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Nationalbank (Grant No. 15334). We are grateful to Philipp Aschersleben, Fang Duan and Maximilian
Grupe for excellent research assistance. Finally we thank the editor as well as two anonymous referees
for their helpful comments. The usual disclaimer applies.

1



1. Introduction

This paper presents a residual based monitoring procedure for structural change in coin-

tegrating relationships. Hereby structural change – at an unknown point in time – can

occur in two facets, as also discussed in Andrews and Kim (2006). First, the cointegrating

relationship may turn into a spurious relationship and second, there may be a structural

change in the trend and/or slope parameters, with the details given in Section 2. A coin-

tegration monitoring procedure requires two ingredients: (i) parameter estimates and (ii)

a test or monitoring statistic. Similar to Chu et al. (1996) for linear regression models,

we perform parameter estimation on a calibration period at the beginning of the sam-

ple, rather than recursive or full sample estimation, to obtain residuals as input into the

procedure. The calibration period has to be known or at least assumed to be free of

structural change. The monitoring procedure then combines a properly redefined coin-

tegration test statistic calculated from the residuals over expanding or moving windows.

The test statistic underlying our monitoring procedure is the Shin (1994) test for the

null hypothesis of cointegration and we focus on calculating the detector over expanding

windows.1

In order to obtain a nuisance parameter free null limiting distributions of our detec-

tors, we need to use parameter estimation methods that lead to mean zero Gaussian

mixture limiting distributions in cointegrating regressions. In this respect we consider

three modified least squares estimators: Fully Modified OLS (FM-OLS) of Phillips and

Hansen (1990), Dynamic OLS (D-OLS) of Saikkonen (1991), Phillips and Loretan (1993)

and Stock and Watson (1993), and Integrated Modified OLS (IM-OLS) of Vogelsang

and Wagner (2014). The former two variants lead to the same null limiting distribu-

tion, whereas IM-OLS leads to a different one. As usual in residual based cointegration

analysis, the limiting distribution depends upon the specification of the deterministic

1See Footnote 4 for a discussion of other variants – including moving windows – considered. In the
context of monitoring (trend-)stationarity, Homm and Breitung (2012) also discuss some variants of
detectors based on several underlying test statistics, some of which may more easily be extended to
cointegration monitoring than others.
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component and the number of integrated regressors included. Additionally, the critical

values now depend upon the length of the calibration period as a fraction of the – actual

or maximal – sample considered. This in turn implies that the number of periods on

which monitoring can maximally be performed has to be decided upon ex ante, i.e., we

propose a closed-end monitoring procedure. Details on this are given in Section 2, with

this issue also discussed in some detail in Homm and Breitung (2012, Section 3).

We derive consistency of our procedures against fixed alternatives and also study local

asymptotic power (presented in Supplementary Appendix B due to space constraints).

At the end of the theory Section 2 we briefly discuss a few relevant properties of our

procedures in case of additional forms of structural changes not considered in full detail

in the paper. The theoretical results are complemented by finite sample simulations

to study the rejection probabilities under both the null as well as under alternatives;

the latter being reported in the form of size-corrected power. We also include the end-

of-sample break-point test for cointegrating relationships of Andrews and Kim (2006)

in the simulations. Inference for this test is based on sub-sampling and thus general

forms of error serial correlation and regressor endogeneity can be accommodated whilst

asymptotically controlling size. This wide applicability is a similarity to our approach and

is not given for other procedures available in the literature, e.g., Chen et al. (2009), Steland

and Weidauer (2013) or Wang et al. (2014). This makes the Andrews-Kim test, despite

its different focus, a natural candidate for comparison. Finally, given their importance

in practice, we investigate also the detection times, which serve as natural estimates

of a possible break-point, of our monitoring procedures in the simulations. Note that

the Andrews and Kim (2006) test, being a single retrospective test, by construction

cannot deliver estimated break-points.

In our application we revisit one aspect of Anundsen (2015), who tests the stability of two

related cointegrating relationships between housing prices and fundamentals that arise

from equilibrium and no-arbitrage conditions. Using recursive estimation and cointegra-

tion testing in a VAR framework, Anundsen (2015) finds evidence for a breakdown of
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one of these two relationships already in 2000:Q4. This recursive testing approach is by

construction not (asymptotically) size-controlled.2 To overcome this problem we apply

our monitoring procedure to these relationships. Depending upon specification of the

equilibrium relationship and estimation method used, we detect a break-point between

2003:Q2 and 2007:Q3. While our detected break-points are later, they are still before the

collapse of US housing prices started.

The paper is organized as follows: Section 2 presents the theory. Section 3 presents finite

sample simulation results and the empirical application is presented in Section 4. Sec-

tion 5 briefly summarizes and concludes. Three supplementary appendices are available:

Supplementary Appendix A contains all proofs, Supplementary Appendix B provides

further simulation results and Supplementary Appendix C consists of tables with critical

values for a variety of specifications.

2. Monitoring Cointegration

We consider monitoring a potential structural change in a cointegrating regression (with

the precise assumptions given below) of the form:

yt =

 D′tθD +X ′tθX + ut, t = 1, . . . , [rT ]

D′tθD,1 +X ′tθX,1 + ut, t = [rT ] + 1, . . . , T
(1)

Xt = Xt−1 + vt, (2)

with scalar yt, Dt ∈ Rp the deterministic trend function, Xt a k-dimensional vector

random walk regressor and 0 < m ≤ r < 1. Under the null hypothesis no structural

change occurs, i.e., θ1 = [θ′D,1, θ
′
X,1]

′ = [θ′D, θ
′
X ]′ = θ and ut is an I(0) process throughout.

Under the alternative either the parameters change or the relation turns spurious (or

2Anundsen (2015) contains many other interesting aspects on top of the recursive cointegration testing.
He constructs, e.g., a simple bubble-indicator and analyzes the relationship of this indicator to other real
and financial series.
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both) at a sample fraction [rT ] larger than [mT ]. Thus,

H0 :

 θ1 = θ for all m ≤ r < 1

and ut, t = 1, . . . , T is I(0)
(3)

and

H1 :


θ1 6= θ for some m ≤ r < 1 or

ut, t = 1, . . . , [rT ] is I(0) and

ut, t = [rT ] + 1, . . . , T is I(1) for some m ≤ r < 1

(4)

Remark 1. The case dim(Xt) = 0 is considered in full detail in the longer working

paper Wagner and Wied (2015). In this case it suffices to consider monitoring based on

the OLS residuals rather than upon modified OLS residuals. In analogy to cointegration

monitoring we refer to this case as stationarity monitoring.

With respect to the trend function we assume:

Assumption 1. There exists a sequence of p×p scaling matrices GD and a p-dimensional

vector of functions D(z), with 0 <
∫ s
0
D(z)D(z)′dz < ∞ for 0 ≤ s ≤ 1, such that for

0 ≤ s ≤ 1

lim
T→∞

√
TG−1D D[sT ] = D(s), (5)

with [sT ] denoting the integer part of sT .

