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Abstract

This paper proposes a practical and consistent specification test of conditional

distribution models for dependent data in a general setting. Our approach covers

conditional distribution models indexed by function-valued parameters, allowing

for a wide range of useful models for risk management and forecasting, such as

the quantile autoregressive model, the CAViaR model, and the distributional

regression model. The new specification test (i) is valid for general linear and

nonlinear conditional quantile models under dependent data, (ii) allows for dy-

namic misspecification of the past information set, (iii) is consistent against fixed

alternatives, and (iv) has nontrivial power against Pitman deviations from the

null hypothesis. As the test statistic is non-pivotal, we propose and theoretically

justify a subsampling approach to obtain valid inference. Finally, we illustrate

the applicability of our approach by analyzing models of the returns distribution

and Value-at-Risk (VaR) of two major stock indexes.
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1. Introduction

Many important economic and finance hypotheses are investigated through testing the spec-

ification of restrictions on the conditional distribution of a time series, such as conditional

goodness-of-fit (Box and Pierce, 1970), conditional quantiles (Koenker and Machado, 1999),

and distributional Granger non-causality (Taamouti et al., 2014). Rather than focusing only

on a single part of the conditional distribution, the quantile regression model provides a

more detailed analysis than the one obtained by a least squares regression. For example,

the conditional quantile regression helps examine how a treatment affects the distribution

of an outcome of interest; or it allows one to directly measure the market risk of financial

institutions by estimating a particular quantile of future portfolio values, the Value at Risk

(VaR). Therefore, an accurate specification of the whole distribution should consider the

specification of the conditional quantile regression at all quantile levels.

This paper proposes a practical and consistent specification test of conditional distribu-

tion models for dependent data in a general setting. Our approach covers dynamic condi-

tional distribution models indexed by function-valued parameters. The difference between

our approach and that taken elsewhere is motivated within the framework of Corradi and

Swanson (2006) and Rothe and Wied (2013). First, we generalize the approach of Rothe

and Wied (2013) to testing the specification of dynamic conditional distribution models

indexed by function-valued parameters in contexts with dependent data. Allowing the pa-

rameters to be function-valued is important for many empirical applications. For exam-

ple, our approach covers the linear quantile autoregressive (QAR) of Koenker and Xiao

(2006), which implies a linear structure for the inverse of the dynamic conditional distribu-
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tion F−1
Yt

(τ |Ft−1, θ0) = X ′tθ0(τ) for some quantile τ ∈ (0, 1), where Ft is the σ-field generated

by {Ys, s ≤ t}, Xt = {Yt−1, . . . , Yt−p} ∈ Ft−1, and θ0(·) is some vector-valued functional

parameter. Our procedure also considers testing the specification of nonlinear quantile au-

toregressive models, such as the CAViaR model of Engle and Manganelli (2004), that directly

measures the market risk of financial institutions by estimating a particular quantile of future

portfolio values - the Value-at-Risk (VaR). In this way, our method allows for testing the

validity of models for expected shortfall (ES) and VaR, thus complementing former backtests

such as in Christoffersen and Pelletier (2004), Candelon et al. (2011), Wied et al. (2016),

and Du and Escanciano (2016).

Besides, we extend the validity of Kolmogorov-type conditional distribution tests pro-

posed by Corradi and Swanson (2006) to the context of dynamic conditional distribution

models indexed by function-valued parameters. Rather than analysing models indexed by

finite-dimensional parameters as in Corradi and Swanson (2006), we derive a test statistic for

conditional distribution models indexed by function-valued parameters that is valid under

dynamic misspecification of the past information set and parameter estimation error. We

are unaware of a consistent specification test of conditional distribution models indexed by

function-valued parameters under dependent data.

Our test statistic is a functional of the difference between the empirical distribution func-

tion and a restricted estimate implied by the dynamic conditional quantile or distributional

regression model. Since its asymptotic distribution under general time series assumptions

is non-pivotal, we propose and justify a subsampling scheme to obtain valid inference. We

develop a test statistic that (i) allows for dynamic misspecification of the past information

set, (ii) does not require the estimation of smoothing parameters or nuisance functions used
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in a martingale transformation as in Koenker and Xiao (2002) or in Bai (2003), and (iii)

is consistent against all fixed alternatives. Besides, our test statistic has nontrivial power

against Pitman local alternatives.

Zheng (1998), Koenker and Machado (1999), Bierens and Ginther (2001), Horowitz and

Spokoiny (2002), and Koenker and Xiao (2002) have developed tests for the specification

of quantile regression models for independent observations. However, these tests do not

check for the validity of the quantile regression model itself, as they analyze only a single

quantile, which is generally the median. Rothe and Wied (2013) and Escanciano and Goh

(2014) proposed specification tests of a conditional quantile regression over a continuum of

quantiles. Nevertheless, none of these tests is justified for dependent data, ruling out time

series applications.

Koul and Stute (1999), He and Zhu (2003), and Whang (2006) proposed consistent spec-

ification tests of conditional quantile models for time series data. However, their approach is

valid only for a single quantile. Escanciano and Velasco (2010) developed specification tests

of dynamic quantile models over a continuum of quantiles. In contrast to the approach of

Escanciano and Velasco (2010), our test does not require a martingale difference sequence

assumption. As a result, our proposed approach allows for dynamic misspecification of the

past information set. In addition, our method can also test the specification of models for

the whole conditional distribution, like distributional regression models, while the framework

Escanciano and Velasco (2010) analyzes only conditional quantile regression models.

An additional benefit of our approach is that it tests the specification of the distributional

regression model introduced by Foresi and Peracchi (1995), where the conditional distribu-

tion is modeled through the application of a continuum of binary regressions to the data.
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Chernozhukov et al. (2013) show that distributional regression models encompass the trans-

formation/duration model of Cox (1972) as a special case, and it provides an alternative to

the quantile regression model of Koenker and Bassett (1978). While the quantile regression

model requires a smooth conditional distribution, the distributional regression does not need

smoothness conditions, as the approximation is done pointwise in the threshold y ∈ R, for the

event that the variable Yt exceeds this threshold y; hence it deals with continuous, discrete,

or mixed variables without any other adjustment. Andersen et al. (2011) and Bollerslev et al.

(2016) show that there are intraday stock price discontinuities, or jumps, during the active

part of the trading day and the overnight close-to-open stock return, respectively. This has

important implications to forecasting excess stock market returns and finding an optimal

portfolio. Thus, the distributional regression approach uncovers stock price discontinuities

and a higher-order multidimensional structure that are ignored by modeling only the first

two moments of the conditional distribution. We are unaware of a specification test for the

validity of distributional regression models under dependent data.

Koul and Stute (1999), Zheng (2000), Fan et al. (2006), Li and Tkacz (2006), Delgado

and Stute (2008), Neumann and Paparoditis (2008), Li and Tkacz (2011), Bierens and Wang

(2012), Chen and Hong (2014), Kheifets (2015), and Bierens and Wang (2017), among oth-

ers, have also developed consistent specification tests for conditional distribution models

for dependent data, but these methods cannot be applied to evaluate models indexed by

function-valued parameters. In sum, our approach is a useful alternative to existing specifi-

cation methods for dynamic conditional models under dependent data because it allows for

models indexed by possibly function-valued parameters, covering the setups of Corradi and

Swanson (2006), Escanciano and Velasco (2010), Chernozhukov et al. (2013), and Rothe and
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Wied (2013) in a unified way.

The rest of the paper is organized as follows. In Section 2, we propose a test statistic

for the null hypothesis of correct specification of dynamic conditional distribution models

indexed by function-valued parameters under dependent data; we also derive the asymptotic

limit distribution of our test statistic under the null and the alternative hypotheses. In

addition, we show that our test statistic has nontrivial power against Pitman local alterna-

tives. In Section 3, we theoretically justify the validity of the subsampling approach in our

framework. Section 4 presents Monte Carlo simulation results. In Section 5, we present an

application to two European stock indexes, showing that our approach is a flexible alterna-

tive to standard procedures in evaluating VaR and distributional regression models. Finally,

Section 6 concludes the paper.

2. Test statistic and asymptotic theory

Suppose we observe a sample {(Yt, Xt) ∈ R × Rd, t = 1, . . . , T} of T observations from a

strictly stationary process {Yt, Xt}∞t=−∞ defined on a complete probability space (Ω,A, P ),

with unknown conditional distribution function F (y|x) = P (Yt ≤ y|Xt = x) and joint dis-

tribution FY X(y, x) = P (Yt ≤ y,Xt ≤ x), where Xt may contain lags of Yt and of other

variables. Let Ft−1 be a σ-algebra generated by a sequence of historically observed ran-

dom vectors e.g., Ft−1 = σ{Zt−1, Zt−2, Zt−3, . . .} for Zt := (Yt, X
′
t)
′, including all “relevant”

past information. We are interested in the distribution of Yt given a finite dimensional vec-

tor of conditioning variables Xt ∈ Rd, for Xt ∈ Ft−1. If Xt does not include enough past

information, then there may be dynamic misspecification (Corradi and Swanson, 2006).

In empirical applications, we are unaware a priori of the “relevant” past information set
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Ft−1, and determining how much information to include requires pre-testing. By allowing for

dynamic misspecification, we avoid such pre-testing. Besides, the critical values obtained for

specification tests under the correct specification given Ft−1 are generally invalid when the

conditional distribution is correctly specified given Xt, for Xt ∈ Ft−1. Hereafter, we follow

the notation of Corradi and Swanson (2006) and define Ft−1 as the information set containing

all relevant past information, such that for any set F∗t−1 3 Ft−1, we have Yt|Ft−1
d
=Yt|F∗t−1,

where
d
= denotes equality in distribution. Then, we define dynamic misspecification as the

case when Xt ∈ Ft−1 and Yt|Xt

d

6=Yt|Ft−1, where
d

6= denotes nonequality in distribution.

