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A B S T R A C T

This paper proposes IV-based estimators for the semiparametric distribution regression model in the presence
of an endogenous regressor, which are based on an extension of IV probit estimators and the idea of control
functions. We discuss the causal interpretation of the estimators and two methods (monotone rearrangement
and isotonic regression) to ensure a monotonically increasing distribution function. Asymptotic properties
and simulation evidence are provided. An application to income equations with German SOEP data reveals
statistically significant and heterogeneous differences to the inconsistent non-IV-based estimator.
1. Introduction

The semiparametric distribution regression (DR) model introduced
by Foresi and Peracchi (1995) has become a popular model for con-
ditional distributions if other quantities than only the conditional ex-
pectation are of interest. An important feature of this model is that
no distribution assumptions on the response are made, e.g. 𝑌 is not
assumed to be normally distributed, conditionally on covariates. At the
same time, the model provides interpretable functional forms between
the regressors and the outcome, while estimating the conditional re-
sponse distribution semiparametrically. From the estimated distribution
function, quantiles could be directly obtained by inversion.

A typical application is the topic of conditional wage (or, more
general, income) distributions, where upper or lower quantiles are
supposed to be modeled. Chernozhukov et al. (2013) and Rothe and
Wied (2013) show that the DR model might be better suited than
quantile regression for handling certain characteristics of income data
such as genuine point masses in the distribution of incomes, nonlinear-
ities around the minimum wage and rounding effects. In our empirical
application on German SOEP data from the year 2020 below, one such
genuine point is the income of 450 Euro per month, as the ‘‘450-Euro-
job’’ was a popular type of part-time job in this year. The appealing
property is that e.g. censoring points do not have to be included ex
ante as in the case of censored quantile regression, but are detected
by the estimation itself. Chernozhukov et al. (2013) show how the
model can be used for estimating counterfactual distributions, Rothe
and Wied (2020) propose a method for estimating conditional densities
and quantile partial effects in this model. Troster and Wied (2021)
consider DR for dynamic data, Delgado et al. (2022) in the context of
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duration analysis, Wang et al. (2022) develop a bivariate DR model
and apply this to insurance data. See also Koenker et al. (2013) for a
comparison of quantile and distribution regression.

A restriction of the literature up to now is that the regressors
are assumed to be exogenous. For example, Rothe and Wied (2013)
consider a version of Mincer’s earnings function by explaining the
logarithmic wage with the years of education and the years of ex-
perience among others, not taking into account that, for example,
the years of education might be an endogenous regressor. This does
not mean that the DR estimates in such approaches are not useful.
They do estimate conditional distribution functions consistently, but
there is no control for unobserved confounders. The years of education
might be correlated with the unobserved ability or motivation of the
employee. So, one would estimate the distribution only for a subset
of the population, e.g. for employees with both high educational status
and high ability/motivation. The novelty of the present approach is the
control for confounders.

There are some recent papers on DR estimation with endogenous
regressors. Briseño-Sanchez et al. (2020) consider DR estimation based
on instrumental variables, but they use parametric models based on
splines among others. Their approach fits in the GAMLSS framework
(generalized additive models for location, scale shape) which means
that their focus lies on explaining moments of the distribution. In
contrast, the focus on the present paper is the distribution function
itself. Chernozhukov et al. (2020) estimate structural functions in trian-
gular models using DR techniques, but also here, the distribution func-
tion is not of immediate interest. For example, they consider average
vailable online 20 May 2024
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structural functions for the conditional mean, whereas we are interested
in average structural functions for the distribution itself. Chernozhukov
et al. (2022) discuss semiparametric DR models in the context of sample
selection.

The present paper proposes IV-based estimators for the semipara-
metric DR model which use the idea of control functions and are based
on a particular latent variable model. Taking into account that the
DR model is fitted by pointwise estimators of simple binary outcome
models, we adapt consistent estimators for binary outcome models with
endogenous regressors. On the one hand, we consider maximum likeli-
hood estimation, which is asymptotically efficient, on the other hand,
we propose a computationally better tractable three-step estimator. For
both estimators, consistency and convergence to Gaussian limit pro-
cesses are proved. As these estimator are unconstrained, monotonicity
is not guaranteed. We discuss two methods for enforcing monotonicity
in a second step, monotone rearrangement and isotonic regression. Also
a method for estimating the conditional density based on local linear
regression is proposed.

In the following, we first present the model (Section 2), then the
estimation procedures including a causal interpretation and asymp-
totic results (Section 3). Afterwards. we consider the monotonizing
methods (Section 4) and some simulation evidence (Section 5). An
application to a Mincer-type income regression (Section 6) demon-
strates the importance in empirical practice to take endogeneity into
account for estimating DR models and to use the new method. Section 7
makes some suggestions for future research. The Appendix gives further
technical insights.

2. General semiparametric distribution regression

Consider an outcome variable 𝑌 and regressors 𝑋1,… , 𝑋𝑘. In the
semiparametric DR model, the conditional distribution function of 𝑌
given the set of regressors 𝑋 is modeled by 𝐹𝑌 |𝑋 (𝑦|𝑥) = 𝛬(𝑥′𝛽(𝑦)) for
some link function 𝛬 such as the distribution function of the standard
normal distribution 𝛷 and some function 𝛽(𝑦). Although the function
𝛬 must be chosen in advance, in this paper, the model is called
semiparametric: Usually, in the literature, no explicit restrictions on
𝛽(𝑦) such as continuity are imposed and there is a parameter for every
𝑦. Anyway, it is clear that 𝛽(𝑦) has to be chosen such that 𝐹𝑌 |𝑋 (𝑦|𝑥)
fulfills the properties of a conditional distribution function if the model
is correctly specified. Given 𝑥, the function must be monotonically
increasing and converge to 1 and 0 for 𝑦→ ∞ and 𝑦→ −∞, respectively.

In the simple linear model 𝑌 = 1 + 𝑋2 + 𝑈 , where 𝑈 is dis-
tributed with distribution function 𝛬 and independent of 𝑋2, it holds
𝐹𝑌 |𝑋 (𝑦|𝑥) = 𝛬(𝑦 − 1 − 𝑥2) (with 𝑥 = (1, 𝑥2)) such that 𝛽(𝑦) = (𝑦 − 1,−1)
and the monotonicity condition is fulfilled. If, for example, 𝑌 describes
wages of employees and there is minimum wage at some value 𝑦∗, the
function 𝛽(𝑦) might contain a discontinuity point at 𝑦∗. For example,
if 10% of the employees with characteristics 𝑥 receive minimum wage
𝑦∗, 𝐹𝑌 |𝑋 (𝑦|𝑥) would jump from 0 to 0.1 at 𝑦∗, which implies a jump
in 𝛽(𝑦). This illustrates that 𝑌 may be discretely distributed even if the
link function is continuous. There is no one-to-one connection between
the distribution of 𝑌 and the link function.