If, e.g., Dt = (1, t, t2, ..., tp−1)′, then GD = diag(T 1/2, T 3/2, T 5/2, . . . , T p−1/2) and D(z) =

(1, z, z2, ..., zp−1)′. With respect to the stacked error process ηt := [ut, v
′
t]
′ we make the

following “high-level” assumption under the null hypothesis:

Assumption 2.

(a) The stationary process {ηt} fulfills

1√
T

[sT ]∑
t=1

ηt =
1√
T

[sT ]∑
t=1

 ut

vt

 ⇒ Ω1/2W (s) = B(s), (6)
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with W (s) = [Wu·v(s),Wv(s)
′]′ a (k+1)-dimensional vector of standard Brownian

motions and 0 < Ω <∞, with

Ω =

 Ωuu Ωuv

Ωvu Ωvv

 :=
∞∑

j=−∞

E(ηtη
′
t−j). (7)

(b) Denoting with Sηt =
∑t

j=1 ηj it holds that

1

T

[sT ]∑
t=1

Sηt η
′
t ⇒

∫ s

0

B(r)dB(r)′ + ∆, (8)

with ∆ :=
∑∞

j=0 E(ηt−jη
′
t) partitioned similarly as Ω.

(c) The convergence results in (a) and (b) hold jointly.

The results posited in Assumption 2 are standard in the cointegration literature. They

are implied by a variety of underlying primitive assumptions (for some early contributions

see, e.g., Phillips and Hansen, 1990; Phillips and Durlauf, 1986; Stock, 1987). For our

purposes it is convenient to use

Ω1/2 =

 ωu·v λuv

0 Ω
1/2
vv

 , (9)

where ω2
u·v := Ωuu − ΩuvΩ

−1
vv Ωvu and λuv := Ωuv(Ω

1/2
vv )−1. The assumption Ωvv > 0

excludes cointegration amongst the regressors and is typically assumed for the modified

OLS estimation techniques available and used in this paper.

Given Assumption 2 we can formalize our notions of I(0) and I(1) processes. A process

{ut} is an I(0) process if it holds that 1√
T

∑[sT ]
t=1 ut ⇒ ωW (s), with 0 < ω <∞ and W (s)

standard Brownian motion. Accordingly an I(1) process, i.e., a summed up I(0) process,

fulfills 1√
T
u[sT ] ⇒ ωW (s) with ω and W (s) as before. Thus, under the corresponding

alternative we assume that {ut} is an I(0) process fulfilling Assumption 2 until [rT ] and

an I(1) process from [rT ] + 1 onwards.
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An important feature of our procedure, similar to Chu et al. (1996), is that structural

breaks are allowed to occur only after a calibration period of length [mT ], with 0 < m < 1.

This calibration period is required for (consistent) estimation of the parameter vector θ

and the conditional long-run variance ω2
u·v. In this respect modified least squares estima-

tors are required to obtain scaled residual partial sum processes that are asymptotically

nuisance parameter free (up to a scalar variance parameter), which in turn allows to

simulate critical values. We consider three modified estimation procedures, Fully Modi-

fied OLS (FM-OLS) of Phillips and Hansen (1990), Dynamic OLS (D-OLS) of Saikkonen

(1991), Phillips and Loretan (1993) and Stock and Watson (1993), and Integrated Modi-

fied OLS (IM-OLS) of Vogelsang and Wagner (2014). Given space limitations we assume

that these methods are known to the reader.

The monitoring procedure considers the residuals and assesses whether they become “too

large” over time as an indication or structural change. Consider specifically the case of

FM-OLS, with y+t := yt −∆X ′tΩ̂
−1
vv,mΩ̂uv,m. The fully modified residuals are given by:

û+t,m := y+t −D′tθ̂D,m −X ′tθ̂X,m (10)

= ut − v′tΩ̂−1vv Ω̂vu −D′t
(
θ̂D,m − θD

)
−X ′t

(
θ̂X,m − θX

)
,

where θ̂D,m and θ̂X,m denote the FM-OLS coefficient estimates and Ω̂m denotes the long-

run variance estimate, all computed from the pre-break sample 1, . . . , [mT ] only. Long-

run variance estimation is performed using the stacked error process η̂ := [ût,m, v
′
t]
′ for

t = 1, . . . , [mT ] and with ût,m denoting the OLS residuals obtained form estimation over

the calibration period. The corresponding scaled partial sum process is given by:

1√
T

[sT ]∑
t=1

û+t,m =
1√
T

[sT ]∑
t=1

ut −
1√
T

[sT ]∑
t=1

v′tΩ̂
−1
vv,mΩ̂vu −

1√
T

[sT ]∑
t=1

D′t

(
θ̂D,m − θD

)
(11)

− 1√
T

[sT ]∑
t=1

X ′t

(
θ̂X,m − θX

)

The above equation (11) is informative for understanding why the detector defined below
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works. First, under the null – if long run variances and lead/lag choices are performed

to ensure consistent estimation – the scaled partial sum residual process converges to

a function of Brownion motions. Under the alternative the scaled partial sum residual

process diverges: In case that {ut} changes its behavior to I(1) from [rT ]+1 onwards, the

first term diverges for s > r. A similar reasoning holds for parameter changes, since due

to estimation only in the calibration period θ̂m → θ, whereas under parameter change

θ1 6= θ from [rT ] + 1 onwards. This leads to divergence of the third and/or fourth time

in (11).

Using the notation Ŝ+
i :=

∑i
t=1 û

+
t,m, the detector, using either FM-OLS or D-OLS3, is

defined by

Ĥm,+(s) :=
1

ω̂2
u·v,m

 1

T

[sT ]∑
i=[mT ]+1

(
1√
T
Ŝ+
i

)2
 , (12)

with ω̂2
u·v,m := Ω̂uu,m − Ω̂uv,mΩ̂−1vv,mΩ̂vu,m. Clearly, setting m = 0 and s = 1 leads to

the Shin (1994) statistic.4

3In case the monitoring procedure is implemented using the D-OLS estimator, the residuals are de-
fined (using the same notation for the residuals and coefficient estimates) as û+t,m := yt − D′tθ̂D,m −
X ′tθ̂X,m −

∑k2

j=−k1
∆X ′t−jΘ̂j,m, or equivalently û+t,m = ut − D′t

(
θ̂D,m − θD

)
− X ′t

(
θ̂X,m − θX

)
−∑k2

j=−k1
∆X ′t−jΘ̂j,m, with θ̂D,m, θ̂X,m and Θ̂j,m being the OLS estimates from the regression yt =

D′tθD +X ′tθX +
∑k2

j=−k1
∆X ′t−jΘj + ut estimated using observations 1, . . . , [mT ]. Whereas for FM-OLS

bandwidth and kernel have to be chosen, D-OLS estimation requires choosing the number of leads k1
and lags k2. Under appropriate assumptions concerning the asymptotic behavior of lag/lead choices, the
D-OLS residuals fulfill the same FCLT as the FM-OLS residuals. Asymptotically, therefore the usage of
either estimator leads to the same monitoring procedure.

