectors for monitoring three different examples of bivariate systems of cointegrating
relationships in a sample ranging from 1 May 2013 until 31 December 2015 to see if a
stochastic version of the triangular arbitrage parity between currency triplets is stable. In
one of the cointegrating relationships almost all detectors indicate breakpoints between
May 2014 and April 2015. For the other two cointegrating relationships only a small
fraction of detectors indicate breaks. Connected events prior to the detected breaks are
the closing of Mt. Gox in February 2014 and the ending of the cap on euro-swiss franc
exchange rates by the Swiss National Bank in January 2015. We apply these results to
construct a portfolio trading strategy using the detected breaks as a sign of currency
market instabilities.

Some extensions to this procedure are conceivable. A better unterstanding of the impact
of the weighting function on the performance of the monitoring procedures is still
open. Advantages and disadvantages of the detectors regarding power under specicific
alternatives could be analyzed in more detail. The multivariate procedures for monitoring
cointegration require certain limiting assumptions and relaxing these assumptions for
more general applicability is attractive. The self-normalized detectors work better in
the multivariate setting and a revisit of the univariate procedure to assess potential
improvements is possible. Finally, methods to deal with non-constant variances (especially
in financial data) are of great interest.
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A. Mathematical Appendix

Proof of Lemma 1.
The lemma follows directly from the continuous mapping theorem and our subsequent
results Lemma 3, 5 or 7, respectively.

Proof of Theorem 1.
For all detectors Ĥm,+

i , i = 1, . . . , 3 the limits Hm,+
i are well defined under the respective

assumptions of Sections 2.1 – 2.3. Analogusly, the limits for Ĥm,+
i

g(s) are well defined since
0 < g(s) < ∞ and g(s) continuous for 0 ≤ s ≤ 1. Therefore, critical values for given g(s)
can be found for all versions of the detectors.

Proof of Lemma 2:
The result is stated for dim Dt = 0 in Phillips and Moon (1999, p. 1085) in the first
equation after (5.16). Using arguments of Phillips and Hansen (1990) it extends easily
to the case of arbitrary deterministic trend Dt satisfying Assumption 1.

Proof of Lemma 3:
Recall the definition of the N -dimensional PFM-OLS residuals

û+
t;m,PFM =y+

t;m,PFM − Z ′
tθ̂m,PFM = yt − V ′

t Ω̂−1
vv;mΩ̂vu;m − Z ′

tθ̂m,PFM

=ut − V ′
t Ω̂−1

vv;mΩ̂vu;m − Z ′
t(θ̂m,PFM − θ).

(49)

To study the properties of the scaled partial sum process of the PFM-OLS residuals{
T −1/2∑[sT ]

t=1 û+
t;m,PFM

}
s∈[m,1]

, we consider the decomposition into the above three sum-
mands. The limits

T −1/2
[sT ]∑
t=1

ut ⇒


ωu·vWu·v,1(s) + ΩuvΩ−1/2

vv Wv,1(s)
...

ωu·vWu·v,N (s) + ΩuvΩ−1/2
vv Wv,N (s)

 ,

T −1/2
[sT ]∑
t=1

V ′
t Ω̂−1

vv;mΩ̂vu;m ⇒


ΩuvΩ−1/2

vv Wv,1(s)
...

ΩuvΩ−1/2
vv Wv,N (s)


for T → ∞ are due to Assumption 2 and the consistency of the nonparametric long-run
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variance estimators. For the last part, we have

T −1/2
[sT ]∑
t=1

Z ′
t(θ̂m,PFM − θ) = T −1/2

[sT ]∑
t=1

(G′
T Zt)′G−1

T (θ̂m,PFM − θ)

=

T −1
[sT ]∑
t=1

[
T 1/2GD,T Dt . . . T 1/2GD,T Dt

T 1/2X1,t . . . T 1/2XN,t

]′G−1
T (θ̂m,PFM − θ)

⇒ ωu·v

∫ s

0
J(r)′dr

(
N∑

n=1

∫ m

0
Jn(r)Jn(r)′dr

)−1( N∑
n=1

∫ m

0
Jn(r)dWu·v,n(r)

)
.

(50)

Thus, the asymptotic behaviour of the scaled partial sum process of the PFM-OLS
residuals is given by

T −1/2
[sT ]∑
t=1

û+
t;m,PFM ⇒ ωu·v

{
Wu·v(s) −

∫ s

0
J(r)′dr

(
N∑

n=1

∫ m

0
Jn(r)Jn(r)′dr

)−1

×
(

N∑
n=1

∫ m

0
Jn(r)dWu·v,n(r)

)}
= ωu·vŴu·v(s).

(51)

Proof of Lemma 4:
The proof is similar to the proof of Lemma 2 with an additional transformation typical
for generalized least squares estimators, here by the long-run covariance of the modified
system error u+

t;m,GLS.

Proof of Lemma 5:
Besides the incorporation of the generalized least squares transformation, the proof is
similar to the proof of Lemma 3.

Proof of Lemma 6:
This result is stated for dim Dt = 0 in Moon (1999) and is easily extended to the case of
arbitrary deterministic trend fulfilling Assumption 1 by arguments of Phillips and Hansen
(1990).