Based on an i.i.d. sample of length 𝑛, 𝐹𝑌 |𝑋 (𝑦|𝑥) can be consistently
estimated by maximum likelihood estimation similarly as a probit
model would be estimated, for example. The estimation is performed
separately for each 𝑦 and requires that the regressors are exogenous.
To be precise, one introduces the indicator functions 𝐼𝑦 ∶= 1{𝑌 ≤ 𝑦}
with 𝐸(𝐼𝑦|𝑋 = 𝑥) = 𝛬(𝑥′𝛽(𝑦)). The model can be interpreted as a latent
variable model with 𝐼𝑦 = 1 if 𝐼𝑦 ∶= 𝑋′𝛽(𝑦)+𝑈 ≥ 0 and 𝐼𝑦 = 0 otherwise.
The random variable 𝑈 is distributed with distribution function 𝛬 and
2

exogeneity means that 𝑋 is independent of 𝑈 . n
3. Semiparametric distribution regression with instruments

3.1. Model and estimation procedure

There are different IV-based approaches for estimating binary out-
come models if 𝑋 and 𝑈 are not independent. We focus on the two-step
estimator based on the idea of control functions introduced by Rivers
and Vuong (1988)2 and present an adapted three-step estimator for
the case of estimating such models separately for each 𝑦. In particular
cases, as we describe below, this estimator is numerically equivalent
to the original maximum likelihood estimator, which is asymptotically
efficient for fixed 𝑦, but computationally less appealing. The maximum
likelihood estimator was brought forward and discussed by Amemiya
(1978), Newey (1987), Rivers and Vuong (1988), is explained in detail
in Wooldridge (2002), Section 15.7.2 and Hansen (2022), Section
25.12.

We focus on the case of one endogenous regressor. Using the
notation from the literature, 𝑋 denotes a 𝑘-dimensional vector with
exogenous regressors, 𝑌2 is scalar, endogenous and 𝑍 is a 𝑙-dimensional
vector with exogenous instruments. Moreover, we consider a variable
𝑉 which is a possible confounder (such as ability/motivation) and has
distribution function 𝐹𝑉 . In our situation, the goal is to estimate

∫ 𝐸(𝐼𝑦|𝑋 = 𝑥, 𝑌2 = 𝑦2, 𝑉 = 𝑣)𝑑𝐹𝑉 (𝑣) =∶ 𝐹 𝑉𝑌 |𝑋,𝑌2 (𝑦|𝑥, 𝑦2), (3.1)

i.e., we first control for possible confounders and integrate these con-
founders out afterwards. If 𝑌2 is exogenous conditioned on 𝑉 , the
integral in (3.1) can be interpreted as the conditional distribution
function of 𝑌 given 𝑋 and a hypothetically exogenized 𝑌2. Standard
probit would be a suitable estimator for the conditional distribution
function 𝐸(𝐼𝑦|𝑋 = 𝑥, 𝑌2 = 𝑦2), but this is not the term we are interested
in, see Remark 2 in Appendix A. The term in (3.1) is an example for an
average structural function as considered in Blundell and Powell (2004)
or Chernozhukov et al. (2020).

For estimating (3.1), we introduce a latent variable model similarly
as for the standard DR model. The assumption is that 𝐹 𝑉𝑌 |𝑋,𝑌2 (𝑦|𝑥, 𝑦2) =
∫ 𝑃 (𝐼∗𝑦 ≥ 0|𝑋 = 𝑥, 𝑌2 = 𝑦2, 𝑉 = 𝑣)𝑑𝐹𝑉 (𝑣) with

𝐼∗𝑦 = 𝑋′𝛽1(𝑦) + 𝑌2𝛽2(𝑦) + 𝑈 (𝑦) (3.2)
𝑌2 = 𝑋′𝛾1 +𝑍′𝛾2 + 𝑉 .

Here, 𝑈 (𝑦) and 𝑉 are latent variables with mean zero, for which exists
a decomposition

𝑈 (𝑦) = 𝛼1𝑉 + 𝛼2𝜖(𝑦), (3.3)

where 𝜖(𝑦) is independent from (𝑋, 𝑌2, 𝑉 ), 𝐸(𝑉 |𝑋,𝑍) = 0, 𝑈 (𝑦) has
variance 1, 𝜖(𝑦) is independent of 𝑉 , has variance 1 and has some con-
tinuously differentiable distribution function 𝛬̃. Both the distribution
functions of 𝑈 and 𝜖(𝑦) are assumed to be known, i.e. they are an input
for the estimation method. No a priori information is needed for the
distribution of 𝑉 . In this decomposition, we have endogeneity if 𝛼1 ≠ 0.

Similarly as for the standard DR model, the parameters for the
regressors 𝑋 and 𝑌2 as well as the latent error variable 𝑈 (𝑦) depend on
𝑦, which yields much flexibility despite the fact that the link function,
i.e. the distribution function of 𝑈 , is fixed to 𝛬 and also the distribution
of 𝜖(𝑦) has to be fixed.3 All other parameters and random variables in
the model do not depend on 𝑦 in order to have a sparse parametrization.
More remarks on the model can be found in Appendix A.

For estimation purposes, we use the i.i.d. sample (𝐼𝑦,𝑖, 𝑌2,𝑖, 𝑋𝑖, 𝑍𝑖)
with 𝐼𝑦,𝑖 = 1{𝑌𝑖 ≤ 𝑦}. The two step estimator by Rivers and Vuong

2 Blundell and Smith (1989) propose an estimator with a related goal,
.e. they focus on simultaneous equations in limited dependent variable
odels.
3 In the simulations and the empirical application, we choose the standard

ormal distribution, respectively.
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(1988) is explained in detail in Wooldridge (2002), Section 15.7.2. The
estimator requires a non-trivial adjustment to our situation, however,
because it does not directly estimate the parameters 𝛽1(𝑦) and 𝛽2(𝑦)
consistently.

The estimator is based on the decomposition 𝑈 (𝑦) = 𝛼1𝑉 + 𝛼2𝜖(𝑦)
which leads to the equation

𝐼∗𝑦 = 𝑋′𝛽1(𝑦) + 𝑌2𝛽2(𝑦) + 𝑉 𝛼1 + 𝛼2𝜖(𝑦). (3.4)

This means that, for fixed 𝑦, standard estimation of binary choice
models with given distribution function of 𝜖(𝑦) with 𝑉 𝑎𝑟(𝜖(𝑦)) = 1
consistently estimates the parameter vector 𝜃(𝑦) ∶= (𝛽1(𝑦), 𝛽2(𝑦), 𝛼̃1)
with 𝛽1(𝑦) ∶= 𝛽1(𝑦)

√

𝛼2
, 𝛽2(𝑦) ∶= 𝛽2(𝑦)

√

𝛼2
, 𝛼1 ∶= 𝛼1

√

𝛼2
under Assumption 1.1

in Appendix A. As 𝑉 is not observable, this term is replaced with the
esiduals of an OLS regression of 𝑌2 on 𝑋 and 𝑍.

The parameter 𝛼2 is not known, so that these estimators cannot be
used directly. However, they can be used to consistently estimate the
conditional expectation

𝐸(𝐼𝑦|𝑋 = 𝑥, 𝑌2 = 𝑦2, 𝑉 = 𝑣) = 𝛬(𝑥′𝛽1(𝑦) + 𝑦2𝛽2(𝑦) + 𝑣𝛼1).