4In the working paper Wagner and Wied (2015) we consider, directly inspired by Chu et al. (1996),
the detector

Ĥm,+
d (s) :=

1

ω̂2
u·v,m

 1

T

[sT ]∑
i=[mT ]+1

(
1√
T
Ŝ+
i

)2

− 1

T

[mT ]∑
i=1

(
1√
T
Ŝ+
i

)2
 .

We have furthermore also considered a “self-normalized” version

Ĥm,+
sn (s) :=

∑[sT ]
i=[mT ]+1

(
Ŝ+
i

)2
∑[mT ]

i=1

(
Ŝ+
i

)2 ,

a detector based on moving windows, Ĥm,+
mov (s) := 1

ω̂2
u·v,m

1
T

∑[sT ]
i=[sT ]−[nT ]

(
1√
T
Ŝ+
i

)2
or detectors based on

recursive residuals. These variants perform relatively similar and are in some (of the simulation) cases
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Throughout this paper we implicitly assume that long-run variances are consistently

estimated, ensured, e.g., by assuming to be in the framework covered by Jansson (2002);

and that lead/lag choices are such that D-OLS estimation is consistent (see, e.g., Kejriwal

and Perron, 2008 or Choi and Kurozumi, 2012). This leads to the first proposition

covering the null behavior of the FM-OLS or D-OLS based detectors:

Lemma 1. Let the data be generated by (1) and (2) with Assumptions 1 and 2 in place.

Define J(s) := [D(s)′,Wv(s)
′]′. Then it holds under the null hypothesis and for m ≤ s ≤ 1

for T →∞ for FM-OLS and D-OLS that

1√
T

[sT ]∑
t=1

û+t,m ⇒ ωu·v

(
Wu·v(s)−

∫ s

0

J(z)′dz

(∫ m

0

J(z)J(z)′dz

)−1 ∫ m

0

J(z)dWu·v(z)

)
=: ωu·vŴu·v(s). (13)

This implies that

Ĥm,+(s) ⇒
∫ s

m

Ŵ 2
u·v(z)dz =: Hm,+(s). (14)

Note that the process Ŵu·v(s) depends upon Dt, the number of integrated regressors k

and the pre-break fraction m. Consequently also the critical values depend upon these

quantities. We neglect these dependencies for notational brevity in the paper.

Let us now turn to the detector based upon the IM-OLS estimator of Vogelsang and

Wagner (2014), which has the advantage that for parameter estimation no kernel and

bandwidth or lead and lag choices are required. The IM regression is given by

Syt = SD′t θD + SX′t θX +X ′tϕ+ Sut , (15)

with Syt =
∑t

j=1 yj denoting the partial sums of yt, and similar definitions of SDt , SXt and

Sut . We denote the corresponding OLS residuals, with estimation again performed on the

calibration period 1, . . . , [mT ], using the same notation for the coefficient estimates as

considered outperformed by the version considered here.
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before, by

Ŝut,m := Syt − SD′t θ̂D,m − SX′t θ̂X,m −X ′tϕ̂m (16)

= Sut −X ′tϕ̂m − SD′t (θ̂D,m − θD)− SX′t (θ̂X,m − θX).

Given that IM-OLS estimation is performed on the partial summed regression, in the

detector the corresponding residuals need not be partial summed anymore, leading to:5

Îm(s) :=
1

ω̂2
u·v,m

 1

T

[sT ]∑
i=[mT ]+1

(
1√
T
Ŝui,m

)2
 , (17)

where the scaling is, as for the other detectors, based on a consistent estimator of ω2
u·v.

Note that the same estimator of ω2
u·v as for FM-OLS or D-OLS is used, i.e., the estimator

based on the OLS residuals ût,m stacked on top of the first differences of the regressors.

The null behavior of this detector follows immediately.

Lemma 2. Let the data be generated by (1) and (2) with Assumptions 1 and 2 in place.

Then it holds for T →∞ that

1√
T

[sT ]∑
t=2

∆Ŝut,m ⇒ ωu·v

(
Wu·v(s)− f(s)′

(∫ m

0

f(z)f(z)′dz

)−1 ∫ m

0

[F (m)− F (z)] dWu·v(z)

)
=: ωu·vP̃m(s), (18)

where f(s) := [
∫ s
0
D(z)′dz,

∫ s
0
Wv(z)′dz,Wv(s)

′]′ and F (s) :=
∫ s
0
f(z)dz. This implies that

Îm(s) ⇒
∫ s

m

P̃m(z)2dz =: Im(s). (19)

Use F̂m(s) to denote either Ĥm,+(s) or Îm(s). The null hypothesis is declared rejected,

if the weighted detector, F̂m(s)
g(s)

, where g(s) is a weighting function to be chosen, exceeds

5The discussion in Footnote 4 applies analogously to the IM-OLS-based detectors.
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a critical value for the first time, with this time point referred to as detection time, i.e.

τm := min
s:[mT ]+1≤[sT ]≤T

{
F̂m(s)

g(s)
> c

}
. (20)

In case that F̂m(s)
g(s)

≤ c for all m ≤ s ≤ 1 we set τm = ∞. Thus, a finite value τm

indicates a rejection of the null hypothesis and at the same time gives information about

the location of the potential break-point.

The weighting function and critical value have to be chosen such that under the null

hypothesis it holds that

lim
T→∞

P(τm <∞) = lim
T→∞

P
(

min
s:[mT ]+1≤[sT ]≤T

{
Fm(s)

g(s)
> c

}
<∞

)
(21)

= lim
T→∞

P

(
sup

s:[mT ]+1≤[sT ]≤T

Fm(s)

g(s)
> c

)

= P
(

sup
m≤s≤1

Fm(s)

g(s)
> c

)
= α,

with α denoting the chosen significance level and Fm(s) the limit of F̂m(s). For simplic-

ity we only consider continuous positive and bounded weighting functions, see also Aue

et al. (2012, Assumption 3.6). This allows to derive the above result using the estab-

lished functional central limit theorems for F̂m(s) and the continuous mapping theorem.

In other words, for bounded and positive weighting functions it can be shown for the

detectors that there exist – depending upon the chosen g(s) – critical values such that

the detection time is finite with probability equal to the pre-specified level α.

