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Abstract

We present a test to determine whether variances of time series are constant over time. The

test statistic is a suitably standardized maximum of cumulative first and second moments. We

apply the test to time series of various assets and find that the test performs well in applications.

Moreover, we propose a portfolio strategy based on our test which hedges against potential financial

crises and show that it works in practice.
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1 Introduction

It is well known, in particular in empirical finance, that variances among many time series cannot be

assumed to remain constant over longer stretches of time (Krishan et al., 2009). Especially, variances

of stock indices seem to vary over time. A good example is the recent financial crisis, in which capital

market volatilities and correlations raised quite dramatically. As a consequence, risk figures increased

significantly as diversification effects were overestimated (Bissantz et al., 2011). In literature, this

phenomenon is sometimes referred to as ”Diversification Meltdown” (Campbell et al., 2008) and is

well known also from other contexts.

A change in market parameters has serious consequences in practice, in particular for portfolio

optimization which is based on diversification effects between several assets. If the relevant market

parameters (e.g. volatilities) change, the optimization is no longer valid and the risk incorrectly cal-

culated. Similar problems occur to applications in risk management and the valuation of financial

instruments.

There are some methods to formally test for changes in volatilities, correlations or other dependence

measures and/or procedures for estimation of change points; many of them work in a parametric

environment (Chu, 1995; Chen and Gupta, 1997; Kokoszka and Leipus, 2000; Dias and Embrechts,

2004; Mikosch and Starica, 2004; Andreou and Ghysels, 2006; Galeano and Peña, 2007), look at

conditional parameters (Andreou and Ghysels, 2002), assume that potential break points are known

(Pearson and Wilks, 1933; Jennrich, 1970; Goetzmann et al., 2005), or simply estimate correlations

from moving windows without giving a formal decision rule (Longin and Solnik, 2002). See also

Andreou and Ghysels (2010) who provide a review on some of these methods.

Only recently, Aue et al. (2009) and Wied et al. (2011) have proposed formal completely nonpara-

metric tests for unconditional dependence measures in this context. They do not build upon prior

knowledge as to the timing of potential shifts. Aue et al. (2009) propose a test to detect changes in the

covariance structure, while Wied et al. (2011) present a method to test for changes in the correlation

structure between assets. They are based on cumulated sums of second order empirical cross moments

(in the vain of Ploberger et al., 1989) and reject the null of constant covariance or correlation structure

if these cumulated sums fluctuate too much.

This paper considers a non-parametric fluctuation test for constant variances over time. On the one

hand, this test can be regarded as a special case of the Aue et al. (2009)-test for the one-dimensional

case. On the other hand it goes beyond it by rigorously proving the asymptotic null distribution for

the case that the expected values are estimated by arithmetic means basing on the first j observations

(so that we compare successively estimated empirical variances). Moreover, we derive the asymptotic

distribution of our test statistic under local alternatives. We use proving methods that were also used

for the test for constant correlation described in Wied et al. (2011).

Our second contribution is the application to financial data and the derivation of an investment

strategy. We analyze the volatility structure of four indices including stocks, bonds and commodities
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and see that the test performs well throughout the whole empirical application. The resulting dates

of rejection seem to be reasonable. Besides, we suggest a simple investment strategy based on the test

and evaluate it by an out-of-sample study.

The paper is organized as follows. First, we describe the test statistic and its asymptotic distribution in

Section 2. Section 3 derives local power properties, Section 4 analyzes the finite sample performance

of the test by a small simulation study, Section 5 applies the test to financial data and Section 6

concludes. Proofs are given below the summary in the appendix.

2 Model and test statistic

Let (Xt, t = 1, 2...) be a sequence of random variables with finite absolute (4 + δ)th moments. We

want to test whether the variance of Xt,

Var(Xt) = E(X2
t )− (E(Xt))

2,

is constant over time, i.e. we test

H0 : Var(Xt) = σ2 ∀t ∈ {1, . . . , T} vs. H1 : ∃t ∈ {1, . . . , T − 1} : Var(Xt) 6= Var(Xt+1)

for a constant σ2. Our test statistic is

QT (X) = max
1≤j≤T

∣∣∣∣D̂ j√
T

([VarX]j − [VarX]T )

∣∣∣∣ (1)

where

[VarX]l =
1

l

l∑
t=1

X2
t −

(
1

l

l∑
t=1

Xt

)2

=: X2
l −

(
X l

)2
is the empirical variance calculated from the first l observations. Furthermore,