Summing up the previous discussion, it turns out that the following
three steps have to be performed for getting a consistent estimator for
𝐹 𝑉𝑌 |𝑋,𝑌2 (𝑦|𝑥, 𝑦2) from (3.1) for fixed 𝑦:

1. Run an OLS regression of 𝑌2𝑖 on 𝑋𝑖 and 𝑍𝑖 and obtain residuals
𝑉𝑖, 𝑖 = 1,… , 𝑛.

2. Run a binary choice estimation of 𝐼𝑦,𝑖 on 𝑋𝑖, 𝑌2𝑖 and 𝑉𝑖 and
obtain the estimators ̂̃𝛽1(𝑦), ̂̃𝛽2(𝑦) and ̂̃𝛼1(𝑦).

3. The final estimator is then given by

𝐹 𝑉𝑌 |𝑋,𝑌2 (𝑦|𝑥, 𝑦2) ∶=
1
𝑛

𝑛
∑

𝑖=1
𝛬(𝑥′̂̃𝛽1(𝑦) + 𝑦2̂̃𝛽2(𝑦) + 𝑉𝑖̂̃𝛼1(𝑦)).

Due to the transformation of 𝑌 to 1{𝑌 ≤ 𝑦} for the estimation, the
estimator 𝐹 𝑉𝑌 |𝑋,𝑌2 (𝑦|𝑥, 𝑦2) can attain at most 𝑛 different values for fixed
𝑋 and 𝑌2. The differences arise at the different outcomes 𝑌𝑖, so that it
is reasonable to evaluate the estimated distribution function at all 𝑌𝑖,
if computationally feasible.

3.2. Asymptotic result

For each 𝑦, the estimator of the transformed parameters can be
equivalently calculated by maximizing the likelihood function or by
minimizing some norm of the score function. Thus, the estimator
falls into the framework of Z-estimators analyzed in Chernozhukov
et al. (2013) and one can derive consistency and asymptotic normality,
both pointwisely and uniformly in 𝑦. Then, under some additional
assumptions as described in the Appendix, we obtain

Theorem 1. Let Assumption 1 be fulfilled. Then it holds that
√

𝑛
(

𝐹 𝑉𝑌 |𝑋,𝑌2 (⋅|𝑥, 𝑦2) − 𝐹
𝑉
𝑌 |𝑋,𝑌2

(⋅|𝑥, 𝑦2)
)

(3.5)

converges to a Gaussian process G(⋅) in 𝑙∞( ), the space of all bounded
functions indexed by a compact subinterval  of R.

The proof of this theorem shows that the limit process depends both
on the limit properties of 𝜃̂(𝑦), which is the estimator for 𝜃(𝑦), and the
shape of the function 𝐹 𝑉𝑌 |𝑋,𝑌2 (𝑦|𝑥, 𝑦2).

4. Monotonicity

While the proposed estimators from the last section are consis-
tent under appropriate assumptions, there is no reason to assume
that the estimated conditional distribution functions are monotonically
increasing in 𝑦 in finite samples. This might be a drawback for in-
terpretation purposes, e.g. if the estimators are used for calculating
conditional quantiles and it turns out that the estimated 90%-quantile
3

t

is smaller than the estimated 80%-quantile. Oliveira (2023) points out
the problem of missing monotonicity for estimating minimum wage
effects. We discuss two methods to fix this, monotone rearrangement
as well as isotonic regression.4 Note that, as in Wüthrich (2019), the
monotonizations have to be performed separately for each value of
(𝑥, 𝑦2).

4.1. Monotone rearrangement

Chernozhukov et al. (2010) propose a monotone rearrangement
approach (see also Dette et al., 2006), mainly for quantile regression
in order to ensure that estimated conditional quantiles do not cross.
As discussed in Chernozhukov et al. (2013), this approach can also
be applied to distributional regression. Using the conditional quantile
function 𝑄𝑉𝑌 |𝑋,𝑌2 (𝑢|𝑥, 𝑦2) ∶= 𝗂𝗇𝖿𝑦{𝐹 𝑉𝑌 |𝑋,𝑌2 (𝑦|𝑥, 𝑦2) ≥ 𝑢}, it is based on the
identity

𝐹 𝑉𝑌 |𝑋,𝑌2 (𝑦|𝑥, 𝑦2) = ∫

1

0
𝟏{𝑄𝑉𝑌 |𝑋,𝑌2 (𝑢|𝑥, 𝑦2) ≤ 𝑦}𝑑𝑢, (4.1)

so that in a first step the conditional quantile function needs to be esti-
mated, before it is appropriately integrated. This leads to the estimator

𝐹 𝑉𝑌 |𝑋,𝑌2 (𝑦|𝑥, 𝑦2) = ∫

1

0
𝟏{𝑄̂𝑉𝑌 |𝑋,𝑌2 (𝑢|𝑥, 𝑦2) ≤ 𝑦}𝑑𝑢

with the estimated conditional quantile function5

𝑄̂𝑉𝑌 |𝑋,𝑌2 (𝑢|𝑥, 𝑦2) = 𝗂𝗇𝖿𝑦{𝐹 𝑉𝑌 |𝑋,𝑌2 (𝑦|𝑥, 𝑦2) ≥ 𝑢}.

The asymptotic properties of this estimator are well understood. As
discussed in Chernozhukov et al. (2010), given a result like Eq. (3.5)
from the last section, the convergence rate (in our case

√

𝑛) carries over
due to the Hadamard differentiability of the operator from (4.1) and an
application of the functional delta method. Moreover, it is possible to
estimate the limit process by a bootstrap approximation.

4.2. Isotonic regression

An alternative to the monotone rearrangement is the application of
an isotonic regression, which can be applied directly on the functional
estimator. This estimation procedure is discussed in Barlow et al.
(1972) and Robertson et al. (1988), for example.6 By construction, the
estimated distribution function only changes its value at the observed
𝑌1,… , 𝑌𝑛 and is constant between these points. The idea is to replace
the points 𝐹𝑖 ∶= 𝛬(𝑥′𝛽1(𝑌𝑖) + 𝑦2𝛽2(𝑌𝑖)) by points ̃̃𝐹𝑖 that are close to 𝐹𝑖,
ut fulfill the monotonicity restriction. This means that one solves the
uadratic minimization problem

𝑖𝑛 ̃̃𝐹1 ,…, ̃̃𝐹𝑛

𝑛
∑

𝑖=1

(

̃̃𝐹𝑖 − 𝐹𝑖
)2

nder the constraint
̃̃
𝑖 ≤ ̃̃𝐹𝑗 for 𝑌𝑖 ≤ 𝑌𝑗 . (4.2)

The problem can be solved numerically with the pool adjacent
iolators algorithm, an implementation in software packages such as R
command isoreg in the package stats) is available. The computational
omplexity for given 𝑛 is 𝑂(𝑛) for already sorted data, see Best and
hakravarti (1990). A potential drawback is the tendency to obtain flat

unctions, which leads to a bias in finite samples, if the true distribution
unction is strictly increasing.

4 Foresi and Peracchi (1995) discuss in their Section 2.1 some other
ossibilities to get monotone estimators of the distribution function, but do
ot elaborate on them in more detail.