Proposition 1. Let the data be generated by (1) and (2) with Assumptions 1 and 2 in

place and assume that g(s) is continuous with 0 < g(s) < ∞. Then, under the null

hypothesis there exist for any given 0 < α < 1 critical values c = c(α, g), depending upon

estimation method, FM-OLS or D-OLS on the one hand and IM-OLS on the other, such
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that

lim
T→∞

P(τm(F̂m,+, g, c(α, g)) <∞) = α. (22)

Clearly, the choice of the weighting function g(s) impacts the performance of the moni-

toring procedure and has to combine two opposing goals of a monitoring procedure: (a)

small size distortions under the null and (b) small delays under the alternative, i.e., detec-

tion of a break soon after the break. The discussion in Chu et al. (1996, Section 3) makes

clear that it is in general impossible to derive analytically tractable optimal weighting

functions, e.g., with respect to minimal expected delay whilst asymptotically controlling

size.6 Here we base our weighting function choice on the expected value function of the

(limiting distribution of the) detector, which leads – most easily seen in case of station-

arity monitoring – to g(s) = s3 in the intercept only case and g(s) = s5 in the linear

trend case, as is outlined in more detail in the longer working paper. We henceforth use

these weighting functions only and also the critical values available in Supplementary

Appendix C correspond to this choice of weighting function. The critical values are given

for k = 0, 1, . . . , 4 stochastic regressors for the intercept only and intercept and linear

trend cases. The detectors discussed in this paper are implemented in the R package

cointmonitoR (Aschersleben et al., 2016) that contains several variants of the monitor-

ing procedure. It accesses the cointReg R package of Aschersleben and Wagner (2016)

for parameter estimation and inference for all three modified OLS approaches. Both our

finite sample simulations as well as the empirical application are performed with these

packages.

It is important to understand the meaning of m and T for our procedure, since the choice

of m has important consequences for the properties of the procedure. It is most convenient

6The choice of g(s) is in the words of Chu et al. (1996, p. 1052) “often dictated by mathematical
convenience rather than optimality, since crossing probabilities for an arbitrary boundary are analytically
intractable in general”. Aue et al. (2009) derive the limiting distribution of the delay time for a one-time
parameter change in a linear regression model with stationary regressors for a simple class of weighting
functions depending on a single tuning parameter. To the best of the authors’ knowledge, no results of
this kind are available in a unit root or cointegration setting; and they appear hard to obtain.
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to interpret T as the sample size including the out-of-sample monitoring period. Thus,

denote the last actually available observation by T0, and T = T0 +H. Using this notation

H > 0 means that one intends to use the procedure for out-of-sample monitoring, whereas

H = 0 corresponds to the special case where monitoring takes place on historic data only

(as in the application in Section 4).7 The fact that the critical values depend upon m

means that a decision has to be made about both the length of the calibration period

and of an out-of-sample monitoring period H prior to the analysis. The latter necessity

renders our procedure a closed-end monitoring procedure. The calibration period will be

chosen as large as possible (as a sub-sample 1, . . . , TC of 1, . . . , T0) in order to increase

the precision of the parameter estimates whilst avoiding the risk of having a structural

break in the calibration period. Now, m is given by m = TC
T0+H

. Thus, choosing H

larger implies that m is smaller, which in turn implies that the critical values are larger

(since they are decreasing in m). This decreases ceteris paribus, despite asymptotic size-

control, the empirical rejection probabilities under both the null and the alternative.

Consequently one should choose the monitoring period as short as possible by using as

large a calibration period as possible and an out-of-sample monitoring period as short as

possible.

It remains to establish the behavior of the detectors under the alternative. With respect to

the alternative there are three “different types” of deviations from the null, which need

to be analyzed separately. First, changes in {ut} from I(0) to I(1) behavior. Second,

breaks in the trend parameters θD and third breaks in the slope parameters θX . The

third case is in some sense equivalent to the first. Consider the case that θX,1 6= θX for

t = [rT ] + 1, . . . , T . In this case we can write for t > [rT ]

yt = D′tθD +X ′tθX,1 + ut (23)

= D′tθD +X ′tθX +X ′t(θX,1 − θX) + ut.

7It is to a certain extent a semantic question whether this should be called monitoring or structural
break testing. The procedures in any case have an online monitoring flavor as for the calculation of the
detectors at a certain time point only observations up to that point in time are required.
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Clearly, this implies that in the residual process starting from [rT ] onwards an integrated

process given by X ′t(θX,1 − θ̂X,m) is present. This component remains present as an I(1)

process also in the limit due to consistency of θ̂X,m → θX 6= θX,1. Consequently, in case

of a break in the slope parameters, the residual process is an I(1) process. Therefore, the

asymptotic behavior in case of slope breaks is similar to the case where {ut} changes its

behavior from I(0) to I(1).

For all three cases we consider both fixed and local alternatives. The fixed alternative for

the first case is, obviously, given by the situation that {ut} changes its behavior from I(0)

to I(1) from some point [rT ] > [mT ] onwards. As local alternatives we consider (inspired

by Cappuccio and Lubian, 2005) the situation that there exists an r, with m ≤ r < 1

such that for all t ≤ [rT ] we have ut = u0t , while for all t > [rT ] it holds that

ut = u0t +
δ

T

t∑
i=[rT ]+1

ξi, (24)

with {u0t} and {ξt} independent processes both fulfilling Assumption 2, with long-run

variances ω2 and ω2
ξ , and δ > 0.8 I.e., under the considered local alternatives the process

{ut} is, from time point [rT ] + 1 onwards, the sum of an I(0) process and an independent

I(1) process divided by the sample size. For example, in the case of FM-/D-OLS, the

local alternatives imply (for m ≤ r < s ≤ 1):

1√
T

[sT ]∑
t=1

û+t,m ⇒ ωu·vŴu·v(s) + δωξ

∫ s

r

(Wξ(z)−Wξ(r))dz. (25)

Here, integrals (and sums) with the lower boundary larger than the upper are defined to

be equal to zero and Wξ(s) is standard Brownian motion independent of W (s).

For breaks in the parameter vector the fixed alternative is clearly θ1 6= θ. For local

alternatives we have to differentiate between the trend parameters θD and the slope

8Note that it is sufficient to consider {u0t} and {ξt} independent, as asymptotic independence be-
tween the two components can always be achieved by redefining the two quantities correspondingly after
“orthogonalization”.
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parameters θX due to the generally different convergent rates of the components of θD

and super-consistency of the estimation of θX . In particular, for consistency against fixed

alternatives in the trend slopes we need the condition

lim
T→∞

1√
T

T∑
t=[rT ]+1

D′t(θD − θD,1) = ±∞. (26)

For local alternatives with respect to the trend slope θD the additional constraint to be

fulfilled is given by

∫ 1

r

D(z)′dz∆θD 6= 0, (27)

to have non-trivial local asymptotic power, with ∆θD put in context below in the propo-

sition.

Proposition 2. (Consistency and Local Asymptotic Power)

Let the data be generated by (1) and (2) with Assumption 1 in place and {ηt} fulfilling

Assumption 2 until [rT ], with m ≤ r < 1. Assume again that g(s) is continuous with

0 < g(s) <∞.