Let F (y|x, θ0) be a parametric family of conditional distribution functions possibly in-

dexed by a function-valued parameter θ(·) ∈ B(T ,Θ), a class of mappings τ 7→ θ(τ) such

that θ(τ) ∈ Θ ⊂ RK for every τ ∈ T ⊂ R. We characterize the null hypothesis of correct

specification as follows:

H0 : F (y|x) = F (y|x, θ0), for some θ0 ∈ B(T ,Θ) and all (y, x) ∈ W , (2.1)

HA : F (y′|x′) 6= F (y′|x′, θ), for all θ ∈ B(T ,Θ) and some (y′, x′) ∈ W , (2.2)

where W is the support of Wt := (Yt, X
′
t)
′. As the alternative hypothesis consists of all the

possible deviations from the null, the null hypothesis is true if and only if there exists some

θ ∈ B(T ,Θ) such that F (y′|x′)−F (y′|x′, θ) = 0 for some (y′, x′) ∈ W . Let FX(x) = P (Xt ≤

x) be the marginal distribution of Xt and 1{Xt ≤ x} be an indicator function of the event

where Xt is less than or equal to x.

To test H0 in (2.1), we first restate our null hypothesis as an equality of unconditional

distributions by integrating-up both sides of H0 with respect to the marginal distribution of
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the conditioning variable FX(·); see Theorem 16.10 (iii) in Billingsley (1995). In a time series

context, Corradi and Swanson (2006) and Neumann and Paparoditis (2008) also applied this

method to check for the correct specification of dynamic conditional distributions indexed

by finite-dimensional parameters. Nevertheless, our null hypothesis tests the validity of

a conditional distributional model indexed by function-valued parameters. As F (y|x) =

E(1{Yt ≤ y}|Xt = x), we can restate the null hypothesis H0 of (2.1) as follows:

∫
F (y|x∗)1{x∗ ≤ x}dFX(x∗) =

∫
F (y|x∗, θ0)1{x∗ ≤ x}dFX(x∗),

for some θ0 ∈ B(T ,Θ) and all (y, x) ∈ W ,

Then, our test statistic is the sample analog of S(y, θ):

S(y, θ) :=

∫
(F (y|x∗)− F (y|x∗, θ))1{x∗ ≤ x}dFX(x∗). (2.3)

Under the null hypothesis, we have S(y, θ0) = 0 for some θ0 ∈ B(T ,Θ) and for all

(y, x) ∈ W , whereas S(y, θ) 6= 0 for all θ ∈ B(T ,Θ) and for some (y, x) ∈ W un-

der the alternative hypothesis. The function S(y, θ0) is a distance measure between the

unconditional joint distribution function, FY X(y, x) :=
∫
F (y|x∗)1{x∗ ≤ x}dFX(x∗), and

the unconditional distribution function implied by the parametric model, F (y, x, θ0) :=∫
F (y|x∗, θ0)1{x∗ ≤ x}dFX(x∗).

We estimate the conditional distribution via parametric quantile regressions to obtain

our test statistic as we intend to test the specification of quantile regression models over

a continuum of quantiles. Thus, we apply a generalized method of moments to estimate

the conditional distribution function. Under the null hypothesis of (2.1), the functional
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parameter θ0(·) is identified for every τ ∈ T through a moment condition. Thus, we assume

that the function-valued parameter θ0(τ) solves the following moment condition for every

τ ∈ T :

G(θ, τ) ≡ E [g(Wt, θ, τ)] = 0, (2.4)

where g(Wt, θ, τ) : W × Θ × T 7→ RK is a known uniformly integrable function. Thus,

under H0 of (2.1), any θ ∈ B(T ,Θ) such that F (y|x) = F (y|x, θ), ∀ (y, x) ∈ W , also implies

that θ(τ) = θ0(τ), ∀ τ ∈ T . Therefore, the moment condition G(θ, τ) in (2.4) uniquely

defines the “true” function-valued parameter. We assume that there is a Z-estimator θ̂T

that satisfies ‖Ĝ(θ̂T (τ), τ)‖2 ≤ infθ∈Θ ‖Ĝ(θ, τ)‖2 + op(T
−1/2) uniformly over τ ∈ T , where

Ĝ(θ, τ) ≡ (1/T )
∑T

t=1 g(Wt, θ, τ) is the sample analog of the moment condition (2.4), and

‖ · ‖ denotes the supremum norm. We also assume that the moment condition G(θ, τ) is

smooth with respect to both θ and τ described below. Under mild conditions (Chernozhukov

et al., 2013), we have:

√
T (θ̂T (·)− θ0(·))⇒ −Ġ−1

θ0,·(H̃2(θ0(·), ·)) in `∞(T ),

where “⇒” denotes weak convergence to a random element in the function space `∞(T ) (in

the Hoffmann-Jørgensen sense) for the metric induced by ‖ · ‖, ∂G(θ0, τ)/∂θ := Ġθ0,τ , and

H̃2 is a tight mean zero Gaussian process with covariance function defined in the Appendix

(see Lemma A.2 in the Appendix). Our framework allows for many flexible models such as

the quantile autoregressive model and the distributional regression model. For instance, the

quantile autoregressive model of order p of Koenker and Xiao (2006) implies the inverse of
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the conditional distribution

F−1(τ |Yt−1, . . . , Yt−p, θ) = θ0(τ) + θ1(τ)Yt−1 + . . .+ θp(τ)Yt−p

= X ′tθ(τ),

for every τ ∈ T ⊂ (0, 1), where F−1(τ |Yt−1, . . . , Yt−p, θ) = Qτ (Yt|Yt−1, . . . , Yt−p, θ) given

a parametric conditional distribution implied by the QAR model, F (y|Xt, θ) =
∫
T 1{y −

X ′tθ(τ) ≤ 0}dτ , and Xt = (1, Yt−1, . . . , Yt−p)
′. We estimate the parameter vector θ0(τ) of the

QAR model above as any solution θ̂T (τ) to the problem

θ̂T (τ) := arg min
θ∈Θ

T∑
t=1

(Yt −X ′tθ) (τ − 1{Yt −X ′tθ ≤ 0}) .

Then, our setup can test the specification of QAR models by setting g(Wt, θ, τ) = (1{Yt−

X ′tθ ≤ 0} − τ)Xt and a moment condition G(θ, τ) = E[(F (y|Xt, θ)− τ)Xt]. Our framework

also checks the validity of the distributional regression model proposed by Foresi and Peracchi

(1995), where the conditional distribution function of Yt given Xt is specified for a range of

thresholds τ ∈ T ⊂ R as F (τ |Xt, θ) = Λ(X ′tθ(τ)), where Λ(·) is a known strictly increasing

link function. We estimate the parameter vector θ0(τ) for every τ ∈ T ⊂ R as follows:

θ̂T (τ) := arg max
θ∈Θ

T∑
t=1

[1{Yt ≤ τ} ln (Λ (X ′tθ)) + (1− 1{Yt ≤ τ}) ln (1− Λ (X ′tθ))],

which consists of successive logistic or probit regressions of 1{Yt ≤ τ} on Xt for every

τ ∈ T . Then, the distributional regression model fits into our framework with g(Wt, θ, τ) =

(Λ(X ′tθ)(1 − Λ(X ′tθ)))
−1(Λ(X ′tθ) − 1{Yt ≤ τ})λ(Λ(X ′tθ))Xt and G(θ, τ) = E[g(Wt, θ, τ)],

where λ(·) is the derivative of Λ(·).
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We estimate the parametric conditional distribution function F (y|x, θ0) by the plug-

in estimate F (y|x, θ̂T ) built on an estimate θ̂T of θ0. Let ẐT (y, x) = (1/T )
∑T

t=1 1{Yt ≤

y}1{Xt ≤ x} be the empirical joint distribution of {Yt, Xt}Tt=1, and let F̂T (y, x, θ̂T ) =

(1/T )
∑T

t=1 F (y|Xt, θ̂T )1{Xt ≤ x} be the semi-parametric analog of F (y, x, θ0). Introducing

these estimators into the definition of S(y, θ) in (2.3), we propose a test statistic based on

the following discrepancy:

ST (y, x) = (1/T )
T∑
t=1

(
1{Yt ≤ y}1{Xt ≤ x} − F (y|Xt, θ̂T )1{Xt ≤ x}

)
. (2.5)

Under the null hypothesis in (2.1), both ẐT (y, x) and F̂T (y, x, θ̂T ) are consistent for

FY X(y, x) and F (y, x, θ0), respectively, and we expect that ST (y, x) is approximately zero.