D̂ =
((

1,−2XT

)
D̂1

(
1,−2XT

)′)−1/2

with

D̂1 =
1

T

T∑
t=1

ÛtÛ
′
t + 2

T∑
j=1

k

(
j

γT

)
1

T

T−j∑
t=1

ÛtÛ
′
t+j

and

Ûl =

(
X2
l −X2

T

Xl −XT

)
,

k(x) =

1− |x|, |x| ≤ 1

0, otherwise
,

γT =
√
T .
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The scalar D̂ is needed for the asymptotic null distribution. It mainly captures the long-run-dependence

and the fluctuations resulting from estimating the expected value. The test rejects the null hypothesis

of constant variance if the empirical variances fluctuate too much, as measured by

max1≤j≤T |[VarX]j − [VarX]T |, with the weighting factor j√
T

scaling down deviations at the beginning

of the sample where the [VarX]j are more volatile.

The following technical assumptions are required for the limiting null distribution:

(A1) The sequence (Xt, t = 1, 2...) is weak-sense stationary.

(A2) For

Ut =

(
X2
t − E(X2

1 )

Xt − E(X1)

)

and Sj :=
∑j

t=1 Ut, we have

lim
T→∞

E
(

1

T
STS

′
T

)
=: D1 is finite and positive definite.

(A3) The r-th absolute moments of the components of Ut are uniformly bounded for some r > 2.

(A4) The sequence (Xt, t = 1, 2...) is L2-NED (near-epoch dependent) with size − r−1
r−2 , with r from

(A3), and constants (ct), t = 1, 2, . . . on a sequence (Vt), t = 1, 2, . . ., which is α-mixing of size

φ∗ := − r
r−2 , such that

ct ≤ 2
({

E|X2
t − E(X2

1 )|2 + E|Xt − E(X1)|2
}) 1

2 .

Assumption (A4) guarantees that

U∗t :=
(
X2
t , Xt

)′
is L2-NED with size 1

2 , see Davidson (1994). It could be modified to φ-mixing, requiring only finite 4-th

moments, but this would admit less serial dependence than we allow here. In particular, assumption

(A4) allows for GARCH-effects (see e.g. Hansen, 1991 or Carrasco and Chen, 2002), which are observed

in financial data. Note that Assumption (A1) is already partly fulfilled because we assume constant

variances under the null. The assumption of constant expected values is in line with Aue et al. (2009).

To investigate large sample properties, we make the transformation

QT (X) = sup
z∈[0,1]

∣∣∣∣D̂ τ(z)√
T

(
[VarX]τ(z) − [VarX]T

)∣∣∣∣
with τ(z) = [1 + z(T − 1)].

Theorem 2.1. Under H0 and Assumptions (A1) - (A4),

QT (X)→ sup
z∈[0,1]

|B(z)|,

where B(z) is a one-dimensional Brownian Bridge.
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The limit distribution of QT (X) is well known, see Billingsley (1968), and its quantiles provide an

asymptotic test.

3 Local power

In this section, we analyze the local power properties of our test. Since the distribution of the time

series now changes with T , we will deal with triangular arrays, i.e. the random variables (Xt), t ∈ Z,

and (Vt), t ∈ Z, from assumption (A4) form a triangular array. However, we stick to the former

notation for simplicity, i.e. (Xt) := (Xt,T ), (Vt) := (Vt,T ), t ∈ Z;T = 1, 2, . . ..

We replace assumption (A1) of weak-sense stationarity by

(A5) The sequence (Xt, t = 1, 2, ...) fulfills all properties of weak-sense stationarity except for E(X2
t ) =

m2
x + 1√

T
g
(
t
T

)
for a constant m2

x and a bounded function g which can be approximated by step

functions and which is not identically 0 such that the function∫ z

0
g(u)du− z

∫ 1

0
g(u)du

is different from 0 for at least one z ∈ [0, 1].

A typical example for the function g would be a step function with a jump from 0 to g0 in a given

point z0 which implies that the variance jumps at time [T · z0]. A piecewise constant function g with

multiple jumps would lead to multiple change points as in e.g. Inoue (2001) and using a continuous

function g would lead to continuously changing variances. Such local alternatives are also considered

in Ploberger and Krämer (1990) who analyze local power properties of the CUSUM and CUSUM of

squares test.