(a) Let (i) {ut} be an I(1) process (as specified in H1) from [rT ] + 1 onwards; or (ii)

θ1 6= θ, with (26) fulfilled, from [rT ] + 1 onwards. Then the monitoring procedure

is consistent, i.e., for any 0 < c <∞ it holds that

lim
T→∞

P(τm(F̂m, g, c(α, g)) <∞) = 1. (28)

(b) Let (i) {ut} be as specified in (24) from [rT ] + 1 onwards; (ii) θX,1 = θX + 1
T

∆θX

from [rT ] + 1 onwards with ∆θX 6= 0; or (iii) θD,1 = θD + G−1D ∆θD from [rT ] + 1

onwards with GD as in Assumption 1 and ∆θD fulfilling (27). Then the monitoring

procedure has non-trivial local power. This means, for any 0 < ε ≤ 1 − α and the

critical value 0 < c = c(α, g) < ∞ from Proposition 1 there exists a δ = δ(c, g),
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∆θX = ∆θX (c, g) or ∆θD = ∆θD(c, g) fulfilling (27) such that

lim
T→∞

P(τm(F̂m, g, c(α, g)) <∞) ≥ 1− ε. (29)

Clearly, the results in part (b) stem from the convergence results for F̂m(s) under the

considered local alternatives. Consider, e.g., case (i) and in relation to (25) FM/D-OLS

based monitoring, where for 1 ≥ s ≥ r ≥ m it holds that:

Ĥm(s) ⇒ Hm(s) + 2δ
ωξ
ω

∫ s

r

Ŵu·v(z)

(∫ z

r

(Wξ(g)−Wξ(r)) dg

)
dz + (30)

+δ2
(ωξ
ω

)2 ∫ s

r

(∫ z

r

(Wξ(g)−Wξ(r)) dg

)2

dz.

This result shows that the magnitude of the additional terms depends, in addition to δ,

upon the “signal-to-noise” ratio ωξ/ω. As expected, ω enters with negative powers, i.e.,

a larger error variance decreases local asymptotic power and similarly a larger variance

of the additional I(1) component increases local asymptotic power.

Of course, the detectors have the discussed power properties under combinations of the

changes considered separately in the above proposition. The local asymptotic power

properties of the procedures are discussed in some detail in Supplementary Appendix B.

A few additional useful observations about the detectors can be made: First, the detec-

tors are consistent against the alternative of {ut} turning to a near-integrated process,

as defined in Phillips (1987). Second, consistency prevails also against a change of {ut}

from I(0) to being fractionally integrated. Third, the procedures can be used to detect

bubbles, defined as explosive behavior of {ut}, compare Astill et al. (2015), Homm and

Breitung (2012) or Phillips et al. (2011). Considering, e.g., asset prices, the null hypoth-

esis of random walk I(1) behavior is assessed against the alternative of explosive behavior

from a certain point onwards. In this case the first difference of the residual series (after

potential detrending) can be used, since under the null the first difference will be sta-

tionary, whereas under the alternative also the first difference will be explosive from the
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break-point onwards. Typically, bubbles are considered temporary phenomena and it is

thus convenient that procedures like ours allow to detect episodes of I(1) or explosive

behavior of {ut} as long as this episode (or these episodes) have asymptotically positive

length (when scaling the time axis to [0,1] in the asymptotic analysis).

3. Finite Sample Performance

In this section we investigate the finite sample performance of the monitoring procedure

by means of a small simulation study. We consider a data generating process similar to

Vogelsang and Wagner (2014), i.e., we consider (under the null hypothesis):

yt = µ+ γt+ x1tβ1 + x2tβ2 + ut, (31)

xit = xi,t−1 + vit, xi0 = 0, i = 1, 2, (32)

where

ut = ρ1ut−1 + εt + ρ2(e1t + e2t), u0 = 0, (33)

vit = eit + 0.5ei,t−1, i = 1, 2, (34)

where εt, e1t and e2t are i.i.d. standard normal random variables independent of each

other. The parameter values chosen are µ = 3, β1 = β2 = γ = 1.9 The values for ρ1 and

ρ2 are chosen from the set {0.0, 0.3, 0.6, 0.9}. The parameter ρ1 controls serial correlation

in the regression error and is set to ρ1 = 1 under the alternative of I(1) errors, whereas

the parameter ρ2 controls whether (and to which extent) the regressors are endogenous

(ρ2 6= 0) or not (ρ2 = 0).

Both, parameter estimation as well as the computation of the detectors require the choice

of kernel and bandwidth for long-run variance estimation. We use the data dependent

bandwidth rule of Andrews (1991) and the Bartlett kernel. The D-OLS estimator is

9Results for the intercept only case with γ = 0 are available upon request. A rough one sentence
summary is that things work typically better in the intercept only case.
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implemented using the information criterion based lead and lag length choice developed

in Kejriwal and Perron (2008), where we use the more flexible version discussed in Choi

and Kurozumi (2012) in which the numbers of leads and lags included are not restricted

to be equal.

We compare our monitoring procedures with the end-of-sample structural break test in

cointegrating regressions of Andrews and Kim (2006). In particular we consider their

test statistic P based on the full sample residuals using the same three modified least

squares estimators.10 In our notation, the three corresponding test statistics are given by

P =
∑T

[mT ]+1(û
+
t,1)

2, using again the same notation for both the FM- and D-OLS resid-

uals, and P =
∑T

[mT ]+1(∆Ŝ
u
t,1)

2 when using IM-OLS. Critical values are calculated from

the empirical distribution of sub-sampled P statistics, using 2[mT ] − T + 1 consecutive

sub-samples of length T − [mT ] in the calibration period t = 1, . . . , [mT ]. Note that

this construction necessarily implies that m > 0.5.11 The considered sample sizes are

T = 200, 500 and for all procedures the number of replications is 10,000. Monitoring

respectively testing is performed at the 5% nominal level.

We start by considering empirical null rejection probabilities for our detectors for a grid

of 81 values given by m = 0.1, 0.11, . . . , 0.9 for ρ1, ρ2 = 0, 0.3, 0.6, 0.9 and T = 200 in

Figure 1 and T = 500 in Figure 2. Several main patterns in line with expectations

emerge: First, size distortions decrease with increasing m and increasing sample size T .

For T = 200 and very small values of m the size distortion of D-OLS are substantially

larger than for FM-OLS and IM-OLS. Second, for given T larger values of ρ1, ρ2 lead to

increasing size distortions and the larger ρ1, ρ2 are, the more beneficial is a larger value of

m to mitigate the size distortions. Third, the smallest size distortions occur for IM-OLS.

The larger ρ1, ρ2, the bigger is the performance advantage of IM-OLS over the other two

estimation methods.

10The main part of the discussion in Andrews and Kim (2006) focuses on the OLS residuals since
sub-sampling avoids the need for modification. However, it is of course possible (see also the discussion
in their appendix) to use residuals based on consistent modified least squares estimators.

11This stems from the fact that Andrews and Kim (2006) are concerned with structural breaks at the
end of the sample, i.e., in our notation they are concerned with very large values of m. To be sure, the
letter m has a different meaning in Andrews and Kim (2006) than here.
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Figure 1: Empirical null rejection probabilities for a grid of values of m and T = 200.
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Figure 2: Empirical null rejection probabilities for a grid of values of m and T = 500.