Conversely, F (y|x, θ̂T ) and F (y|x) differ on a set with positive probability under the alter-

native hypothesis (2.2) so that the test statistic ST (y, x) diverges. Thus, based on ST (y, x)

in (2.5), we apply a Cramér-von Mises-type test statistics for testing the null hypothesis in

(2.1) against the alternative hypothesis in (2.2):

SCMT =

∫
W

∥∥∥√TST (y, x)
∥∥∥2

dẐT (y, x). (2.6)

It is also possible to apply a Kolmogorov-Smirnov-type functional norm of the test statis-

tic as SKST =
√
T sup(y,x)∈W ‖ST (y, x)‖. However, unreported simulations suggest that the

SCMT test statistic has better finite-sample size and power properties than the ones provided

by the Kolmogorov-Smirnov-type test statistic.
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2.1. Asymptotic null distribution and power

This subsection derives the asymptotic distribution of our test statistic SCMT in (2.6) under

the null and alternative hypothesis. Our test statistic SCMT in (2.6) is based on empirical

processes indexed by a class of functions `∞(H), which is the class of real-valued functions

that are uniformly bounded on H, with H := W × T , equipped with the supremum norm

‖ · ‖`∞(H). To simplify notation, let ‖ · ‖ denote the supremum norm. All limits are taken as

T →∞. To establish the asymptotic validity of our test statistic, we maintain the following

assumption:

Assumption 1. (a) The class of functions G = {Wt 7→ g(Wt, θ, τ) : θ ∈ Θ, τ ∈ T } is a

VC-subgraph class of measurable functions with envelope F satisfying E|F|p < ∞, for

some 2 < p <∞;

(b) {(Yt, Xt) ∈ R×Rd, t = 1, . . . , T} is a strictly stationary β-mixing sequence whose mixing

coefficient is of order O(T−b) for some b > p/(p − 2) and some 2 < p < ∞. Besides,

E‖Xt‖2 <∞ ∀t ≥ 1;

(c) For each τ ∈ T , the moment condition G(θ, τ) in (2.4) has a unique zero at θ0(τ) ∈

B(T ,Θ), where B(T ,Θ) is family of uniformly bounded functions from T to Θ ⊂ RK ,

for an arbitrary subset Θ of RK and a compact set T of some metric space;

(d) The conditional distribution function F (y|x, θ) has a density function f(y|x, θ) that

is continuous, bounded, and bounded away from zero uniformly over the quantiles of

interest τ ∈ T , almost surely. In addition, F (y|x, θ) has uniformly bounded second-

order derivatives with respect to y ∈ R a.s., and the distribution of Xt is absolutely

continuous with respect to Lebesgue measure ∀t ≥ 1. Besides, ∂G(θ0, τ)/∂θ := Ġθ0,τ is

nonsingular uniformly over τ ∈ T .

Assumption 1 provides standard conditions for quantile auto-regressive and distributional

regression models under dependent data. Assumption 1 (a) is necessary to establish the weak
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convergence of an empirical process indexed by functions, see e.g. Arcones and Yu (1994)

and Radulović (1996). Assumption 1 (b) is needed to restrict the dependence of {Yt, Xt}

and holds for many econometric models in practice, including autoregressive moving average

(ARMA) and generalized autoregressive conditional heteroscedasticity (GARCH) processes

under mild additional assumptions. We assume β-mixing dependence because it allows for

decoupling and yields exponential inequalities, rather than imposing stringent conditions

on the entropy numbers of G and on the rate of decay for the α-mixing coefficients as

in Andrews and Pollard (1994). Thus, the parts (a)-(b) of Assumption 1 guarantee the

stochastic equicontinuity of the empirical process
√
T (ẐT (y, x) − FY X(y, x)) (see Arcones

and Yu, 1994).

The parts (c)-(d) of Assumption 1 are necessary to establish a functional central limit

theorem for the Z-estimator process τ 7→
√
T (θ̂T (τ) − θ0(τ)), addressing the asymptotic

continuity of the empirical processes of function-valued parameters (see e.g. Chernozhukov

et al., 2013; Rothe and Wied, 2013). Assumption 1.(c) ensures that the moment condition

G(θ, τ) in (2.4) uniquely defines the “true” function-valued parameter. Therefore, θ0 is still

well-defined as the solution to the moment condition G(θ, τ) in (2.4) under the alternative

hypothesis in (2.2), and it can be regarded as a pseudo-true value of the function-valued

parameter as in Rothe and Wied (2013).

Besides, Assumption 1 (d) is a smoothness condition required to deliver a functional delta-

method for the subsampling of our test statistic. In what follows, “
d−→” denotes convergence

in distribution. The following result delivers the limit distribution of the proposed test

statistic SCMT in (2.6) under the null and the alternative hypotheses.

Proposition 1. If Assumption 1 is satisfied then
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(a) Under H0 in (2.1), SCMT
d−→
∫
‖H1(y, x)−H2(y, x)‖2 dFY X(y, x), where (H1,H2) are

Gaussian processes with zero mean and covariance function defined in the Appendix;

(b) Under HA in (2.2), limT→∞ P (SCMT > C) = 1 for all fixed constants C > 0.

Proposition 1 shows that the asymptotic null distribution of SCMT is a functional of a

bivariate mean zero Gaussian process (H1,H2) defined in the Appendix. By Proposition 1,

we reject the null hypothesis H0 whenever SCMT is significantly large.

2.2. Local power of the test statistic

Now we analyze the asymptotic power of SCMT in (2.6) against a sequence of Pitman local

alternatives converging to the null hypothesis at the rate
√
T . We need to establish that SCMT

in (2.6) has nontrivial power against local alternatives to ensure that it is asymptotically

locally unbiased. Let J(y|x) be a conditional distribution function such that J(y|x) 6=

F (y|x, θ) for all θ ∈ B(T ,Θ) and some (y, x) ∈ W . For any constant 0 < δ ≤
√
T , we define

the following sequence of local alternative conditional distribution functions of Yt given Xt:

HA,T : FT (y|x) =

(
1− δ√

T

)
F (y|x, θ) +

(
δ√
T

)
J(y|x), (2.7)

where F (y|x, θ) = F (y|x, θ0) for some θ0 ∈ B(T ,Θ) and all (y, x) ∈ W . To ensure nontrivial

local power of our test statistic, we make the following assumption:

Assumption 2. Under the local alternative in (2.7), the conditional distribution implies

a sequence of distribution functions FA
T (y, x) =

∫
FT (y|x∗)1{x∗ ≤ x}dFX(x∗) that is con-

tiguous to the distribution function F (y, x, θ0) =
∫
F (y|x∗, θ0)1{x∗ ≤ x}dFX(x∗) implied by

F (y|x, θ0).

Assumption 2 is standard in the study of the asymptotic power under a sequence of

13



Pitman local alternatives (see Andrews, 1997; Escanciano and Velasco, 2010; Rothe and

Wied, 2013). We define the moment conditions GJ(θ, τ) := EJ [g(Wt, θ, τ)] and GF (θ, τ) :=

EF [g(Wt, θ, τ)], where EJ [·] and EF [·] denote expectation with respect to J ≡ J(y|x) and F ≡

F (y|x, θ), respectively, in (2.7). Let θ0(·) and θ∗0(·) be solutions to the moment conditions

GF (θ0, τ) = 0 and GJ(θ∗0, τ) = 0 for every τ ∈ T , respectively. The following result delivers

the asymptotic distribution of our test statistic SCMT in (2.6) under a sequence of local

alternatives satisfying (2.7).

Proposition 2. Under the local alternative HA,T in (2.7) and Assumptions 1-2,

SCMT
d−→
∫
‖H1(y, x)−H2(y, x) + ∆(y, x)‖2 dFY X(y, x),

where ∆(y, x) = δ
∫

(J(y|x∗)− F (y|x∗, θ0) + Ḟ (y|x∗, θ0)[h])1{x∗ ≤ x}dFX(x∗), and h is the

function h(τ) = (∂GF (θ0, τ)/∂θ)−1GJ(θ0, τ).

Let c(1− α) ≡ inf{s : P (SCMT ≤ s) ≥ 1− α}. By Anderson’s Lemma (see Corollary 2 of

Anderson, 1955), since H1(y, x)−H2(y, x) has mean zero, ∀(y, x) ∈ W , under HA,T in (2.7)

we have that

P

(∫
‖H1(y, x)−H2(y, x) + ∆(y, x)‖2dFY X(y, x) > c(1− α)

)
≥P

(∫
‖H1(y, x)−H2(y, x)‖2dFY X(y, x) > c(1− α)

)
= α,

where equality holds when ∆(y, x) = 0 (see e.g. Theorem 4 in Andrews, 1997). Then, Propo-

sition 2 implies that our test statistic SCMT is asymptotically unbiased against a sequence of

local alternatives HA,T in (2.7).

In most time series applications, it is more useful to test the specification of a dynamic

conditional quantile or distribution model over a range of the conditional distribution rather
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than in the entire distribution. For instance, when testing the validity of ES or VaR models,

it is more important to test the specification of quantile regression model over a range of

quantiles of the tail of the conditional distribution, (τ∗, τ
∗) with 0 < τ∗ < τ ∗ < 1. Let W

be the subset of Wt = (Yt, Xt)
′ implied by the inverse of the conditional distribution Yt|Xt

at the quantiles τ∗ and τ ∗, i.e., W = {Wt : F−1
Yt

(τ∗|Xt) ≤ Yt ≤ F−1
Yt

(τ ∗|Xt)}. Then, we can

implement our test on a subset of the distribution by modifying our null hypothesis in (2.1)

as follows:

H0 : F (y|x) = F (y|x, θ0), for some θ0 ∈ B(T ,Θ) and all (y, x) ∈ W , (2.8)

HA : F (y′|x′) 6= F (y′|x′, θ), for all θ ∈ B(T ,Θ) and some (y′, x′) ∈ W . (2.9)

Assumptions 1 and 2 still hold under the subsetW so that we can apply our test statistic.

Besides, our test statistic in (2.5) should be calculated only over the subset W . It is also

possible to use a censored quantile regression estimator of Powell (1986) if one wants to allow

for a “wrong” quantile regression model outside the subset W .