Theorem 3.1. Under Assumptions (A2) - (A5),

QT (X)→ sup
z∈[0,1]

|B(z) +D(z)|,

where D(z) = C
(∫ z

0 g(u)du− z
∫ 1

0 g(u)du
)

and C is a positive constant which depends on the data

and which is given in the appendix.

D(z) is a deterministic function which depends on the specific form of the local alternative under

consideration, characterized by g.

In combination with Anderson’s Lemma, Theorem 3.1 guarantees that the asymptotic power is always

larger than or equal to α, see Andrews (1997), p. 1114.

The supremum is now taken over the absolute value of a Brownian Bridge plus a deterministic function

D(z). Its distribution is rather unwieldy, but it is possible to give a more simple result for the rejection

probability for large g. To this purpose, rewrite assumption (A5) as g(z) = Mh(z) for a function h
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and a factor M . The function h represents the structural form of the alternative, whereas M captures

its amplitude.

Corollary 3.2. Let Assumptions (A2) - (A5) be true with g(z) = Mh(z). Let PH1(M) be the rejection

probability for given M under the alternative and let ε > 0. Then there is a M0 such that

lim
T→∞

PH1(M) > 1− ε

for all M > M0.

This means that local rejection probabilities become arbitrarily large as structural changes are in-

creasing.

4 Finite sample behavior

In this section, we investigate the finite sample properties of our test. First, we analyze the size under

fulfilled assumptions. Since Assumption (A3) is questionable in financial data due to heavy tails (the

third or fourth moment might not exist), we also investigate the robustness against violations of this

assumption. Next, we analyze the power properties of the test.

Finally, we analyze the size properties in an online study, i.e. if we want to do sequential testing by

successively enlarging the data day-by-day. Theorem 2.1 shows that the test asymptotically keeps

the size if it is applied once. The additional question here is how the size is affected in an online

application if several tests are performed.

For the size analysis, we use an AR(1)-process with ρ = 0.1 and tν-distributed innovations with ex-

pectation 0, variance σ2 = 1 and different values of ν. The assumptions require ν > 4, but we also

include smaller values of ν. Anyway, ν must be larger than 2 so that the variance exists. We vary

the length of the time series T , always use 5000 replications and a nominal level of α = 1% and 5%,

respectively. Tables 1 and 2 give the results; we see that the test basically keeps the size, but is too

conservative. Nevertheless, the size increases for increasing T and increasing ν, although it seems that

there are convergence problems for ν ≤ 4.

-Insert Tables 1 and 2 about here-

The setup for the power analysis is the same as before with the only difference that the variance

jumps from σ2
1 = 1 to different values of σ2

2 in the middle of the time series. The choices of σ2
2 are

quite realistic because volatilities vary a lot in practice (see, e.g., Bissantz et al., 2011). We consider

different amounts of increasing as well as decreasing variances. We use t5-distributed innovations. The

results are written down in Tables 3 and 4, it is especially seen that the power increases with T .
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-Insert Tables 3 and 4 about here-

For the online setup, we generate time series of length T with again AR(1)-process with ρ = 0.1,

t5-distributed innovations, variance 1 and the nominal levels α = 5% and α = 1%. We perform tests

in a sequential way, i.e. we first apply the test on the first 20-th data point (see the application section

for a discussion of this choice), then on the 21-st data point and so on. The final test statistic is given

by the maximum over all T − 20 + 1 test statistics. Table 5 gives the empirical size in this setup. We

see that the actual size increases in T and is higher than the nominal levels (especially for α = 5%),

but that it is still controlled, i.e. it does not reach 1. Nevertheless, the empirical size for α = 5% seems

to be too high for practical investigations. Hence, it would be worthwhile to implement an theoretical

analysis about this issue to adjust the overall size to a given α using ideas of Chu et al. (1996), but

this lies beyond the scope of the present paper. The overall size for α = 1% is still acceptable for

practical applications.

-Insert Table 5 about here-

5 Applications

5.1 Historical rejection dates

In order to evaluate the quality of the test it is applied to several assets: two stock indices (S&P 500,

DAX), a commodity index (CRB Spot Index) and a government bond index (REX), using daily data

(final quote) for the time span 01.01.1988 - 01.04.2010. The procedure for the test is as follows. We

start at the 20-th available data point and increase the period of time successively for one day. The

choice of the starting point is due to the fact that approximately 20 data points are required for a re-

liable estimation of the volatility. For each of these time intervals the test is applied for α = 1%. This

procedure is successively performed until the tests rejects the null hypothesis of constant volatility. If

this is the case, the 20-th day after rejection is the new starting point and the procedure is repeated

for the remaining time span. We have to wait these 20 days as the volatility cannot be assumed to

be constant anymore, if the null hypothesis is rejected. A new reliable estimation requires another 20

data points after the point in time, where the volatility changed. Otherwise, the estimator would be

biased as data of two different phases were mixed.