In Figures 3 and 4 we consider the same setting for the P -test of Andrews and Kim

(2006), now for a grid of mesh 0.01 for m = 0.55, . . . , 0.9. The results are quite clear:

For the smaller values of m the size distortions are huge, but this is of course not the

situation for which this test is designed. Interestingly, size distortions are partly only

reduced by a small extent when moving from T = 200 to T = 500. For large values of

m the size distortions are small and partly smaller than for our detectors. Depending
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upon precise setting, the Andrews and Kim (2006) test leads to lower size distortions

than our detectors for m starting around m = 0.7 for ρ1, ρ2 = 0 to around m = 0.9,

i.e., the largest value displayed, for ρ1, ρ2 = 0.9. With respect to the three different

estimators, the smallest size distortions occur mostly with IM-OLS and sometimes with

D-OLS, whilst FM-OLS typically leads to the largest size distortions. More details are

provided in Supplementary Appendix B.
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Figure 3: Andrews-Kim: Empirical null rejection probabilities for a grid of values of m and
T = 200.

We next turn to size-corrected power, focusing here only on the case that {ut} changes

its behavior from I(0) to I(1) at sample fraction [rT ]. We refer to this case as I(1) breaks

henceforth. The other cases of the alternative, i.e., trend and slope (coefficient) breaks,

are considered in Supplementary Appendix B due to space constraints. We consider for

both m and r all three values 0.25, 0.5 and 0.75 and thus include cases where the break

occurs in the calibration period (r < m) to assess the implications of a too long calibration

period. It can be shown, most easily for stationarity monitoring, that in case r < m the

detectors are of order Op(T/bT ), with bT denoting the bandwidth chosen for long-run

variance estimation. Given that in case of I(1) errors, under the considered alternative,

typically large bandwidths are chosen, we expect a low divergence rate of the detector in
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Figure 4: Andrews-Kim: Empirical null rejection probabilities for a grid of values of m and
T = 500.

the r < m cases and thus low power. This is exactly what happens.

The results are shown for T = 200 in Table 1 and for T = 500 in Table 2. In addition to

the above observation also some additional expectations are confirmed: Power increases

with the sample size T , decreases with increasing ρ1, ρ2 and depends upon both m and

r. With the exception of T = 200, m = 0.25 and large values of ρ1, ρ2, power is largest

for m = r. In case that m ≤ r power decreases with increasing r (later breaks) for fixed

m and increases with m (longer calibration period) for fixed r. The differences in power

across estimation methods are minor and no clear ranking emerges. The fact that the

IM-OLS based detector has often smaller size distortions under the null, but does not

suffer from systematically lower power, makes this our slightly preferred choice.12

Finally we investigate the estimated detection times of our detectors against I(1) breaks.

We show in Figure 5 the detection times for ρ1, ρ2 = 0.9 and T = 200 and in Figure 6 the

detection times for ρ1, ρ2 = 0 and T = 500. We display the detection times in the form of

Box-Whiskers plots. The numbers below the abbreviated method names indicate the null

12We abstain from presenting power here since size-correction cannot be performed in the usual way –
or does not have the same effect – for sub-sampled statistics. In Supplementary Appendix B we report
and discuss for completeness both raw and size-corrected power for the Andrews-Kim test.
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m = 0.25 m = 0.5 m = 0.75

ρ1 = ρ2

r
0.25 0.5 0.75 0.25 0.5 0.75 0.25 0.5 0.75

0
FM 0.61 0.51 0.43 0.21 0.87 0.55 0.06 0.35 0.90
D 0.63 0.53 0.45 0.23 0.88 0.58 0.06 0.37 0.90
IM 0.52 0.46 0.45 0.16 0.80 0.56 0.06 0.26 0.84

0.3
FM 0.46 0.46 0.39 0.14 0.79 0.50 0.06 0.24 0.83
D 0.44 0.44 0.38 0.13 0.77 0.50 0.05 0.22 0.82
IM 0.39 0.43 0.42 0.11 0.71 0.51 0.05 0.17 0.76

0.6
FM 0.22 0.32 0.30 0.07 0.57 0.39 0.05 0.11 0.66
D 0.22 0.35 0.32 0.08 0.60 0.42 0.05 0.12 0.69
IM 0.22 0.35 0.37 0.08 0.54 0.45 0.05 0.09 0.62

0.9
FM 0.06 0.07 0.09 0.05 0.09 0.10 0.05 0.05 0.15
D 0.06 0.08 0.10 0.05 0.10 0.11 0.05 0.05 0.16
IM 0.06 0.09 0.14 0.05 0.10 0.14 0.05 0.05 0.13

Table 1: Size corrected power against I(1) breaks for T = 200.

m = 0.25 m = 0.5 m = 0.75

ρ1 = ρ2

r
0.25 0.5 0.75 0.25 0.5 0.75 0.25 0.5 0.75

0
FM 0.94 0.57 0.45 0.60 0.99 0.60 0.11 0.72 0.99
D 0.95 0.58 0.48 0.63 0.99 0.64 0.12 0.74 0.99
IM 0.88 0.52 0.46 0.50 0.97 0.59 0.08 0.62 0.98

0.3
FM 0.87 0.53 0.42 0.48 0.97 0.56 0.08 0.61 0.98
D 0.87 0.52 0.44 0.47 0.97 0.58 0.08 0.61 0.98
IM 0.80 0.49 0.44 0.38 0.95 0.56 0.07 0.50 0.95

0.6
FM 0.67 0.44 0.37 0.25 0.91 0.49 0.06 0.40 0.93
D 0.70 0.47 0.39 0.28 0.92 0.52 0.06 0.44 0.94
IM 0.64 0.46 0.42 0.23 0.88 0.52 0.06 0.34 0.89

0.9
FM 0.09 0.17 0.18 0.05 0.29 0.24 0.05 0.06 0.41
D 0.09 0.20 0.22 0.06 0.33 0.29 0.05 0.06 0.47
IM 0.09 0.24 0.31 0.05 0.32 0.36 0.05 0.06 0.41

Table 2: Size corrected power against I(1) breaks for T = 500.

rejection probabilities given in Tables 1 and 2. Thus, the different Box-Whiskers plots

are based on different numbers of replications because of a different number of rejections

across different methods, sample sizes and ρ-parameters.13 The six graphs within the

figures display the six combinations of m and r from the nine combinations considered in

the power tables for which m ≤ r, i.e., we consider only the cases where the break does

13The detection times are related to the so-called average run lengths often considered in the control
chart literature, e.g., the median average run length is given by T (τ̄m−m), with τ̄m denoting the median
detection time.
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not occur within the calibration period.
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Figure 5: Detection times for I(1) breaks for T = 200 and ρ1 = ρ2 = 0.9.
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Figure 6: Detection times for I(1) breaks for T = 500 and ρ1 = ρ2 = 0.