3. Subsampling approximation

As the asymptotic distribution of the test statistic SCMT in (2.6) under H0 depends on the

data-generating process, we propose a subsampling approach to tabulate critical values. If

there were no dynamic misspecification under H0 in (2.1), we could apply a parametric

bootstrap method on F (y|x, θ̂T ) to obtain critical values. However, if the past information

set is dynamically misspecified, Xt ∈ Ft−1, a parametric bootstrap based on resampling

values from F (y|x, θ̂T ) does not guarantee that the long-run variance of the bootstrapped
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statistic adequately mimics the long-variance of the statistic of the original sample (Corradi

and Swanson, 2006); then, the bootstrapped critical values may be asymptotically invalid.

Thus, we propose and theoretically justify a subsampling approach.

Subsampling is a resampling method that provides asymptotically valid critical values

under general forms of data dependence (Politis et al., 1999). It is a resampling procedure

that considers the parameter estimation error effect, is suitable for linear and nonlinear

quantile and distributional regression models, allows for dynamic misspecification of the past

information set, and is computationally fast. Besides, unreported simulations show that the

subsampling method has better finite-sample size and power than a block bootstrap version

of the test statistic SCMT in (2.6). Chernozhukov and Fernández-Val (2005), Whang (2006),

and Escanciano and Velasco (2010) developed subsampling methods for specification testing

of quantile regression models under dependent data. We extend these approaches by allowing

for models indexed by function-valued parameters on the whole conditional distribution.

Subsampling consists of simulating the test statistic SCMT in (2.6) on small subsamples

of size b << T to calculate the critical values of the test. The choice of the subsample size

has a significant effect on the result for finite samples (Politis et al., 1999; Sakov and Bickel,

2000). Following Sakov and Bickel (2000), we employ subsamples of sizes b = [kT 2/5], where

[·] is the floor function and k is a constant.

We propose the following algorithm for computing a subsampling realization of our test

statistic SCMT in (2.6):

1. We generate B = T − b + 1 subsamples of size b of the form {Wj, . . . ,Wj+b−1} ≡

{(Yj, Xj), . . . , (Yj+b−1, Xj+b−1)} without replacement from the sample Wt = (Yt, Xt), with
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b << T . At each subsample j << B, we construct the subsampling version of SCMT as:

SCMj,b =

∫ ∥∥∥√bSj,b(y, x)
∥∥∥2

dẐj,b(y, x),

where Sj,b(y, x) is the test statistic of (2.5) computed in the j-th subsample of size b, and

Ẑj,b(y, x) = (1/b)
∑j+b−1

t=j 1{Yt ≤ y}1{Xt ≤ x}. We calculate the recentered subsampling

test statistic as follows:

SCM∗j,b := SCMj,b − (b/T )SCMT ; (3.1)

2. We estimate the conditional distribution of our test statistic in (2.5), V (s) = P (SCMT ≤ s),

by V ∗(s) = (1/B)
∑B

j=1 1(Sj,b ≤ s). Then, given a significance level α ∈ (0, 1), the (1−α)-

th quantile of V ∗(s) is the subsampling critical value, cCM∗T (1−α) ≡ inf{s : V ∗(s) ≥ 1−α}.

Our test rejects H0 in (2.1) if SCMT > cCM∗T (1− α).

We recenter the subsampling test statistic SCM∗T to ensure a better power performance,

following the approaches of Chernozhukov and Fernández-Val (2005), Linton et al. (2005),

and Escanciano and Velasco (2010). Another possible choice of the recentering is
∫
‖
√
T (SCMj,b −

(b/T )1/2SCMT )‖2dẐj,b(y, x), but it has delivered worse finite-sample size and power than SCM∗j,b

in (3.1) in our simulations, and thus we overlook it in the paper.

The following proposition shows that the subsampling test statistic SCM∗T is asymptoti-

cally valid and consistent. Besides, it has nontrivial power against local alternatives HA,T in

(2.7).
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Proposition 3. Under Assumptions 1-2, if the subsample size satisfies b/T → 0 and b→∞

as T →∞, then:

(a) Under H0 in (2.1), limT→∞ P (SCMT > cCM∗T (1− α)) = α;

(b) Under HA in (2.2), limT→∞ P (SCMT > cCM∗T (1− α)) = 1;

(c) Under the local alternative HA,T in (2.7), limT→∞ P (SCMT > cCM∗T (1 − α)) ≥ α, where

equality holds when the shift function ∆(y, x) defined in Proposition 2 is trivial.

Proposition 3 illustrates that the subsampling test has asymptotically correct size since

SCM∗j,b
d−→
∫
‖H1(y, x) − H2(y, x)‖2dFY X(y, x) as b → ∞ under H0 in (2.1). Besides, SCMT

diverges (in probability) faster than cCM∗T (1−α) under HA in (2.2) to∞ since limT→∞(T/b) >

1 (see Whang, 2006). This ensures the consistency of our subsampling test statistic.

Our subsampling test statistic SCM∗T is also valid for testing the specification of a dynamic

conditional quantile or distribution model over a range of the conditional distribution, as

in (2.8). In this case, we need to modify the subsampling procedure. In the first step, We

generate B = T − b + 1 subsamples of size b without replacement only from the subset W ,

rather than from the entire sample Wt. In the second step, we estimate the conditional

distribution of our test statistic over these B subsamples, V ∗(s) = (1/B)
∑B

j=1 1(Sj,b ≤ s),

to obtain the subsampling critical values.

4. Finite-sample performance

To examine the finite-sample performance of our test statistic, we perform simulation exper-

iments with data generating processes (DGPs) under the null and the alternative hypothesis.
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The data are generated from the processes below.

Size.1: Yt = 0.3Yt−1 + ut,

Size.1 B : Yt = Φ−1 (Ut) + (0.2 + 0.1Ut)Yt−1, Ut
i.i.d.∼ U(0, 1),

Size.2: Yt = 0.3Yt−1 − 0.3Yt−2 + ut,

Power.1:


Yt = 1 + 0.6Yt−1 + ut, if Yt−1 ≤ 1,

Yt = 1− 0.5Yt−1 + ut, if Yt−1 ≥ 1,

Power.2: Yt = 0.8Yt−1ut−1 + ut,

Power.3: Yt = 0.8u2
t−1 + ut,

Power.4: Yt = 0.05Yt−1 + htwt, h
2
t = 0.05 + 0.1Y 2

t−1 + 0.88h2
t−1,

Power.5: Yt = 1{Yt−1 > 0} − 1{Yt−1 < 0}+ σut, σ = 0.43,

LocalAlt.1: Yt = 0.3Yt−1 + cX2
t−1 + ut, Xt = 0.5Xt−1 + εt,

where ut and εt follow an i.i.d process with distribution N (0, 1), and {wt} is a standardized

sequence of Student-t innovations with five degrees of freedom. We test the null hypothesis

that the conditional quantiles of Yt follow an AR(1) process:

H0 : F−1
Yt

(τ |yt−1, θ0(τ)) = α + βyt−1 + Φ−1
u (τ), a.s.,

where Φ−1
u (τ) is the τ -quantile of the standard Normal error distribution. Size.1 checks the

size performance of our test statistic. The QAR(1) model correctly specifies the conditional

distribution in Size.1. In addition, Size.1 B verifies the size performance of our test under

a stationary QAR(1) model Qτ (Yt|Yt−1) = Φ−1(τ) + (0.2 + 0.1τ)Yt−1 of Koenker and Xiao
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(2006), in which the linear QAR(1) model has a correct specification, when the influence of

Yt−1 on the conditional quantile function depends on τ . We allow for dynamic misspecifi-

cation in Size.2, as F (y|Yt−1, θ0) 6= F (y|Yt−1, Yt−2, θ
∗
0) with θ0 6= θ∗0. DGPs Power.1-Power.5

and LocalAlt.1 evaluate the finite-sample power performance of our test statistic. They have

been considered by Hong and Lee (2003) and Escanciano and Velasco (2010).

In these experiments, rejection arises because of misspecification of the conditional dis-

tribution model. Power.2 and Power.3 are second-order stationary processes, though they

are not invertible (Granger and Andersen, 1978). Power.4 is a common nonlinear model

used in the time series literature, the AR(1) − GARCH(1, 1) − t5 model. Power.5 is the

SIGN model analyzed in Granger and Teräsvirta (1999), which is a first-order nonlinear

autoregressive process with the same autocorrelation function as an AR(1) process. Finally,

DGP LocalAlt.1 analyzes the small-sample performance of our test against Pitman devia-

tions from the null hypothesis that holds when c = 0. We consider three different values of

c = {0.10, 0.20, 0.30}.

Our test statistic also verifies the validity of the distributional regression model proposed

by Foresi and Peracchi (1995), where the conditional distribution function of Yt is modeled

through a family of binary response models for the event that Yt exceeds some threshold

y ∈ R as follows:

HDR
0 : F (y|x) = Λ (x′θ(τ)), for some θ(τ) ∈ B(T ,Θ) and all (y, x) ∈ W , (4.1)

where Λ(·) is a known strictly increasing link function (e.g., the logistic or standard normal

distribution), and θ(·) is a function-valued parameter taking values in B(T ,Θ). We test the
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null hypothesis of correct specification of a distributional regression model (4.1) conditioning

Yt on Xt = Yt−1, where Λ(·) is specified as a standard normal distribution function. Never-

theless, we do not employ the DGP Size.1 B for the distributional regression because it is

correctly specified only under a linear QAR(1) model.