Proof of Lemma 7:
The proof is similar to the proof of Lemma 5.
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B. Simulating Critical Values

Consider the case of Section 2.1. In order to obtain asymptotically size controlled
monitoring procedures we need critical values. Therefore, we simulate quantiles of
supm≤s≤1{H(s)

g(s) }, where H(s) is any of the limiting distribution of the detectors in
Lemma 1 and g(s) is the corresponding weighting function (see Table 1). The limiting
distributions of the detectors are functionals of the univariate and independent processes

Ŵu·v,n(s) = Wu·v,n(s) −
∫ s

0
Jn(r)′dr

 N∑
j=1

∫ m

0
Jj(r)Jj(r)′dr

−1 N∑
j=1

∫ m

0
Jj(r)dWu·v,j(r)


n = 1, . . . , N (c.f. (30) and Lemma 3). The processes Ŵu·v,n(s) are functionals of
the independent standard Brownian motions Wu·v,n(s) and Wv,n(s) (recall Jn(s) =
[D(s)′, Wv,n(s)′]′). We approximate these functionals of standard Brownian motions
using the corresponding functions of random walks of length 1,000 generated from i.i.d.
standard normal random variables. We justify this by the functional central limit theorem
Wv,n(s) := T −1/2∑[sT ]

j=1 Xj,v,n ⇒ Wv,n(s) for T → ∞, where Xj,v,n are k-dimensional i.i.d.
random vectors with independent standard normal entries and Wv,n(s) is a k-dimensional
standard Brownian motion. We argue that T = 1, 000 should be large enough in
order for Wv,n(s) to behave approximately like a k-dimensional vector of independent
standard Brownian motions. Turning to the three integrals, consider

∫ s
0 Jn(r)′dr =∫ s

0 [D(r)′, Wv,n(r)′]′dr. Since we know the deterministic function D(s) beforehand we can
calculate the integral

∫ s
0 D(r)′dr analytically but

∫ s
0 Wv,n(r)′dr needs to be approximated

numerically as well as
∫ s

0 Jn(r)Jn(r)′dr. Because we have approximated Wv,n(s) by a
random walk of length 1,000 we take these 1, 000m (or 1, 000s in the first integral) discrete
points as sampling points for an approximation of the integral by Riemann sums. More
precisely, we use T −1∑[sT ]

r=1 Wv,n(r/T ) = T −1∑[sT ]
r=1 T −1/2∑r

j=1 Xj,v,n ⇒
∫ s

0 Wv,n(r)dr, as
T → ∞, and

T −1
[mT ]∑
r=1

[
D(r/T )

Wv,n(r/T )

] [
D(r/T )′ Wv,n(r/T )′

]
⇒
∫ m

0
Jn(r)Jn(r)′dr,

as T → ∞, and again argue for T = 1, 000 being large enough for a satisfying approxi-
mation. For the third integral define Wu·v,n(s) := T −1/2∑[sT ]

j=1 Xj,u·v,n, where Xj,u·v,n are
i.i.d. standard normal random variables. Then, Wu·v,n(s) converges weakly to a standard
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Figure 9: Null rejection probability in correlated homogeneous cointegrating regressions
(Section 3.3) with T = 500, ρ1 = ρ2 = 0.3, ρ̃ = 0.9 and PFM-OLS estimation.
The lines represent Ĥm,+

1,PFM (solid), Ĥm,+
2,PFM (dashed) and Ĥm,+

3,PFM (dotdashed).

Brownian motion Wu·v,n(s). By the definition of the Itō-Integral we have

[mT ]∑
r=1

[
D((r − 1)/T )

Wv,n((r − 1)/T )

]′

{Wu·v,n(r/T ) − Wu·v,n((r − 1)/T )} ⇒
∫ m

0
Jn(r)dWu·v,n(r)

for T → ∞. Using numerical integration it is easy to approximate integrals of Ŵu·v,n(s)
and hence any of the limiting distributions of the detectors statistics H(s) by, say,
Happrox(s). Computing maxs=−[−mT ],...,T {Happrox(s)

g(s) } generates one simulated observation.
Replicating this 1,000,000 times we approximate the distribution of supm≤s≤1{H(s)

g(s) } and
store the 90.0%, 90.1%, . . . , 99.9% quantiles.

C. Longrun Covariance and Correlation Matrices

In this section we display the longrun covariance and longrun correlation matrices of the
three application examples as well as these of the data generating process used in Section
3.3 and in a robustness check of the detectors based on PFM-OLS against violations of
Assumption 4. Figure 9 displays an excerpt of the robustness check for PFM-OLS based
detectors and small N . The data generating process is the same as in Section 3.3 for the
PFM-GLS and FM-SUR based detectors and the results show that the PFM-OLS based
detectors have reaonable empirical size here.
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For our choice of ρ1 = ρ2 = 0.3 and ρ̃ = 0.9 the longrun correlation matrix of the errors
ηt = [u1,t, u2,t, v1,t,1, v1,t,2, v2,t,1, v2,t,2]′ in the data generating process (42) and (43) is