By construction, detection occurs typically with delay. An increasing sample size leads

to a – ceteris paribus – more concentrated distribution of the estimated detection times

(based on a larger number of observations), but does not throughout lead to smaller

average delays. As expected (compare also some additional figures in Supplementary
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Appendix B), increasing endogeneity and error serial correlation often lead to increasing

detection times, i.e., bigger delays. For m = 0.25 and r = 0.75 detection occurs sometimes

already prior to the structural change with IM-OLS. Increasing values of m = r lead to

smaller delays of detecting the structural change. The three methods typically lead to

very similar delays. The delays are partly substantial, in particular for ρ1, ρ2 = 0.9 and

T = 200. Obtaining a better understanding of the impact of the weighting function

on the expected delays is consequently a topic of future research, notwithstanding the

complications outlined in Section 2.

4. Empirical Application

In this section we apply our monitoring procedure to the data analyzed in Anundsen

(2015), who studies the potential breakdown of fundamentals driven housing price coin-

tegrating relationships before the outburst of the US subprime crisis.14

Anundsen (2015, Section 3) considers two related relationships, both based on the life-

cycle model and a no arbitrage condition on the housing market. The first relationship,

henceforth referred to as price-to-rent model, stems from the equilibrium equality of

rents and user costs of similar units of housing.15 This leads to the following approximate

equilibrium relationship (ignoring deterministic components and stochastic errors at this

point):

pt = θrrt + θUCUCt, (35)

14Another illustrative application of our procedure is contained in the working paper Wagner and
Wied (2015), where we consider the stationarity of CDS spreads around the Lehman crisis. In a short
note, Aschersleben et al. (2015), we analyze stationarity of Euro area real exchange rates. Reynolds et al.
(2017) use the developed procedure to assess deviations from triangular parity relationships.

15The real user cost of housing is given by UCt = (1− τyt )(i+ τpt )− πt + δt + Ṗt

Pt
, with it the nominal

interest rate, τpt the property tax rate, τyt capturing tax deductions, πt the overall price inflation, δt the

housing depreciation rate, and Ṗt

Pt
expected real housing price inflation. The underlying no-arbitrage

relationship is given by Qt = PtUCt, with Qt being the real imputed rent, for the empirical analysis
replaced by observed real rents.
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with pt the logarithm of real housing prices (in period t), rt the logarithm of real rents

and UCt the real direct user costs of housing. Here, as in Anundsen (2015), lower case

letters indicate logarithms of variables, with the user costs considered in levels since they

assume also negative values over the sample period.

The second relationship, henceforth referred to as inverted demand model, considers as

a starting point (imputed) rents as a function of both income and the housing stock.

Combining this with the equilibrium considerations mentioned above leads to the follow-

ing approximate equilibrium relationship (again ignoring deterministic components and

errors here):

pt = θyyt + θhht + θUCUCt, (36)

with yt the logarithm of real (per capita disposable) income and ht the logarithm of

the (per capita) housing stock in period t. Full details concerning the data, the sources

and the construction of the variables are contained in Anundsen (2015, Section 4). The

quarterly data available for 1976:Q1 – 2010:Q4 have been downloaded from the archive

of the Journal of Applied Econometrics.

Since for all considered variables present in (35) and (36), the null hypothesis of a unit

root cannot be rejected, the empirical econometric counterpart of the above error-free

relationships is that of a cointegrating relationship between these variables, leading to

(including deterministic components and errors now):16

pt = θc + θtt+ θrrt + θUCUCt + ut (37)

pt = θc + θtt+ θyyt + θhht + θUCUCt + ut, (38)

with ut a stationary error term in case of cointegration. The absence or breakdown of

a cointegrating relationship is then interpreted as an indication that housing prices are

16A small caveat mentioned by Anundsen (2015) is that the log real housing stock might be I(2).
Similarly to Anundsen (2015) we nevertheless consider the housing stock as an I(1) process.
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not anymore driven by fundamentals, which is interpreted as a housing price bubble

by Anundsen (2015).

Anundsen (2015) collects the variables appearing in the two equations in vector autore-

gressive models and performs recursive cointegration analysis over expanding samples.

The first sample considered ranges from 1976:Q1 to 1995:Q4. Then the sample is ex-

tended by one year per step, i.e. by four observations, until the full sample range up to

2010:Q4 is exhausted. In the price-to-rent model the variables modelled by a VAR model

are real housing prices pt, real rents rt and the real direct user cost UCt. In the inverted

demand model the variables are again real housing prices pt, real per capita disposable

income yt, the real direct user cost UCt and as an exogenous variable the real per capita

housing stock ht. Furthermore, a constant and three centered seasonal dummies are in-

cluded, as well as a linear trend that is restricted to be in the cointegrating space. Note

that, since we do not find evidence for seasonality in the data, we do not include the sea-

sonal dummies in our analysis. Anundsen (2015) finds a one-dimensional cointegrating

space until the end of 2001 for the price-to-rent approach and until the end of 2000 for

the inverted demand approach. Thereafter the recursive analysis does not find evidence

for a cointegrating relationship.

These are, of course, highly interesting results, but they are prone to all problems re-

lated with multiple testing, like uncontrolled size. Furthermore, recursive testing is here

performed both before and after a structural break has been found, which makes the

interpretation of the results even more complicated. Exactly for this type of problem our

monitoring procedure can be applied, since it is a procedure with controlled asymptotic

size properties that overcomes the problems inherent in a (multiple) recursive cointegra-

tion testing setting. Consequently, we apply our monitoring procedure to the two rela-

tionships given in (37) and (38), with calibration period 1976:Q1–1995:Q4, i.e., m = 4
7
.

The equations are estimated over the calibration period with all three methods men-

tioned in Section 2. Since the linear trend is significant for both models for at least one

estimator, we only report the results here for the case with intercept and linear trend
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Method Coefficient Estimate Std. Error t-value p-value

FM-OLS

θc 0.1856 0.0136 13.6398 0.0000
θt 0.0008 0.0004 2.3189 0.0231
θr 0.6855 0.1941 3.5314 0.0007
θUC -0.8564 0.2374 -3.6068 0.0006

D-OLS

θc 0.2026 0.0093 21.9005 0.0000
θt 0.0004 0.0003 1.2497 0.2152
θr 0.9123 0.1406 6.4862 0.0000
θUC -0.9175 0.2711 -3.3842 0.0011

IM-OLS

θc 0.1618 0.0157 10.3406 0.0000
θt 0.0004 0.0005 0.7564 0.4518
θr 0.4814 0.2346 2.0522 0.0436
θUC 0.3776 0.4936 0.7650 0.4467

Table 3: Estimation results for the price-to-rent model with intercept and linear trend.