For all the experiments, we consider the empirical rejection frequencies for 5% nominal

level tests with different sample sizes (T = 200 and 300). We use an equally spaced grid

of 100 quantiles Tn ⊂ T , for T = [0.01, 0.99], to calculate the test statistics. We perform

1, 000 Monte Carlo repetitions for three different subsample sizes b = [kT 2/5], where [·] is the

floor function, and k = {2, 3, 4}. In all the replications, we generated and discarded 200 pre-

sample data values. Except for the distributional regression specification test, we compare

our results with the test proposed by Escanciano and Velasco (2010) (EV henceforth), based

on

EV :=

∫ ∫ ∣∣∣(1(Yt −m(Xt, θ̂T (τ)) ≤ 0)− τj) exp(ix′Xt)
∣∣∣2 dW (x)dΦ(τ), (4.2)

where W and Φ are some integrating measures on W and T respectively, i =
√
−1 is the

imaginary root, exp(ix′Xt) is a weighting function with x ∈ Rd, and m(Xt, θ̂T (τ)) is the

estimated parametric QAR(1) model for each τ -quantile, for τ ∈ T . The critical values of

the test (4.2) are obtained by subsampling. We generate T − b − 1 subsamples of size b

and calculate a subsampling EV statistic in (4.2) for each Monte Carlo replication. We also

apply the EV test for three different subsample sizes b = [kT 2/5], with k = {2, 3, 4}.

Table 1 reports the rejection frequencies of the SCMT test in (2.6) for sample sizes T = 200

and T = 300. The empirical size of the SCMT test is generally close to the nominal level
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under the null hypothesis, whether there is dynamic misspecification (Size.2) or not (Size.1).

Moreover, the empirical size of the SCMT test is close to 5% when the influence of Yt−1 on

the conditional quantile function depends on τ (Size.1 B). For small values of k and T , the

finite-sample size is considerably lower than 5% because the subsample size needs to converge

to infinity as T → ∞. This is clear because the subsampling test statistics are draws from

the original DGP, and we approximate the critical values with these draws. Conversely, the

EV test of Escanciano and Velasco (2010) presents some size distortions for a small sample

size of T = 200, although it delivers an approximately correct size when T = 300. The

SCMT and the EV tests have a similar power, except for DGP Power.4 where the SCMT test

outperforms the EV test. These findings are robust to different sample sizes and subsample

choices. In addition, Table 1 shows that the SCMT and the EV tests display nontrivial power

against Pitman deviations for the null hypothesis. Under DGP LocalAlt.1, our test has a

better finite-sample power for k = {3, 4}, while it is outperformed when k = 2.

Table 2 presents the empirical rejection frequencies for the distributional regression spec-

ification of the SCMT test for sample sizes T = 200 and T = 300. The finite-sample size of

the SCMT test is close to the nominal level for a distributional regression model. Besides,

the SCMT allows for dynamic misspecification (Size.2). These results are robust to different

sample sizes and subsample choices. Our test statistic is also powerful against misspeci-

fications in the distributional regression model, as the power for testing HDR
0 in (4.1) is

high for all power DGPs and for both sample sizes. Further, the SCMT test also presents

nontrivial power against local deviations from the null hypothesis for the distributional re-

gression specification. In sum, our results illustrate that the SCMT test has good finite-sample

properties.
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5. Empirical application: Value-at-Risk and distributional

regression models

Many papers have proposed methods to check the specification of models for Value-at-Risk

(VaR). The outcome of a VaR model determines the multiplication factors for market risk

capital requirements of all regulated financial institutions. An inaccurate VaR model provides

an underestimated multiplicative factor that delivers an insufficient reserve of capital risk.

Therefore, the specification of VaR models is crucial for risk managers, regulators, and

financial institutions.

Since the VaR is a quantile of the portfolio returns, conditional on past information, and

as the distribution of portfolio returns evolves over time, it is challenging to model time-

varying conditional quantiles. An accurate VaR model satisfies P (Yt ≤ −V aRt|Ft−1) = τ ,

for a portfolio return series Yt, a past information set Ft−1, and a quantile τ ∈ (0, 1).

The conditional quantile regression approach specifies a conditional VaR model using only

the relevant past information that influences the quantiles of interest (Chernozhukov and

Umantsev, 2001; Engle and Manganelli, 2004; Escanciano and Olmo, 2010).

To highlight the applicability of our approach, we test different specifications of condi-

tional quantile regression models for estimating the VaR of stock returns. We estimate the

VaR of the returns of two major stock indexes, the Frankfurt Dax Index (DAX) and the

London FTSE-100 Index (FTSE-100). The DAX and the FTSE-100 daily stock indexes are

two representatives of the data for which linear and non-linear quantile regression models

have been widely used, see e.g. Escanciano and Velasco (2010), Iqbal and Mukherjee (2012),

and Jeon and Taylor (2013).
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Our dataset consists of 2,981 daily observations (from January 2003 to June 2014) on

Yt, the one-day returns, and Xt, the lagged returns (Yt−1, . . . , Yt−p). Table 3 presents the

summary statistics of the series. Both log-returns series are highly leptokurtic and present

autocorrelation. Figure 1 displays the daily log-return series of the two series. It shows that

both log-return series display calm as well as volatile periods and single outlying log-return

observations.

PLEASE INSERT FIGURE 1 HERE

We estimate a conditional quantile autoregressive model for the VaR, i.e., the CAViaR

model of Engle and Manganelli (2004). As the CAViaR is an auto-regressive model of the

quantile, it avoids distributional assumptions. Besides, it is intuitively appealing since the

financial returns usually display volatility clustering (Jeon and Taylor, 2013). The CAViaR

model has also obtained more success than other models in predicting the VaR risk measure

for various periods (Bao et al., 2006; Yu et al., 2010). We test the hypothesis H0: the

VaR of the log-return Yt follows a CAViaR specification. We test the four CAViaR models

introduced by Engle and Manganelli (2004):

Symmetric absolute value (SAV) CAViaR:

Qt(τ) = β1 + β2Qt−1(τ) + β3|Yt−1|.

Asymmetric slope (AS) CAViaR:

Qt(τ) = β1 + β2Qt−1(τ) + β3(Yt−1)+ + β4(Yt−1)−.
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Indirect GARCH(1,1) CAViaR:

Qt(τ) = (1− 21{τ < 0.5})
(
β1 + β2Qt−1(τ)2 + β3Y

2
t−1

) 1
2 .

Adaptive CAViaR:

Qt(τ) = Qt−1(τ) + β1

{
[1 + exp (G (Yt−1 −Qt−1(τ)))]−1 − τ

}
,

where Qt(τ) is the τ -quantile of Yt conditional on Xt, F
−1
Yt

(τ |Xt), (Yt−1)+ = max(Yt−1, 0),

(Yt−1)− = −min(Yt−1, 0), and G is some positive finite number. We evaluate the correct

specification of the previous VaR models for an equally spaced grid of 10 quantiles {τi}i=10
i=1

from τ1 = 0.01 to τ10 = 0.10. Thus, we can cover the VaR backtesting region suggested by

the Basel Committee on Banking Supervision (1996). We apply our SCMT test in (2.6) using

the subsampling method. As we use only the observations between τ1 = 0.01 to τ10 = 0.10,

we have a sample size of T = 298. We employ the subsamples of sizes b = [kT 2/5], where [·]

is the floor function., for k = {2, 3, 4}. For comparison purposes, we apply the EV test with

the same subsample sizes.

Figure 2 displays the VaR forecasts and violations of the Asymmetric Slope (AS) and

Symmetric Absolute Value (SAV) CAViaR models for τ = 0.05. There seems to be no

difference in the 5%-VaR-forecast of the AS and SAV models. Besides, VaR-violations occur

more frequently during high volatile periods.

PLEASE INSERT FIGURE 2 HERE
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Table 4 reports the p-values of the specification tests of the CAViaR models. For the

DAX series, our SCMT test rejects the specifications of all CAViaR models at the 5% signif-

icance level. These results are robust to three different subsample choices. Conversely, the

EV test of Escanciano and Velasco (2010) does not reject the AS and the Adaptive specifi-

cation at the 5% significance level. For the FTSE-100 series, the SCMT test also rejects the

specifications of all CAViaR models at the 5% significance level; conversely, the EV test does

not reject the SAV, AS, and Adaptive specifications at the 5% significance level. Therefore,

our results indicate that CAViaR models are not able to fit the tails of these stock returns

series appropriately. Our approach is useful for risk managers and financial institutions to

detect models that underestimate risk, and thus calculate correct capital risk requirements.

We present an additional application where we test the specification of dynamic distri-

butional regression models for the tails of the DAX and FTSE-100 daily log-returns, as in

equation (4.1). We test the hypothesis HDR
0 in (4.1) for four different lag specifications of the

distributional regression model. We specify Λ(·) as a standard normal distribution function,

but other link functions can be applied since the distributional regression model is flexible.

Moreover, Chernozhukov et al. (2013) show that the choice of the link function is irrelevant

for a sufficiently rich information set Xt.

Table 5 reports the p-values of the specification tests of the distributional regression

models. For the DAX series, our SCMT test rejects all four proposed specifications of a

distributional regression AR model at the 5% significance level. These results are robust to

three different subsample sizes. For the FTSE-100 series, the SCMT test does not reject the

AR(4) specification of distributional regression models at the 5% significance level.