Corr(ηt) =


1.000 0.241 0.492 0.492 0.466 0.466
0.241 1.000 0.466 0.466 0.492 0.492
0.492 0.466 1.000 0.900 0.900 0.900
0.492 0.466 0.900 1.000 0.900 0.900
0.466 0.492 0.900 0.900 1.000 0.900
0.466 0.492 0.900 0.900 0.900 1.000

. (52)

and the estimated longrun correlation matrices in the three application examples are

Ĉorr(ηt) =


1.000 0.508 0.074 −0.093 0.088 −0.074
0.508 1.000 0.130 −0.157 0.143 −0.136
0.074 0.130 1.000 −0.948 0.980 −0.947

−0.093 −0.157 −0.948 1.000 −0.945 0.910
0.088 0.143 0.980 −0.945 1.000 −0.938

−0.074 −0.136 −0.947 0.910 −0.938 1.000

 for
(

USD-XBT-SEK
EUR-XBT-GBP

)
,

(53)

Ĉorr(ηt) =


1.000 0.818 −0.039 −0.010 −0.041 0.016
0.818 1.000 −0.019 0.023 −0.043 −0.019

−0.039 −0.019 1.000 −0.926 0.900 −0.965
−0.010 0.023 −0.926 1.000 −0.869 0.905
−0.041 −0.043 0.900 −0.869 1.000 −0.880

0.016 −0.019 −0.965 0.905 −0.880 1.000

 for
(

USD-XBT-CAD
GBP-XBT-EUR

)
,

(54)
and

Ĉorr(ηt) =


1.000 0.768 0.018 0.037 −0.052 0.011
0.768 1.000 0.058 −0.024 −0.064 −0.025
0.018 0.058 1.000 −0.975 0.958 −0.991
0.037 −0.024 −0.975 1.000 −0.961 0.976

−0.052 −0.064 0.958 −0.961 1.000 −0.959
0.011 −0.025 −0.991 0.976 −0.959 1.000

 for
(

USD-XBT-AUD
RUB-XBT-EUR

)
.

(55)

With a χ2-test in the style of Breusch and Pagan (1980), it is possible to test for cross-
sectional independence of the systems. The null hypothesis is H0 : Corr(u1,t, u2,t) = 0
and the test statistic is T0 · Ĉorr(u1,t, u2,t), where T0 = 134 is the length of the calibration
sample. The test statistic is asymptotically χ2

1-distributed under the null hypothesis and
in all three cases, the p-value of the test is smaller than 10−8.

The long-run covariance matrix of the errors ηt in the data generating process (42) and
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(43) in Section 3.3 for ρ1 = ρ2 = 0.3 and ρ̃ = 0.9 is

Cov(ηt) =


22.759 1.984 4.506 4.506 4.269 4.269
1.984 22.759 4.269 4.269 4.506 4.506
4.506 4.269 3.063 2.756 2.756 2.756
4.506 4.269 2.756 3.063 2.756 2.756
4.269 4.506 2.756 2.756 3.063 2.756
4.269 4.506 2.756 2.756 2.756 3.063

× 10−3. (56)

and the estimated long-run covariance matrices in the three application examples are

Ĉov(ηt) =


39.803 49.693 1.076 −1.389 1.293 −1.108
49.693 240.68 4.641 −5.761 5.164 −4.975
1.076 4.641 5.260 −5.128 5.215 −5.126

−1.389 −5.761 −5.128 5.560 −5.172 5.063
1.293 5.164 5.215 −5.172 5.382 −5.133

−1.108 −4.975 −5.126 5.063 −5.133 5.565

× 10−3 for
(

USD-XBT-SEK
EUR-XBT-GBP

)
,

(57)

Ĉov(ηt) =


40.111 25.945 −0.536 −0.134 −0.615 0.220
25.945 25.105 −0.207 0.245 −0.508 −0.208

−0.536 −0.207 4.683 −4.287 4.557 −4.650
−0.134 0.245 −4.287 4.574 −4.349 4.313
−0.615 −0.508 4.557 −4.349 5.471 −4.586

0.220 −0.208 −4.650 4.313 −4.586 4.961

× 10−3 for
(

USD-XBT-CAD
GBP-XBT-EUR

)
,

(58)
and

Ĉov(ηt) =


28.007 83.582 0.231 0.492 −0.690 0.145
83.582 423.098 2.995 −1.222 −3.301 −1.255
0.231 2.995 6.201 −6.066 6.026 −6.083
0.492 −1.222 −6.066 6.237 −6.063 6.006

−0.690 −3.301 6.026 −6.063 6.378 −5.972
0.145 −1.255 −6.083 6.006 −5.972 6.078

× 10−3 for
(

USD-XBT-AUD
RUB-XBT-EUR

)
.

(59)

The difference in estimated long-run variances of u1,t and u2,t in each of the currency
triplets (USD-XBT-SEK)-(EUR-XBT-GBP) and (USD-XBT-AUD)-(RUB-XBT-EUR)
does not correspond to the simplification proposed in Section 3.3 but the number of
estimated parameters remains reasonably low without any simplification as N = k = 2
are small.
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