5 A researcher only interested in conditional quantiles could of course
irectly use this estimator.

6 Henzi et al. (2021) also consider isotonic distributional regression, but

hey consider monotonicity in (𝑥, 𝑦2)-, and not in 𝑦-direction.
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Table 1
Average squared bias, squared variance and squared MSE of the two monotonizing
approaches with non-IV probit and IV probit.

Values for 𝑥 = 𝑦2 𝑛 Monotone rearrangement Isotonic regression

Bias2 Var MSE Bias2 Var MSE

Non-IV

1
100 0.0119 0.0085 0.0205 0.0102 0.0083 0.0185
200 0.0108 0.0036 0.0145 0.0100 0.0035 0.0136
400 0.0099 0.0017 0.0116 0.0094 0.0017 0.0116

100 0.0076 0.0169 0.0245 0.0043 0.0161 0.0205
2 200 0.0049 0.0076 0.0125 0.0038 0.0075 0.0113

400 0.0048 0.0039 0.0087 0.0044 0.0039 0.0083

IV

100 0.0004 0.0098 0.0102 5 ⋅ 10−5 0.0094 0.0094
1 200 8 ⋅ 10−5 0.0044 0.0045 2 ⋅ 10−5 0.0042 0.0043

400 1 ⋅ 10−5 0.0022 0.0022 < 1 ⋅ 10−5 0.0021 0.0021

100 0.0007 0.0121 0.0128 7 ⋅ 10−5 0.0103 0.0104
2 200 4 ⋅ 10−5 0.0049 0.0050 < 1 ⋅ 10−5 0.0047 0.0047

400 1 ⋅ 10−5 0.0023 0.0024 < 1 ⋅ 10−5 0.0023 0.0023

Having obtained a monotonically increasing distribution function
or the points
𝑌1,… , 𝑌𝑛, forecasts for other values of 𝑦 might be obtained by linear

nterpolation, for example. Also conditional quantiles can be calculated
n this way.

If (4.2) already holds for the 𝐹𝑖, 𝑖 = 1,… , 𝑛, ∑𝑛
𝑖=1

(

̃̃𝐹𝑖 − 𝐹𝑖
)2

is equal
o 0. So, it is intuitive that the monotonized estimator is consistent if
he true conditional distribution function is monotonically increasing
nd the estimated distribution function is uniformly consistent (over
).

. Simulations

We simulate from the model 𝑌 ∗ = 𝗆𝖺𝗑(2, 𝑌 ) and

𝑌 = 1 +𝑋 + 𝑌2 + 𝑈

2 = 1 +𝑋 +𝑍 + 𝑉 ,

here 𝑋 and 𝑍 are i.i.d. 𝑁(0, 1)-distributed and (𝑈, 𝑉 ) is bivariate
ormally distributed with zero mean and covariance matrix

(

1 𝜌
𝜌 1

)

.

ere, 𝑋 represents the exogenous regressor, 𝑌2 the endogenous re-
ressor, which is correlated with 𝑈 , and 𝑍 the exogenous instrument.
e consider a censored 𝑌 , which mimics the application of modeling
ages with a minimum wage and highlights the appealing property of
istributional regression of detecting such censoring points. In this case,
𝑌 |𝑋,𝑌2 (𝑦|𝑥, 𝑦2) = 𝛷(𝑦 − 1 − 𝑥 − 𝑦2) for 𝑦 ≥ 2 and 0 elsewhere. We fix
= 0.7 and calculate 𝐹𝑌 |𝑋,𝑌2 (𝑦|𝑥, 𝑦2) (monotone rearrangement) and

̃̃
𝑌 |𝑋,𝑌2 (𝑦|𝑥, 𝑦2) (isotonic regression) for 𝑥 = 𝑦2 = 1 and 𝑥 = 𝑦2 = 2.
s 𝐸(𝑋) = 0 and 𝐸(𝑌2) = 1, 𝑋 and 𝑌2 are further away from their
xpectations in the latter case. The grid points for 𝑦 are equidistant in
he interval [1, 5] with 50 grid points in total. For the rearrangement,
he quantile levels are equidistant in the interval [0.01, 0.99] with 99
rid points in total. To mimic the setting of the empirical application,
he sample sizes are 𝑛 = 100, 200, 400. For each case, 1000 Monte Carlo
eplications are performed. The results are compared with the standard
robit estimates that ignore the endogeneity.

As we are concerned with uniform convergence to the true function
see Theorem 1), we consider the average squared bias, the average
ariance and the average MSE of 𝐹𝑌 |𝑋,𝑌2 (𝑦|𝑥, 𝑦2) and ̃̃𝐹𝑌 |𝑋,𝑌2 (𝑦|𝑥, 𝑦2)

over the grid of 41 y-values. Tables 1 shows the results.
With the IV approach, the average MSE is dominated by the vari-

ance and is similar for both procedures with a slight advantage for the
isotonic regression. Bias, variance and MSE are slightly higher if 𝑥 and
𝑦2 are further away from their expectations and half when the sample
size is doubled. This suggests that, in this setup, the convergence rate of
4

both estimators is
√

𝑛.7 The variance of the non-IV approach also halves
with doubled sample size and slightly exceeds that of the IV approach
for 𝑥 = 𝑦2 = 1, but is considerably biased as expected. So, its MSE is
much higher than that of the IV approach.

6. Application to a Mincer-type income equation

We consider income data from the German SOEP from the year
2020 (Sozio-oekonomisches Panel/Socio-Economic Panel 2022) with
𝑛 = 1694 individuals and estimate a Mincer-type regression to estimate
he returns of education. We do not have precise information about
he hourly wage, but we have the variable gross income per month per
mployee, measured in EUR. The logarithm of is explained by the years
f education and the years of working experience (the latter both linearly
nd quadratically). To adjust for the working time, we additionally use
he explanatory variable part time, which is 1, if the employee works in
ull time throughout the year.

The variable educ is assumed to be endogenous, as it might be
orrelated with unobserved variables such as ability or motivation.
he variable exper is calculated from ‘‘current age minus age when
ducation was finished’’ compare Krenz (2008). So there might be some
orrelation with unobserved characteristics as well, but we assume that
his is negligible. In particular, the correlation between educ and exper
s rather small with 0.157. So we consider the variable exper as being
xogenous.

In the SOEP, the education level is categorized. For this analysis,
he information was transformed to one metric variable, yielding val-
es of 10 (lower secondary education), 13 (secondary education), 14
post-secondary non tertiary education) and 16 (first stage of tertiary
ducation). In the study, only individuals who provided information
n all these variables and who had at least one year of working
xperiences, were included. (In cases, where education information for
nly one parent is available, the other variable was set to 10.) This way,
he original sample consisting of over 30000 individuals is reduced to
= 1694.

A possible instrument for the years of education is the years of
ducation of the mother. In this dataset, the first stage 𝐹 -statistic is
iven by approximately 67 so that the instrument can be assumed to
e sufficiently strong. See Wooldridge (2016) for some discussion why
his model might be reasonable.