For comparison purposes, we also test the specification of distributional regression models
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on the whole distribution of the log returns of DAX and FTSE-100 indices. We test the

hypothesis HDR
0 in (4.1) for an equally spaced grid of 100 quantiles. We also specify Λ(·) as

a standard normal distribution function. Table 6 displays the p-values of the specification

tests of distributional regression models over the entire distribution. The SCMT test fails to

reject the AR(4) specification of distributional regression models for the whole distribution

of the DAX log-returns at the 5% significance level. In line with the results of Table 5, the

SCMT test also does not reject the AR(4) specification for the FTSE-100 log-returns on the

entire distribution.

6. Conclusions

In this paper, we present a practical and consistent specification test of conditional quantile

and distributional regression models in a general setting. Our approach covers conditional

distribution models indexed by function-valued parameters, allowing for a wide range of ap-

plications in economics and finance, such as the quantile autoregressive, the CAViaR, and

the distributional regression models. Our proposed test statistic has the correct asymptotic

size, is consistent against fixed alternatives, and has nontrivial power against Pitman devi-

ations from the null hypothesis. In addition, our approach has the correct asymptotic size

under dynamic misspecification of the past information set.

As the proposed test statistic is non-pivotal, we propose and theoretically justify a sub-

sampling approach to tabulate critical values. Finite-sample experiments suggest that our

proposed test has good finite-sample size and power. Besides, based on the evaluation of

linear and nonlinear models for the returns distribution and VaR of two major European

stock indexes, we highlight the ability of our test to detect possibly misspecified CAViaR
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and distributional regression models. Therefore, our method is useful for risk managers and

financial institutions to obtain the correct multiplicative factors for their market risk capital

requirements.

A possible direction for future work is to extend our approach to the class of multivariate

models. Further research could focus on specification tests for vector autoregressive and

multivariate linear and non-linear quantile models, extending the procedures of Francq and

Räıssi (2007), Escanciano et al. (2013), Chen and Hong (2014), and Kheifets (2018).

28



References

Andersen, T. G., Bollerslev, T., Huang, X. (2011). A reduced form framework for modeling
volatility of speculative prices based on realized variation measures. Journal of Economet-
rics 160:176–189.

Anderson, T. W. (1955). The integral of a symmetric unimodal function over a symmetric
convex set and some probability inequalities. Proceedings of the American Mathematical
Society 6:170–176.

Andrews, D. W. K. (1997). A conditional Kolmogorov test. Econometrica 65:1097–1128.

Andrews, D. W. K., Pollard, D. (1994). An introduction to functional central limit theorems
for dependent stochastic processes. International Statistical Review 62:119–132.

Arcones, M. A., Yu, B. (1994). Central limit theorems for empirical and U-processes of
stationary mixing sequences. Journal of Theoretical Probability 7:47–71.

Bai, J. (2003). Testing parametric conditional distributions of dynamic models. Review of
Economics and Statistics 85:531–549.

Bao, Y., Lee, T.-H., Saltoglu, B. (2006). Evaluating predictive performance of value-at-risk
models in emerging markets: A reality check. Journal of Forecasting 25:101–128.

Basel Committee on Banking Supervision (1996). Amendment to the capital accord to
incorporate market risks. Technical report, Bank for International Settlements.

Bierens, H. J., Ginther, D. K. (2001). Integrated conditional moment testing of quantile
regression models. Empirical Economics 26:307–324.

Bierens, H. J., Wang, L. (2012). Integrated conditional moment tests for parametric condi-
tional distributions. Econometric Theory 28:328–362.

Bierens, H. J., Wang, L. (2017). Weighted simulated integrated conditional moment tests
for parametric conditional distributions of stationary time series processes. Econometric
Reviews 36:103–135.

Billingsley, P. (1995). Probability and Measure. Hoboken, NJ: Wiley.

Bollerslev, T., Li, S. Z., Todorov, V. (2016). Roughing up beta: Continuous versus dis-
continuous betas and the cross section of expected stock returns. Journal of Financial
Economics 120:464–490.

Box, G. E. P., Pierce, D. A. (1970). Distribution of residual autocorrelations in
autoregressive-integrated moving average time series models. Journal of the American
Statistical Association 65:1509–1526.

Candelon, B., Colletaz, G., Hurlin, C., Tokpavi, S. (2011). Backtesting Value-at-Risk: A
GMM duration-based test. Journal of Financial Econometrics 9:314–343.

29



Chen, B., Hong, Y. (2014). A unified approach to validating univariate and multivariate
conditional distribution models in time series. Journal of Econometrics 178:22–44.

Chernozhukov, V., Fernández-Val, I. (2005). Subsampling inference on quantile regression
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Table 1. Empirical rejection frequencies

SCMT EV

k = 2 k = 3 k = 4 k = 2 k = 3 k = 4

T = 200
Size:
Size.1 0.038 0.064 0.065 0.086 0.096 0.078
Size.1 B 0.031 0.053 0.071 0.079 0.078 0.068
Size.2 0.040 0.052 0.075 0.074 0.070 0.044
Power:
Power.1 0.995 0.995 1.000 0.996 0.996 0.994
Power.2 1.000 1.000 1.000 1.000 1.000 1.000
Power.3 1.000 1.000 1.000 1.000 1.000 0.994
Power.4 0.450 0.490 0.490 0.212 0.204 0.230
Power.5 0.867 0.890 0.870 0.868 0.868 0.854
Local Alternatives:
LocalAlt.1 (c = 0.10) 0.062 0.080 0.114 0.080 0.065 0.066
LocalAlt.1 (c = 0.20) 0.067 0.100 0.133 0.106 0.088 0.071
LocalAlt.1 (c = 0.30) 0.139 0.164 0.200 0.171 0.149 0.129

T = 300
Size:
Size.1 0.043 0.044 0.060 0.070 0.065 0.059
Size.1 B 0.035 0.051 0.054 0.077 0.069 0.064
Size.2 0.036 0.052 0.048 0.038 0.042 0.052
Power:
Power.1 1.000 1.000 1.000 1.000 1.000 1.000
Power.2 1.000 1.000 1.000 1.000 1.000 1.000
Power.3 1.000 1.000 1.000 1.000 1.000 1.000
Power.4 0.720 0.676 0.680 0.296 0.302 0.322
Power.5 0.956 0.950 0.967 0.958 0.958 0.946
Local Alternatives:
LocalAlt.1 (c = 0.10) 0.060 0.104 0.130 0.073 0.065 0.063
LocalAlt.1 (c = 0.20) 0.097 0.135 0.143 0.124 0.098 0.084
LocalAlt.1 (c = 0.30) 0.192 0.250 0.231 0.244 0.202 0.181

Notes: SCM
T denotes our test statistic, and EV is the subsampling specification test of Escanciano and

Velasco (2010), with subsamples of sizes b = [kT 2/5], where [·] is the floor function. We perform 1,000 Monte
Carlo repetitions, and we use an equally spaced grid of 100 quantiles Tn, Tn ⊂ [0.01, 0.99], to calculate the
test statistics.
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Table 2. Empirical rejection frequencies: Distributional regression specification

SCMT

k = 2 k = 3 k = 4

T = 200
Size:
Size.1 0.018 0.044 0.070
Size.2 0.023 0.040 0.076
Power:
Power.1 1.000 1.000 1.000
Power.2 1.000 1.000 1.000
Power.3 1.000 1.000 1.000
Power.4 0.460 0.440 0.600
Power.5 0.720 0.700 0.840
Local Alternatives:
LocalAlt.1 (c = 0.10) 0.040 0.052 0.085
LocalAlt.1 (c = 0.20) 0.044 0.061 0.107
LocalAlt.1 (c = 0.30) 0.060 0.068 0.133

T = 300
Size:
Size.1 0.032 0.046 0.055
Size.2 0.028 0.043 0.060
Power:
Power.1 1.000 1.000 1.000
Power.2 1.000 1.000 1.000
Power.3 1.000 1.000 1.000
Power.4 0.750 0.740 0.780
Power.5 0.900 0.880 0.940
Local Alternatives:
LocalAlt.1 (c = 0.10) 0.043 0.058 0.075
LocalAlt.1 (c = 0.20) 0.054 0.090 0.117
LocalAlt.1 (c = 0.30) 0.095 0.100 0.138

Notes: SCM
T denotes our test statistic with subsamples of sizes b = [kT 2/5], where [·] is the floor function.