Method Coefficient Estimate Std. Error t-value p-value

FM-OLS

θc 9.7125 0.4972 19.5353 0.0000
θt -0.0066 0.0004 -15.9889 0.0000
θy 0.6893 0.0473 14.5834 0.0000
θh 1.6961 0.1466 11.5656 0.0000
θUC -0.3742 0.0674 -5.5533 0.0000

D-OLS

θc 14.2474 0.4156 34.2797 0.0000
θt -0.0098 0.0003 -31.3090 0.0000
θy 0.2262 0.0567 3.9924 0.0002
θh 3.4772 0.1601 21.7170 0.0000
θUC -0.0743 0.0739 -1.0051 0.3181

IM-OLS

θc 10.4304 0.5974 17.4598 0.0000
θt -0.0072 0.0005 -14.5568 0.0000
θy 0.5222 0.0653 7.9902 0.0000
θh 2.0926 0.1923 10.8796 0.0000
θUC -0.2132 0.0927 -2.3003 0.0242

Table 4: Estimation results for the inverted demand model with intercept and linear trend.

included. The estimation results are given in Table 3 for the price-to-rent model and in

Table 4 for the inverted demand model.

For the price-to-rent model, if one takes the underlying theory at face value, the coef-

ficients should equal θr = 1 and θUC = −1. The coefficient estimates given in Table 3

are close to and not significantly different from these values, as are those in Anundsen

(2015), for both the FM-OLS and D-OLS estimates, but are, surprisingly, not close for

the IM-OLS estimates. There are no systematic differences across estimation methods

for the inverted demand model, compare Table 4.

The detected break-points are reported in Table 5. For the inverted demand model, the

results show some variation in the detection times across methods, whereas the variation
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FM-OLS D-OLS IM-OLS
Price-to-rent model 2007:Q2 2006:Q4 2006:Q4
Inverted-demand-model 2003:Q2 2007:Q3 2004:Q2

Table 5: Detected break-points for the price-to-rent and the inverted demand models.

is very small for the price-to-rent model. The rankings across methods are different for

the two models. This is in line with the simulation findings with respect to detection

times reported in Section 3, where also no clear ranking for the detection times has

emerged. For both models, however, except for the latest detector, the detection times

are before the collapse of house prices that started at the beginning of 2007.17 The

earliest detection occurs already in 2003:Q2 for the inverted demand model using the

FM-OLS residuals. For the price-to-rent model the earliest detection, however, occurs

only in 2006:Q4 for both the D-OLS and the IM-OLS based detectors, i.e., just before

house prices started to fall. By construction, compare also the simulations in Section 3,

detection occurs with a delay when using a monitoring procedure. In contrast, the break-

points found by Anundsen (2015) are much earlier. On the one hand, our monitoring

procedure suffers from delays, but is asymptotically both size controlled under the null

and consistent under alternatives. On the other hand, the recursive testing approach

signals an early break, but has no asymptotic justification. In our view, the delay is the

price that has to be paid for asymptotic validity. Again we have to note that finding

optimal weighting functions to minimize expected delay remains an important open but

difficult issue.

Let us close this section by looking at the residuals in Figure 7 and the detectors in

Figure 8. In these two figures the left graph corresponds to the price-to-rent model and the

right graph to the inverted demand model. Note that the residuals displayed in Figure 7

are obtained from parameter estimation only over the calibration period that ranges until

17Note for completeness that for the price-to-rent model the imposition of the theoretical restrictions
θr = 1 and θUC = −1 – and thereby using the series pt − rt + UCt for stationary monitoring (including
a constant and a linear trend) – leads to a detected break-point as early as 1996:Q3.
Earlier break-points are also detected when considering a calibration period only until 1990:Q2, i.e. prior
to the onset of the recession in the US in the early 1990s. In this case the break-points range, depending
upon model and estimator, from 1992:Q2 to 1999:Q3.

28



1976 1993 2010

−0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

FM−OLS residuals / break point
D−OLS residuals / break point
IM−OLS residuals / break point

1976 1993 2010

−0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

FM−OLS residuals / break point
D−OLS residuals / break point
IM−OLS residuals / break point

Figure 7: Residuals of the price-to-rent (left graph) and inverted demand (right graph) models.
The vertical lines indicate the detected break points for the three used estimation methods. For
IM-OLS we display the first differences of the residuals of the partial summed regression used
in IM-OLS estimation.
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Figure 8: Detectors for the price-to-rent (left graph) and inverted demand (right graph) models.
The two horizontal lines indicate the critical values for the three versions of the monitoring
procedure.
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1995:Q4. Thus, by construction until the end of 1995 the graphs display actual modified

least squares estimation residuals. Both graphs show a tendency of the residuals to

become larger after the end of the calibration period until almost the onset of the house

price collapse before they become smaller again towards the end of the sample, at least

for the price-to-rent model. The vertical lines indicate when the residuals have become

“large enough for long enough” for the detectors to signal a structural break. Looking at

Figure 7, this happens relatively late and happens later for the residual series with larger

variations (in particular IM-OLS in the price-to-rent model). Figure 8 shows information

also contained in the previous graph by plotting the detectors. The intersection of the

detectors with the corresponding critical values occurs – by construction – exactly at the

break-points displayed by means of vertical lines in Figure 7.

5. Summary and Conclusions

We have proposed a closed-end monitoring procedure for structural change in cointe-

grating regressions. The detector is inspired by Chu et al. (1996) in being based on

parameter estimation over a calibration period and the cointegration test of Shin (1994)

for the precise form of the statistic. To achieve nuisance parameter free limiting distribu-

tions despite error serial correlation and regressor endogeneity, parameter estimation rests

upon modified least squares, in particular FM-OLS, D-OLS and IM-OLS. The asymptotic

distributions coincide for FM-OLS and D-OLS, whilst IM-OLS leads to a different limit.

The effects of sample size, regressor endogeneity and error serial correlation are as typ-

ically found in the cointegration literature. The finite sample performance of the three

variants is often quite similar. In a variety of settings IM-OLS leads to smaller size

distortions under the null. This fact in conjunction with essentially no differences in

size-corrected power under the alternative makes IM-OLS our slightly preferred choice.

Detection occurs by construction with delays, which are in some configurations substan-

tial. In this respect, unsurprisingly, a longer calibration period, resulting in more precise

parameter estimates, is beneficial. With respect to the estimated break-points there are
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no systematic differences across estimation methods. A comparison with the test of An-

drews and Kim (2006) indicates that the latter performs very well – and potentially even

better than our detectors – for the late break situation it has been designed for. For earlier

breaks our procedure exhibits better performance, and additionally provides estimated

break-points.

In our application using the data of Anundsen (2015) the estimated break-points range

from 2003:Q2 to 2007:Q3 depending upon estimation method and relationship considered.

For all cases, at least, the detected break-points are prior to the start of the fall of

US housing prices. Here it has to be noted that a smaller calibration period leads to

considerably earlier break-points as discussed in Footnote 17.

Several extensions of our work are conceivable. First, a better understanding of the

impact of the weighting function on the performance of the monitoring scheme needs to

be obtained. In extension of the experience collected so far, compare Footnote 4, a more

systematic knowledge of the performance of variants of our detectors based on potentially

other test statistics and other principles may be beneficial. Second, it may be relevant to

consider monitoring schemes for multiple cointegrating relationships. Third, especially

relevant for financial data, the impact of non-constant (conditional or unconditional)

variances needs to be understood. A fourth extension, the opposite pair of null and

alternative hypothesis is studied in Sakarya et al. (2015).
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