First, we estimate a simple linear model with OLS and with IV:

𝑜𝑔(𝑖𝑛𝑐𝑜𝑚𝑒)𝑖 = 𝛽0 + 𝛽1𝑒𝑑𝑢𝑐𝑖 + 𝛽2𝑒𝑥𝑝𝑒𝑟𝑖 + 𝛽3𝑒𝑥𝑝𝑒𝑟2𝑖 + 𝛽4𝑝𝑎𝑟𝑡𝑡𝑖 + 𝜀𝑖.

Table 2 shows the estimated coefficients as well as the estimated
onditional expectations for the 10%, 50% and 90% quantiles of educ
10, 13 and 16) and exper (1, 4 and 11, respectively. The variable
artt is always set to its mean (0.48). This way, the expected incomes
re calculated for three groups of employees, the low-educated/low-
xperienced, the middle-educated/middle-experienced and the high-
ducated/high-experienced.

Similarly as in other studies with this type of instrument, the IV
stimate for educ is smaller than the OLS estimate (while the standard
rror is larger). The intuition is that both the years of education
nd an unobserved variable which measures ability and/or motivation
re positively correlated with the income. There is a differentiated
iscussion about this in the literature: While the IV estimates are often

7 In other contexts, the convergence rate of isotonic regression is smaller
han

√

𝑛, for example 𝑛1∕3 in Abrevaya (2005). In these cases, the standard
bootstrap (drawing with replacement) might behave erratically, see Patra et al.
(2018). The Monte Carlo evidence suggests that such problems should not
be expected in the present context, at least not for the setting considered
in the empirical application. The intuition is that in our case, the isotonic
regression is just a finite-sample correction in second step of an estimator

which asymptotically fulfills the monotonicity restriction.
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Table 2
Estimated regression coefficients and conditional expectations for the linear model,
standard errors in parentheses.
𝛽0 𝛽1 𝛽2 𝛽3 𝛽4 𝐸̂(𝑙𝑜𝑔(𝑖𝑛𝑐𝑜𝑚𝑒))

𝑒𝑑 = 10 𝑒𝑑 = 13 𝑒𝑑 = 16
𝑒𝑥 = 1 𝑒𝑥 = 4 𝑒𝑥 = 11

OLS
5.0704 0.1331 0.0319 −0.0007 0.8256 6.8347 7.3191 7.8664
(0.1165) (0.0090) (0.0068) (0.0002) (0.0379) (0.0365) (0.0182) (0.0381)

IV
5.9048 0.0664 0.0421 −0.0009 0.8382 7.0183 7.3295 7.7237
(0.4833) (0.0385) (0.0090) (0.0002) (0.0391) (0.1096) (0.0194) (0.0890)

larger if institutional characteristics are used as instruments (Card,
2000), Lemke and Rischall (2003) and Breitung et al. (2024) give
evidence that the OLS estimators might be biased upwards in larger
models (number of individuals and regressors). Indeed, a robustness
analysis with the years of education of the father yields results which
point into the same direction. Moreover, the 𝑝-value of the Sargan
test in the standard IV model using both instruments together is large
(0.64), which indicates that both instruments are appropriate.

The conditional expectations increase if higher values of educ and
xper are considered. Interestingly, the results for OLS and IV are
imilar for the 50% quantiles. For the 10% quantiles, the IV estimate
s larger than the OLS estimate, for the 90% quantile, the IV estimate
s smaller. There seems to be a tendency that the variability in terms
f the regressor values is lower for the IV estimation. These results will
e confirmed and extended by the DR analysis.

Fig. 6.1 shows the estimated conditional distribution functions for
oth non-IV and IV, again for the 10%, 50% and 90% quantiles of educ

and exper. The estimated distribution functions are evaluated at all
outcomes 𝑌𝑖. In all cases, the monotonized version based on isotonic
regression discussed in the last section is considered. For higher values
of educ and exper, the distribution functions are shifted more and
more to the right. For the 50% quantile, the two functions are rather
similar. For the 10% quantile, the IV curve generally lies to the right
of the non-IV curve, where the largest differences are visible for values
of log(income) between 1 and 2. For the 90% quantile, the IV curve
generally lies to the left below the 5%-quantile of log(income) and to
he right above that. This plot particularly illustrates the usefulness of
onsidering the whole distribution, not only the conditional mean.

The plots for the 10% and the 50% quantile of the regressors also
how some jump points, in particular for income = 450 which implies
og(income) = 6.1. This fits to the data, where some point mass lies on
his value: 61 out of 1694 individuals report this number. This high
umber is not surprising because the ‘‘450 Euro-job’’ was a typical type
f part-time job in Germany in the year 2020 (Bundeszentralamt für
teuern, 2024).

For completeness, Fig. 6.2 shows the estimated DR curve for the
0% quantiles without monotonization, illustrating why it makes sense
o add the monotonizing step.

To give more evidence about the difference between non-IV and
V estimation, pointwise confidence bounds for the differences of the
onditional distribution functions are calculated and plotted in Fig. 6.3.
his is done by bootstrap, i.e. by drawing with replacement 𝐵 = 100
imes from the individuals. For each 𝑦, the confidence interval to the
evel of significance 90% is calculated. This yields a Hausman-type
tatistical test for the relevance of the IV approach: If 0 is not contained
n the interval, one can conclude that the two estimators of the distribu-
ion functions are statistically significantly different. Assuming that the
nstrument is exogenous and correlated with the endogenous regressor,
he IV-based estimator is then the only valid one.

The confidence bounds essentially confirm the analysis from Fig. 6.1.
or the 10% as well as for the 90% quantile, the bounds do not contain
for some subsets of the ranges of 𝑙𝑜𝑔(𝑖𝑛𝑐𝑜𝑚𝑒) described above. For the
0% quantile, 0 is mostly contained.
5

c

Fig. 6.1. Estimated conditional distribution functions.

Summed up, the message is that IV-estimation of DR models does
ake a difference compared to non-IV-estimation. If the regressor educ

s hypothetically exogenized, for large values of the regressors, the
pper conditional quantiles of the income tend to be larger, for small
alues, the lower conditional quantiles tend to be larger. This means
hat we have less inequality across the regressor values for the lower
onditional quantiles and more for the upper conditional quantiles.
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Fig. 6.2. Estimated conditional distribution function without monotonicity constraint
for the 0.9-quantile of the regressors.

7. Conclusion and outlook

The paper proposes a new consistent estimator for the semipara-
metric DR model which allows for endogenous regressors and where
monotonicity is enforced. The method is easy to implement and should
be appealing to practitioners. Apparently, the proposed procedure only
works well if the instruments are sufficiently strong. To circumvent
the problem of choosing appropriate instruments, it might be an idea
for future research to adapt the procedure proposed by Breitung et al.
(2024) for linear regression models to DR models. Here, rank-based
transformations of non-normal regressors are used as additional regres-
sors and no external instruments are necessary to obtain consistent
parameter estimators. Other tasks for future research would be a frame-
work for handling non-i.i.d. data, e.g. individuals in different clusters
with different variances. Also relaxing the linearity assumption for the
first stage in the spirit of Blundell and Powell (2004) or Imbens and
Newey (2009) might be interesting.
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Appendix A. Additional remarks on the model

This section contains some remarks about the model assumptions.