We test the null hypothesis HDR
0 of a correct specification of a distributional regression model specified in

(4.1). We perform 1,000 Monte Carlo repetitions.
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Table 3. Summary statistics: DAX and FTSE-100 daily log-returns

DAX FTSE-100

Mean 0.02 0.01
Std. Dev. 0.61 0.51
Median 0.03 0.01
Skewness 0.01 -0.12
Kurtosis 9.14 11.71
Minimum -3.23 -4.02
Maximum 4.69 4.08
Autocorrelation -0.01 -0.06
LB(10) 21.34 62.35

Notes: The Autocorrelation is the first-order autocorrelation coefficient, and LB(10) denotes the Ljung-Box
Q-statistic of order 10.
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Table 4. Specification tests: p-values

SCMT EV

b = 49 b = 73 b = 98 b = 49 b = 73 b = 98

DAX
SAV CAViaR 0.001 0.001 0.001 0.048 0.051 0.042
AS CAViaR 0.001 0.001 0.001 0.272 0.166 0.184
Indirect GARCH(1,1) CAViaR 0.001 0.001 0.001 0.001 0.001 0.001
Adaptive CAViaR 0.001 0.001 0.001 0.206 0.172 0.170
FTSE-100
SAV CAViaR 0.001 0.001 0.001 0.777 0.633 0.601
AS CAViaR 0.001 0.001 0.001 0.134 0.100 0.083
Indirect GARCH(1,1) CAViaR 0.001 0.001 0.001 0.001 0.001 0.001
Adaptive CAViaR 0.001 0.001 0.001 0.083 0.062 0.055

Notes: SCM
T denotes our test statistic and EV is the subsampling specification test of Escanciano and

Velasco (2010) with subsamples of sizes b = {49, 73, 98}. We test the null hypothesis H0 of the correct
specification of the CAViaR model. We use an equally spaced grid of 10 tail quantiles Tn, Tn ⊂ [0.01, 0.10],
to calculate the test statistics.
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Table 5. Specification tests p-values: Distributional regression models for the lower tail

SCMT (b = 49) SCMT (b = 73) SCMT (b = 98)

DAX
AR(1) 0.001 0.001 0.001
AR(2) 0.001 0.001 0.001
AR(3) 0.001 0.001 0.001
AR(4) 0.012 0.001 0.001
FTSE-100
AR(1) 0.001 0.001 0.001
AR(2) 0.001 0.001 0.001
AR(3) 0.001 0.001 0.001
AR(4) 0.728 0.478 0.358

Notes: SCM
T denotes our proposed test statistic with subsamples of sizes b = {49, 73, 98}. We test the null

hypothesis HDR
0 of a correct specification of a distributional regression model specified in (4.1) for the lower

tail of the distributions of the DAX and FTSE-100 daily log-returns. We use an equally spaced grid of 10
tail quantiles Tn, Tn ⊂ [0.01, 0.10], to calculate the test statistics.
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Table 6. Specification tests p-values: Distributional regression models for the whole
distribution

SCMT (b = 49) SCMT (b = 73) SCMT (b = 98)

DAX
AR(1) 0.001 0.001 0.001
AR(2) 0.001 0.003 0.006
AR(3) 0.020 0.013 0.014
AR(4) 0.423 0.271 0.199
FTSE-100
AR(1) 0.001 0.001 0.001
AR(2) 0.001 0.001 0.001
AR(3) 0.001 0.001 0.001
AR(4) 0.294 0.167 0.141

Notes: SCM
T denotes our proposed test statistic subsamples of sizes b = {49, 73, 98}. We test the null

hypothesis HDR
0 of a correct specification of a distributional regression model specified in (4.1) for the whole

distribution of the DAX and FTSE-100 daily log-returns. We use an equally spaced grid of 100 quantiles
Tn, Tn ⊂ [0.01, 0.99], to calculate the test statistics.
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Appendix

A.1. Preliminary Results

In this subsection, we provide preliminary results used in the proofs of the propositions.

Let G be a permissible class of functions in such a way that the following holds: (a) T is a

Suslin metric space (a Hausdorff topological space that is the continuous image of a Polish

space) with Borel σ-field B(T ,Θ), and (b) g(·, ·, ·) is a B(T ,Θ)-measurable function from

R × Rd × RK to R (see Kosorok, 2007, Section 11.6). Let EQg =
∫
g(Wt, θ, τ)dQ(Wt, θ, τ),

for g ∈ G, with G := {Wt 7→ g(Wt, θ, τ) : θ ∈ Θ, τ ∈ T }. We assume that the G class of

functions forms a so-called Vapnik-Chervonenkis subgraph (VC-subgraph) class of functions

(see Dudley, 1978). The VC-subgraph class is an extension of the class of indicator functions

and is useful for most statistical applications (Arcones and Yu, 1994; Radulović, 1996). If G

is a VC-subgraph class, then for any given 1 ≤ p <∞, there are constants a and b satisfying

N(ε,G, ‖ · ‖) ≤ a

(
(EQ|F|p)1/p

ε

)b
,

for all ε > 0 and all probability measures Q, with EQ|F|p < ∞, where N(ε,G, ‖ · ‖) is the

covering number of G with respect to ‖ · ‖, i.e., the minimal number of L2(Q)-balls of radius

ε needed to cover G, where a L2(Q)-ball of radius ε around a function g ∈ L2(Q) is the set

{h ∈ L2(Q) : ‖h − g‖ < ε} (see Pollard, 1984). Moreover, the class of functions G has a

finite and integrable envelope function F := supg∈G |g(Wt, θ, τ)|, and it can be covered by a

finite number of elements, not necessarily in G.

The following result establishes a central limit theorem for strong mixing processes for

the empirical distribution, ẐT (y, x), under the null and the alternative hypothesis.
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Lemma A.1. If Assumption 1 holds, under H0 of (2.1) or HA of (2.2),

vT (y, x) :=
√
T (ẐT (y, x)− FY X(y, x))⇒ H1(y, x), in `∞(W),

where H1 is a tight mean zero Gaussian process in `∞(W) with covariance function

Cov(H1(y, x),H1(y′, x′)) =
∞∑

k=−∞

Cov(1{Y0 ≤ y}1{X0 ≤ x},1{Yk ≤ y′}1{Xk ≤ x′}).

Proof: Parts (a) and (b) of Assumption 1 imply the conditions (2.3) and (2.4) in Theorem

2.1 in Arcones and Yu (1994), respectively. Then the results follow from a direct application

of Theorem 2.1 in Arcones and Yu (1994). �

The following result establishes a functional delta method for the empirical analog Ĝ(θ, τ)

of the moment conditions in (2.4) and for a consistent estimator of the function-valued

parameter θ̂T (·).

Lemma A.2. Let vT (y, x) :=
√
T (ẐT (y, x)−FY X(y, x)) be the empirical process of Lemma

A.1 and define the empirical process rT (θ, τ) :=
√
T (Ĝ(θ, τ) − G(θ, τ)). If Assumption 1 is

satisfied, under H0 of (2.1) or HA of (2.2),

(vT (y, x), rT (θ, τ)) ⇒ (H1(y, x), H̃2(θ, τ)), in `∞(W ×Θ× T ),
√
T (θ̂T (·)− θ0(·)) ⇒ −Ġ−1

θ0,·(H̃2(θ0(·), ·)) in `∞(T ),

where H̃2 is a tight mean zero Gaussian process with covariance function

Cov(H̃2(θ, τ), H̃2(θ′, τ ′)) =
∞∑

k=−∞

Cov(g(W0, θ, τ), g(Wk, θ
′, τ ′)).

Proof: By Lemma E.1 in Chernozhukov et al. (2013), Assumption 1 implies that (a) the

inverse of G(·, τ) defined as G−1(x, τ) := {θ ∈ Θ : G(θ, τ) = x} is continuous at x = 0
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uniformly in τ ∈ T with respect to the Hausdorff distance, (b) there exists Ġθ0,τ such that

lim
t→0

sup
τ∈T ,‖h‖=1

|t−1(G(θ0(τ) + th, τ)−G(θ0(τ), τ))− Ġθ0,τh| = 0,

where infτ∈T inf‖h‖=1 ‖Ġθ0,τh‖ > 0, (c) the maps τ 7→ θ0(τ) and τ 7→ Ġθ0,τ are continuous,

and (d) the mapping τ 7→ θ0(τ) is continuously differentiable. Under the previous conditions,

Lemma E.2 in Chernozhukov et al. (2013) holds, and the process rT (θ, τ) weakly converges

to H̃2(θ, τ) in `∞(Θ × T ) and the map θ 7→ G(θ, ·) is Hadamard differentiable at θ0 with

continuously invertible derivative Ġθ0,·. By Hadamard differentiability of the map θ 7→

G(θ, ·), it follows the weak convergence of the process
√
T (θ̂T (·)− θ0(·)) in `∞(T ).

�

Lemma A.3. Let vT (y, x) :=
√
T (ẐT (y, x)−FY X(y, x)) be the empirical process of Lemma

A.1 and define the empirical process vθ0T (y, x) :=
√
T (F̂T (y, x, θ̂T )− F (y, x, θ0)). If Assump-

tion 1 holds, under H0 of (2.1) or HA of (2.2),

(vT (y, x), vθ0T (y, x))⇒ (H1(y, x),H2(y, x)) in `∞(W ×W),

where H2 is a tight mean zero Gaussian process in `∞(W).

Proof: By Lemma A.2,
√
T (θ̂T (·) − θ0(·)) ⇒ −Ġ−1

θ0,·(H̃2(θ0(·), ·)) in `∞(T ), where H̃2 is a

tight mean zero Gaussian process. Similarly to Lemma A.1, under H0 of (2.1) or HA of

(2.2), if parts (a)-(b) of Assumption 1 hold, then
√
T (F̂X(x∗) − FX(x∗)) weakly converges

to a tight mean zero Gaussian process. Now, let the measurable functions Γ :W 7→ [0, 1] be

defined by (y, x) 7→ Γ(y, x), and the bounded maps Π : H 7→ R be defined by f 7→
∫
fdΠ.

Then it follows from Lemma D.1 in Chernozhukov et al. (2013) that the mapping (Γ,Π) 7→∫
Γ(·, x)dΠ(x), with Γ(·, x) = 1{x∗ ≤ x}F (·|x) and Π = FX(·), is well defined and Hadamard
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differentiable at (Γ,Π). Under H0 of (2.1) or HA of (2.2), we can write F̂T (y, x, θ̂T ) =∫
F (y|x∗, θ̂T )1{x∗ ≤ x}dF̂X(x∗) and F (y, x, θ0) =

∫
F (y|x∗)1{x∗ ≤ x}dFX(x∗). Then, by

the functional delta method from Lemma B.1 of Chernozhukov et al. (2013), it follows that

√
T (F̂T (y, x, θ̂T )− F (y, x, θ0)) =

∫ √
T
[
F (y|x∗, θ̂T )− F (y|x∗)

]
1{x∗ ≤ x}dFX(x∗)

+

∫
F (y|x∗)1{x∗ ≤ x}

√
Td
(
F̂X(x∗)− FX(x∗)

)
+ op(1).