1. A sufficient condition for the existence of the decomposition
(3.3) is that the random variables 𝑈 (𝑦) and 𝑉 are jointly nor-
mally distributed conditionally on 𝑋 and 𝑍,
(

𝑈 (𝑦)
𝑉

)

|(𝑋,𝑍) ∼ 
((

0
0

)

,
(

1 𝜎12
𝜎12 𝜎22

))

. (A.1)

In this case, with 𝜌 ∶= 𝜎12
𝜎2

, a possible parametrization is 𝛼1 =
𝜌
𝜎2

and 𝛼2 =
√

1 − 𝜌2. The requirement of continuous 𝑉 then implies
that 𝑌2 is also continuously distributed.

2. In the case of (A.1), we have 𝐼∗𝑦 = 𝑋′𝛽1(𝑦)+𝑌2𝛽2(𝑦)+𝛼1𝑉 +𝛼2𝜖(𝑦).
As

∫ 𝛷(𝑎 + 𝑏𝑥)𝜙(𝑥)𝑑𝑥 = 𝛷

(

𝑎
√

)

,

6

1 + 𝑏2
Fig. 6.3. Difference between estimated conditional distribution functions and
confidence bounds.

see Ellison (1964), we then have

𝐹 𝑉𝑌 |𝑋,𝑌2 (𝑦|𝑥, 𝑦2) = 𝑃 (𝑈 (𝑦) ≤ 𝑥′𝛽1(𝑦) + 𝑦2𝛽2(𝑦)) = 𝛷(𝑥′𝛽1(𝑦) + 𝑦2𝛽2(𝑦)),

(A.2)

which would the same as 𝐸(𝑌 ≤ 𝑦|𝑋 = 𝑥, 𝑌2 = 𝑦2) if 𝑈 (𝑦) were
independent of 𝑋 and 𝑌2, see Remark 1.3 below. So, (A.2) can
be interpreted as the expression for the conditional distribution
function in the hypothetical case that 𝑌2 is exogenized. From
(A.2) we observe that consistent estimation of the parameters
in (3.2) leads to consistent estimation of 𝐹 𝑉𝑌 |𝑋,𝑌2 (𝑦|𝑥, 𝑦2) by the
continuous mapping theorem.
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3. Assuming joint normality of (𝑈 (𝑦), 𝑉 ,𝑋,𝑍), 𝑈 (𝑦) = 𝜓𝑌2 + 𝐶(𝑦)
for 𝜓 = 𝜎12

𝜎2𝑌2
= 𝜌𝜎2

𝜎2𝑌2
, where 𝐶(𝑦) is independent of 𝑌2 and 𝜎2𝑌2 =

𝑉 𝑎𝑟(𝑌2). Then, similarly as in Li et al. (2022),

𝑃 (𝑌 ≤ 𝑦|𝑋 = 𝑥, 𝑌2 = 𝑦2) = 𝛷

(

𝑥′𝛽1(𝑦) +
(

𝛽2(𝑦) + 𝜓
)

𝑦2
√

1 − 𝜏2

)

with 𝜏 = 𝜎12
𝜎𝑌2

= 𝜌𝜎2
𝜎𝑌2

. This is the quantity that standard probit
would estimate, but this is not the quantity we are interested
in. The present paper aims at estimating ∫ 𝑃 (𝑌 ≤ 𝑦|𝑋 = 𝑥, 𝑌2 =
𝑦2, 𝑉 = 𝑣)𝑑𝐹𝑉 (𝑣), which is a different object.

4. For fixed 𝑦 and under condition (A.1), the estimator obtained
in Step 2 in the end of Section 3.1 is the two step estimator
by Rivers and Vuong (1988). In the case of just identified models
(one instrument for the endogenous regressor), this estimator is
then numerically equal to the maximum likelihood estimator for
𝜃(𝑦).8

ppendix B. Assumptions and Proof of Theorem 1

The assumptions required for Theorem 1 are formulated in terms
f the score function which is based on the binary choice model (3.4)
∶ 𝛩 ×  → 𝛩 with 𝛩 being a compact subset of R𝑘+2 and an open

interval  that covers a compact interval  . Define

∗
𝑖 (𝜃(𝑦), 𝑦, 𝑣) =

(

𝐼𝑦,𝑖
𝑓𝑖(𝑦)
𝐹𝑖(𝑦)

+ (1 − 𝐼𝑦𝑖 )
−𝑓𝑖(𝑦)

1 − 𝐹𝑖(𝑦)

)

(𝑋𝑖, 𝑌2𝑖, 𝑣)′

with 𝐹𝑖(𝑦) = 𝛬̃(𝑋′
𝑖𝛽1(𝑦) + 𝑌2𝑖𝛽2(𝑦) + 𝑣𝛼̃1), 𝑓𝑖(𝑦) = 𝑑𝐹𝑖(𝑦)∕𝑑𝜃(𝑦) and

𝜃(𝑦) = (𝛽1(𝑦), 𝛽2(𝑦), 𝛼̃1).
Then it holds (see Greene, 2017, eq. 17–17) that 𝛹 (𝜃(𝑦), 𝑦) =

lim𝑛→∞
1
𝑛
∑𝑛
𝑖=1 𝛹

∗
𝑖 (𝜃(𝑦), 𝑦, 𝑉𝑖). In the remaining part of this appendix, we

denote the true parameter by 𝜃0(𝑦). We impose similarly to Lemma E.1
and Lemma E.3 in Chernozhukov et al. (2013).

Assumption 1.

1. (a) 𝛹 ∶ 𝛩 ×  ↦ 𝛩 is continuous, and 𝜃 ↦ 𝛹 (𝜃, 𝑦) is the
gradient of a convex function in 𝜃 for each 𝑦 ∈  , (b) for
each 𝑢 ∈  , 𝛹

(

𝜃0(𝑦), 𝑦
)

= 0, (c) 𝜕
𝜕(𝜃′ ,𝑦)𝛹 (𝜃, 𝑦) exists at

(

𝜃0(𝑦), 𝑦
)

and is continuous at
(

𝜃0(𝑦), 𝑦
)

for each 𝑦 ∈  , and 𝛹̇𝜃0(𝑦),𝑦 ∶=
𝜕
𝜕𝜃′ 𝛹 (𝜃, 𝑦)

|

|

|𝜃0(𝑦)
obeys inf𝑦∈ inf

‖ℎ‖=1
‖

‖

‖

𝛹̇𝜃0(𝑦),𝑦ℎ
‖

‖

‖

> 𝑐0 > 0.

2. The function class  ∶= {𝛹∗
𝑖 (𝜃, 𝑦, 𝑉𝑖) ∶ 𝜃 ∈ 𝛩, 𝑦 ∈ } is Donsker

with square integrable envelope.
3. (a) For fixed 𝑦 and 𝜃(𝑦), 𝛹∗

𝑖 (𝜃, 𝑦, 𝑣) =∶ 𝑓𝑦(𝑣) as a function of 𝑣 is
two times continuously differentiable with 1

𝑛
∑𝑛
𝑖=1

𝑑2𝑓𝑦(𝑉𝑖)
𝑑2𝑣

= 𝑂𝑝(1),
where 𝑉𝑖 lies between 𝑉𝑖 and 𝑉𝑖. The analogous property is true for
𝐸(𝑓𝑦(𝑣)). (b) The regressor matrix for the first stage 𝐀𝑛 ∶= (𝐗𝑛𝐙𝑛)
has full column rank and is independent from 𝐕𝑛 ∶= (𝑉1,… , 𝑉𝑛),
where 𝐗𝑛 = (𝑋1,… , 𝑋𝑛)′,𝐙𝑛 = (𝑍1,… , 𝑍𝑛)′. (c) 𝐸(𝑑𝑓𝑦(𝑉𝑖)∕𝑑𝑉𝑖 ⋅𝐀𝑖)
is finite.

Ass.1.1 is required for the pointwise convergence of 𝜃̂(𝑦) to 𝜃0(𝑦). A
rucial point here is the positive definiteness of the derivative matrix
f the score vector in Ass. 1.1.(a), from which the existence of a
nique Z-estimator follows. Results from Newey (1987) (Assumption
.3.(v)) or Amemiya (1978), Section 6, yield that this holds in the just

dentified case if (A.1) holds, if 𝐸𝑋𝑍 ∶= 𝐸((𝑋𝑖, 𝑍𝑖)(𝑋𝑖, 𝑍𝑖)′) is invertible,
f the true parameters lie inside of the parameter space and if 𝛾2 ≠ 0,
ee Rivers and Vuong (1988). The invertibility condition implies that
eak instruments might be problematic for the estimation procedure.

Ass.1.2 concerns the uniform convergence of 𝜃̂(𝑦) to 𝜃0(𝑦). Due to
the boundedness of 𝛩, the (then assumed to be finite) norm of the

8 This is also true for the AGLS estimator from Amemiya (1978), which is
mplemented in the R-package ivprobit.
7

p

matrix 𝐸𝑋𝑍 can be chosen as the envelope in Ass. 1.2., see Step 3 in
the proof of Theorem 5.2 in Chernozhukov et al. (2013) and Example
19.7 in van der Vaart (1998). Then the Donsker property holds with
the observation that the function class  is a Lipschitz transformation
of VC classes.

Note that Ass. 1.2 is formulated in terms of the score function for
the case that 𝑉𝑖 is replaced by 𝑉𝑖. To ensure that the resulting estimation
error behaves in an unproblematic way, the high-level assumption Ass.
1.3 is imposed. This is fulfilled e.g. for a probit link function and
if standard assumptions concerning the asymptotic normality of OLS
estimators are fulfilled.

Proof of Theorem 1. Denote 𝑙∞()𝑝 the space of 𝑝-dimensional
bounded functions with index sex . We first show that, with Assump-
tion 1.2, Assumption 1.3 and a Taylor expansion

√

𝑛(𝛹̂ (⋅, ⋅)−𝛹 (⋅, ⋅)) ⇒𝑑
in 𝑙∞(𝛩× )𝑘+2, where 𝐴 is a Gaussian process. It holds with a Taylor

xpansion

𝑛(𝛹̂ (𝜃(𝑦), 𝑦) − 𝛹 (𝜃(𝑦), 𝑦)) = 1
√

𝑛

𝑛
∑

𝑖=1
𝛹∗
𝑖 (𝜃(𝑦), 𝑦, 𝑉𝑖) − 𝐸(𝛹

∗
𝑖 (𝜃(𝑦), 𝑦, 𝑉𝑖))

= 1
√

𝑛

𝑛
∑

𝑖=1
𝛹∗
𝑖 (𝜃(𝑦), 𝑦, 𝑉𝑖) − 𝐸(𝛹

∗
𝑖 (𝜃(𝑦), 𝑦, 𝑉𝑖))

+ 1
√

𝑛

𝑛
∑

𝑖=1

𝑑𝑓𝑦(𝑉𝑖)
𝑑𝑉𝑖

(𝑉𝑖 − 𝑉𝑖)

+ 1
√

𝑛

𝑛
∑

𝑖=1

𝑑𝐸(𝑓𝑦(𝑉𝑖))
𝑑𝑉𝑖

(𝑉𝑖 − 𝑉𝑖) +𝐷𝑛

=∶ 𝐴𝑛(𝑦) + 𝐵𝑛(𝑦) + 𝐶𝑛(𝑦) +𝐷𝑛(𝑦).

ith an application of the Cauchy–Schwarz inequality, 𝐷𝑛(𝑦) = 𝑜𝑝(1).
𝐴𝑛(𝑦) converges in distribution to a stochastic process due to the
Donsker property (Ass. 1.2). It holds

𝐵𝑛(𝑦) =
1
𝑛

(𝑑𝑓𝑦(𝑉1)
𝑑𝑉1

…
𝑑𝑓𝑦(𝑉𝑛)
𝑑𝑉𝑛

)

𝐀𝑛
( 1
𝑛
𝐀′
𝑛𝐀𝑛

)−1 1
√

𝑛
𝐀𝑛𝐕𝑛,

which converges to a normally distributed random variable. The anal-
ogous argument is valid for 𝐶𝑛(𝑦).

Then, with Assumption 1.1, Condition 𝑍 in Chernozhukov et al.
2013) holds and 𝑢 ↦ 𝜃0(𝑢) is continuously differentiable. Then, with
emma E.3 in Chernozhukov et al. (2013),

𝑛
(

𝜃(⋅) − 𝜃0(⋅)
)

= −𝛹̇−1
𝜃0(⋅),⋅

√

𝑛(𝛹̂ − 𝛹 )
(

𝜃0(⋅), ⋅
)

+ 𝑜P(1) ⇝ −𝛹̇−1
𝜃0(⋅),⋅

[

𝐴
(

𝜃0(⋅), ⋅
)]

=∶ 𝐺(⋅) (B.1)

n 𝑙∞( )𝑘+2.
We have the integral representation

̂𝑉
𝑌 |𝑋,𝑌2

(𝑦|𝑥, 𝑦2) = ∫ 𝛬
(

𝑥′̂̃𝛽1(𝑦) + 𝑦2̂̃𝛽2(𝑦) + 𝑣̂̃𝜌
)

𝑑𝐹𝑛(𝑣),

here 𝐹𝑛(𝑣) is the empirical distribution function of the OLS residuals
𝑣̂𝑖. As 𝑉 has distribution function 𝐹𝑉 , the population analogon is

𝑉
𝑌 |𝑋,𝑌2

(𝑦|𝑥, 𝑦2) = ∫ 𝛬
(

𝑥′𝛽1(𝑦) + 𝑦2𝛽2(𝑦) + 𝑣𝜌̃
)

𝑑𝐹𝑉 (𝑣).

he empirical process
√

𝑛
(

𝐹𝑛(⋅) − 𝛬(⋅)
)

converges to a Gaussian process
see e.g. Chen and Lockhart, 2001) in 𝑙∞(R). Then the result follows
rom Theorem 1 and applying the functional delta method on the vector

𝑛
(

𝜃(⋅) − 𝜃0(⋅)
𝐹𝑛(⋅) − 𝐹𝑉 (⋅)