Using the same arguments of the Proof of Lemma A.2, we can show that the map θ 7→

F (·|·, θ(·)) is Hadamard differentiable. Thus, we apply the functional delta method, for fixed

y and x, as follows:

√
T
(
F (y|x, θ̂T )− F (y|x)

)
⇒ −Ḟ (y|x, θ0)(−Ġ−1

θ0,·(H̃2(θ0(·), ·)))

:= H∗2(y, x) in `∞(W).

Given the Hadamard differentiability of the mapping (Γ,Π) 7→
∫

Γ(·, x)dΠ(x), the result

follows from an application of the functional delta method, where the Gaussian process H2

is given by

H2(y, x) :=

∫
H∗2(y, x∗)1{x∗ ≤ x}dFX(x∗) +

∫
F (y|x∗)1{x∗ ≤ x}dH1(∞, x∗),

where H1 is the tight mean zero Gaussian process defined in Lemma A.1. �

Lemma A.4. Under the local alternativesHA,T in (2.7) and Assumptions 1-2, let FA
T (y, x) =∫

FT (y|x∗)1{x∗ ≤ x}dFX(x∗) and GFT
(θ, τ) = EFT

[g(Wt, θ, τ)], then:
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√T (ẐT (y, x)− FA
T (y, x)

)
√
T
(
Ĝ(θ, τ)−GFT

(θ, τ)
)
⇒

H1(y, x)

H̃2(θ, τ)

 in `∞(W ×Θ× T ),

where (H1, H̃2) are the tight mean zero Gaussian processes defined in Lemmas A.1-A.2.

Proof: Under Assumption 2, FA
T (y, x) is contiguous to F (y, x, θ0), then under the sequence of

local alternatives HA,T in (2.7) and Assumptions 1-2, FT (y|x) of (2.7) is a linear combination

of two measures that are VC-subgraph class with a p-integrable envelope, for some 2 < p <

∞. From an application of Lemma 2.8.7 in Van der Vaart and Wellner (2000), we have that

(
√
T (ẐT (y, x)−FA

T (y, x)),
√
T (Ĝ(θ, τ)−GFT

(θ, τ)))⇒ (H1(y, x), H̃2(θ, τ)) in `∞(W×Θ×T ).

�

A.2. Proofs of the Propositions

Proof of Proposition 1: To prove part (a), we consider the empirical processes vT (y, x) =

√
T (ẐT (y, x)− FY X(y, x)) and vθ0T (y, x) =

√
T (F̂T (y, x, θ̂T )− F (y, x, θ0)) defined in Lemma

A.1 and in Lemma A.3, respectively. Under H0 in (2.1), we have that FY X(y, x) ≡ F (y, x, θ0).

Then:

SCMT =

∫
T
(
ẐT (y, x)− F̂T (y, x, θ̂T )

)2

dẐT (y, x)

=

∫
T
(
ẐT (y, x)− F̂T (y, x, θ̂T )± FY X(y, x)

)2

dẐT (y, x)

=

∫ (
vT (y, x)− vθ0T (y, x)

)2
dẐT (y, x)

=

∫ (
vT (y, x)− vθ0T (y, x)

)2
dFY X(y, x)

+

∫ (
vT (y, x)− vθ0T (y, x)

)2
d(ẐT (y, x)− FY X(y, x)).
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By Lemma A.1,
√
T (ẐT (y, x)− FY X(y, x))⇒ H1(y, x), where H1(y, x) is a tight mean zero

Gaussian process in `∞(W). Then, it follows that

SCMT =

∫ (
vT (y, x)− vθ0T (y, x)

)2
dFY X(y, x) + op(1).

By Lemma A.3, (vT (y, x), vθ0T (y, x))⇒ (H1(y, x),H2(y, x)) in `∞(W ×W), where H2(y, x) is

a tight mean zero Gaussian process in `∞(W). Then, the result follows by an application of

the continuous mapping theorem.

To prove part (b), under the alternative hypothesis HA of (2.2), FY X(y, x) 6= F (y, x, θ) for

some (y, x) ∈ W and for all θ ∈ B(T ,Θ), and vθ0T (y, x) becomes vθT (y, x) =
√
T (F̂T (y, x, θ̂T )−

FT (y, x, θ)). Then,

SCMT =

∫
T
(
ẐT (y, x)− F̂T (y, x, θ̂T )± FY X(y, x)± F (y, x, θ)

)2

dẐT (y, x)

=

∫ (
vT (y, x)− vθT (y, x) +

√
T (FY X(y, x)− F (y, x, θ))

)2

dFY X(y, x) + oP (1).

As a corollary of Lemma A.3, (vT (y, x), vθT (y, x)) ⇒ (H1(y, x),H2(y, x)) in `∞(W × W).

Therefore, for all fixed constants C > 0, we have limT→∞ P (SCMT > C) = 1, and the result

follows. �

Proof of Proposition 2: Under the local alternative HA,T in (2.7), consider the empirical

processes

v1
T (y, x) =

√
T

(
ẐT (y, x)−

∫
F (y|x∗, θ0)1{x∗ ≤ x}dFX(x∗)

)
, and

r1
T (θ, τ) =

√
T (Ĝ(θ, τ)− EF [g(Wt, θ, τ)]),
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whereGF (θ, τ) := EF [g(Wt, θ, τ)], with EF [·] defined as the expectation w.r.t. F = F (y|x, θ0)

in (2.7). Then

v1
T (y, x) =

√
T

(
ẐT (y, x)−

∫
F (y|x∗, θ0)1{x∗ ≤ x}dFX(x∗)

)
=
√
TẐT (y, x)

−
√
T

∫ (
FT (y|x∗) +

δ√
T

[F (y|x∗, θ0)− J(y|x∗)]
)
1{x∗ ≤ x}dFX(x∗)

=
√
T
(
ẐT (y, x)− FA

T (y, x)
)

+ δ

∫
[J(y|x∗)− F (y|x∗, θ0)]1{x∗ ≤ x}dFX(x∗).

Thus, it follows from Lemma A.4 that

v1
T (y, x)⇒ H1(y, x) + δ

∫
[J(y|x∗)− F (y|x∗, θ0)]1{x∗ ≤ x}dFX(x∗),

where H1 is a tight mean zero Gaussian process in `∞(W) defined in Lemma A.1. Then

r1
T (θ, τ) =

√
T
(
Ĝ(θ, τ)− EF [g(Wt, θ, τ)]

)
=
√
T
(
Ĝ(θ, τ)− (EFT

[g(Wt, θ, τ)] + δEF [g(Wt, θ, τ)]− δEJ [g(Wt, θ, τ)])
)

=
√
T
(
Ĝ(θ, τ)−GFT

(θ, τ) + δ (EJ [g(Wt, θ, τ)]− EF [g(Wt, θ, τ)])
)
,

where GJ(θ, τ) := EJ [g(Wt, θ, τ)], with EJ [·] defined as the expectation w.r.t. J = J(y|x) in

(2.7). We define the empirical process v1θ0
T (y, x) as follows:

v1θ0
T (y, x) =

√
T

(∫
F (y|x∗, θ̂T )1{x∗ ≤ x}dF̂X(x∗)−

∫
F (y|x∗, θ0)1{x∗ ≤ x}dFX(x∗)

)
.

By Lemmas A.3-A.4,
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v1θ0
T (y, x)

r1
T (θ, τ)

⇒
 H2(y, x) + δ

∫
Ḟ (y|x∗)[h]1{x∗ ≤ x}dFX(x∗)

H̃2(θ, τ) + δ (EJ [g(Wt, θ, τ)]− EF [g(Wt, θ, τ)])

 ,

with h(τ) = (∂GF (θ0, τ)/∂θ)−1GJ(θ0, τ), and where (H2, H̃2) are the tight mean zero Gaus-

sian processes described in Lemmas A.2-A.3. Therefore, under HA,T in (2.7),

SCMT =

∫
T

(
ẐT (y, x)− F̂T (y, x, θ̂T )±

∫
F (y|x∗, θ0)1{x∗ ≤ x}dFX(x∗)

)2

dẐT (y, x)

=

∫ (
v1
T (y, x)− v1θ0

T (y, x)
)2
dẐT (y, x)

=

∫
(v1
T (y, x)− v1θ0

T (y, x))2dFY X(y, x) + op(1),

Then,

SCMT
d−→
∫

(H1(y, x)−H2(y, x) + ∆(y, x))2 dFY X(y, x),

with ∆(y, x) = δ
∫

(J(y|x∗)− F (y|x∗, θ0) + Ḟ (y|x∗, θ0)[h])1{x∗ ≤ x}dFX(x∗), and h is the

function h(τ) = (∂GF (θ0, τ)/∂θ)−1GJ(θ0, τ). �

Proof of Proposition 3: Assumption 1 implies Assumptions 1-2 of Whang (2006). Then,

parts (a) and (b) follow from an application of Theorems 2 and 3 of Whang (2006) using

the convergence results of our Proposition 1. Further, Assumption 2 implies Assumption 2*

of Whang (2006). Therefore, part (c) follows the same steps of Theorem 5 of Whang (2006)

using the convergence results of our Proposition 1. �
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