)

. □

ppendix C. Special case of normally distributed latent variables

Under the normality assumption (A.1) (which has no immediate
mplications for the distribution of 𝑌 , as mentioned earlier) and in
he case of a just identified model, the estimators for the transformed

arameters 𝜃(𝑦) are equivalent to the estimators which are obtained
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A

from maximum likelihood estimation. In this case, the parameter vector
is given by 𝜗(𝑦) ∶= (𝛽1(𝑦), 𝛽2(𝑦), 𝛾1, 𝛾2, 𝜌, 𝜎22 ) (note that 𝜎12 and 𝜎2𝜖 can be
calculated from the other parameters). Similarly as in Hansen (2022),
the likelihood is derived by factorizing the joint density of 𝐼𝑦 and 𝑌2.

he log-likelihood is then essentially the sum of the standard regres-
ion and the standard probit log-likelihood. It is given as 𝐿𝑦(𝜗(𝑦)) =
∑𝑛
𝑖=1 𝐿𝑦,𝑖(𝜗̃(𝑦)) with

𝐿𝑦,𝑖(𝜗̃(𝑦)) = 𝐼𝑦,𝑖 log𝛷
(𝜇𝑦,𝑖(𝜗(𝑦))

𝜎𝜖

)

+ (1 − 𝐼𝑦,𝑖) log𝛷
(

1 −
𝜇𝑦,𝑖(𝜗(𝑦))

𝜎𝜖

)

− 1
2
log(2𝜋) − 1

2
log 𝜎22 −

1
2𝜎22

(

𝑌2,𝑖 −𝑋′
𝑖 𝛾1 −𝑍

′
𝑖 𝛾2

)2 .

t holds 𝜇𝑦,𝑖(𝜗(𝑦)) = 𝑋′
𝑖𝛽1(𝑦) + 𝑌2,𝑖𝛽2(𝑦) + 𝜌(𝑌2,𝑖 − 𝑋′

𝑖 𝛾1 − 𝑍′
𝑖 𝛾2) and

𝜖 =
√

1 − 𝜌2𝜎22 .
For each 𝑦, the parameter estimator can be equivalently calculated

y maximizing the likelihood function or by minimizing some norm
f the score function. The score function appears as 𝛹∗

𝑖 (𝜗(𝑦), 𝑦) =
𝜕

𝜕𝜗(𝑦)𝐿𝑦,𝑖(𝜗(𝑦)) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝑋𝑖
𝜎𝜖
𝐴𝑦,𝑖

𝑌2,𝑖
𝜎𝜖
𝐴𝑦,𝑖

𝑋𝑖
𝜎𝜖

(

−𝜌𝐴𝑦,𝑖 +
1
𝜎22

(

𝑌2,𝑖 −𝑋′
𝑖 𝛾1 −𝑍

′
𝑖 𝛾2

)

)

𝑍𝑖
𝜎𝜖

(

−𝜌𝐴𝑦,𝑖 +
1
𝜎22

(

𝑌2,𝑖 −𝑋′
𝑖 𝛾1(𝑦) −𝑍

′
𝑖 𝛾2

)

)

𝜕
𝜕𝜌

𝜇𝑦,𝑖(𝜗(𝑦))
𝜎𝜖

𝐴𝑦,𝑖
𝜕
𝜕𝜎22

𝜇𝑦,𝑖(𝜗(𝑦))
𝜎𝜖

𝐴𝑦,𝑖 −
1
𝜎22

+ 1
2𝜎42

(

𝑌2,𝑖 −𝑋′
𝑖 𝛾1 −𝑍

′
𝑖 𝛾2

)2

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

nd

𝑦,𝑖 = 𝐼𝑦,𝑖

(

𝛷
(𝜇𝑦,𝑖(𝜗(𝑦))

𝜎𝜖

))−1

𝜑
(𝜇𝑦,𝑖(𝜗(𝑦))

𝜎𝜖

)

− (1 − 𝐼𝑦,𝑖)
(

𝛷
(

1 −
𝜇𝑦,𝑖(𝜗(𝑦))

𝜎𝜖

))−1

𝜑
(

1 −
𝜇𝑦,𝑖(𝜗(𝑦))

𝜎𝜖

)

𝜕
𝜕𝜌

𝜇𝑦,𝑖(𝜗(𝑦))
𝜎𝜖

=
𝜎𝜖

(

𝑌2,𝑖 −𝑋′
𝑖 𝛾1 −𝑍

′
𝑖 𝛾2

)

+
(

𝑋′
𝑖𝛽1(𝑦) + 𝑌2𝑖𝛽2(𝑦) + 𝜌

(

𝑌2,𝑖 −𝑋′
𝑖 𝛾1 −𝑍

′
𝑖 𝛾2

)) 𝜌𝜎22
𝜎𝜖

𝜎2𝜖

𝜕
𝜕𝜎22

𝜇𝑦,𝑖(𝜗(𝑦))
𝜎𝜖

=

(

𝑋′
𝑖𝛽1(𝑦) + 𝑌2𝑖𝛽2(𝑦) + 𝜌

(

𝑌2,𝑖 −𝑋′
𝑖 𝛾1 −𝑍

′
𝑖 𝛾2

)) 𝜌𝜎22
𝜎𝜖

𝜎2𝜖
The maximum likelihood estimator is asymptotically efficient for

ixed 𝑦 and a similar result as Theorem 1 holds also in this case. As the
stimators for 𝛽1(𝑦) and 𝛽2(𝑦) are different for both cases, the resulting
imit process is different, however. In the case of the maximum likeli-
ood estimator, note that 𝐹 𝑉𝑌 |𝑋,𝑌2 (𝑦|𝑥, 𝑦2) ∶= 𝛷(𝑥′𝛽1,0(𝑦) + 𝑦2𝛽2,0(𝑦)) is a

differentiable transformation of the first 𝑘+1 components of the vector
𝜃0(𝑦). So, we can apply Theorem A.1 in Wied et al. (2012) to express the
limit process of (3.5) by means of the functional delta method and the
gradient of this function. To be precise, we have 𝑓 (𝑎, 𝑏) = 𝛷(𝑥′𝑎 + 𝑦2𝑏)

and 𝐷𝑓 (𝑎, 𝑏) =
(

𝑥𝜑(𝑥′𝑎 + 𝑦2𝑏)
𝑌2𝜑(𝑥′𝑎 + 𝑦2𝑏)

)

. This leads to

√

𝑛
(

𝐹𝑀𝐿
𝑉 ,𝑌 |𝑋,𝑌2

(⋅|𝑥, 𝑦2) − 𝐹 𝑉𝑌 |𝑋,𝑌2 (⋅|𝑥, 𝑦2)
)

⇒𝑑 𝐷𝑓 (𝛽1,0(⋅), 𝛽2,0(⋅))′
(

𝐺1,…,𝑘(⋅)
𝐺𝑘+1(⋅)

)

in 𝑙∞( ), (C.1)

where 𝐺1,…,𝑘(⋅), 𝐺𝑘+1(⋅) are the components of the limiting process of
√

𝑛(̂̃𝜃(𝑦) − 𝜃0(𝑦)), compare also (B.1).
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