Table 6 includes the rejection dates of the null hypothesis for α = 1%. There are not too many

break points detected, which coincides with our simulation study stating that there are no serious

overrejection problems for α = 1%.

-Insert Table 6 about here-
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The results seem to be reasonable. For example, the rejection dates coincide with the Asian financial

crisis in 1997, the LTCM collapse and the ruble crisis in 1998, the beginning of the war on Iraq in

2003, the bursting of the U.S. real estate bubble in 2007 or the Lehman bankruptcy in 2008.

Besides, large differences of the market parameters between the break points can be observed. Fig-

ure 1 and Table 7 illustrate this phenomenon for the DAX. Table 7 includes the annualized market

parameters (returns and volatilites) for the respective period between two structural breaks. Figure 1

shows the average and the rolling 250-day volatility of the DAX. Besides, the rejection dates are given

for α = 1%.

-Insert Figure 1 and Table 7 about here-

5.2 A trading strategy

The results above show that changes in market parameters can be detected reasonably for α = 1%. In

order to derive a trading strategy, which is based on the proposed test, we perform an out of sample

study. In this study, we investigate a simple strategy which applies the proposed test.

The strategy is as follows. The available time span since the last detected change in volatility is used

to calculate the historical return which is used as an estimator for the future. Moreover, an asset is

allowed to be bought if at least 20 days have passed since the last structural break. Finally, the capital

is equally distributed between all assets with positive expected future return.

Portfolio shiftings are done the day after the test rejected in order to design the study realistic. We

choose α = 1% for the test and neglect transaction costs. Besides, we assume daily rebalancing and

neglect currency fluctuations.

The results can be found in Figure 2 and Table 8.

-Insert Figure 2 and Table 8 about here-

The average return of the strategy is 1,06% higher than the average of the underlying assets. The

volatility is lower, both compared to the arithmetic mean of all asset volatilities (30,27%) and compared

to the volatility of the naive portfolio in which diversification effects are included (3,55%). Moreover,

the portfolio development is relatively stable and only a little money is lost during financial crisis.

This result is very remarkable as three risky assets are considered throughout the study.

6 Summary

In this paper, we introduced and proved a new test to determine whether variances of time series

are constant over time. Thereby, the test statistic is a suitably standardized maximum of cumulative

first and second moments. We applied the test to several time series of assets which are relevant

for applications in finance and found that the test performs well in these applications. The market
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parameters fluctuate a lot comparing the different periods between structural breaks.

Moreover, we derived a simple trading strategy, which outperforms a strategy based on equal portfolio

weights. More precisely, the return increased by 1,06% while at the same time the volatility decreased.

This is remarkable because the trading strategy is very simple. We believe that refinements of the

strategy will lead to further improvements. This topic will be in focus of our ongoing research.

Apart from such refinements, there are other aspects which might be worth investigating in the future.

The test statistic (1) is the supremum over the [VarX]j-series. Alternatively, other functionals are

likewise possible, such as some standardized version of

max
1≤j≤T

([VarX]j − [VarX]T )− min
1≤j≤T

([VarX]j − [VarX]T ) ,

or simply some suitable average (see Krämer and Schotman, 1992, or Ploberger and Krämer, 1992).

Another interesting topic would be a detailed discussion of the change point locations. A CUSUM

test for retrospective break detection always yields a natural estimator of the (dominating) change

point in a given time series, if the test rejects the null hypothesis. In our case, it is the point where

the weighted differences of the variances are maximal, i.e.

argmax1≤j≤T

∣∣∣∣D̂ j√
T

([VarX]j − [VarX]T )

∣∣∣∣ . (2)

It might be an interesting question for future work, if one obtains different change point locations with

such a retrospective analysis.

A Proofs

A.1 Main proofs

For the proof of Theorem 2.1 and 3.1, we need some lemmas and some notation: Let I be some index

set, e.g. I = [ε, 1] for some ε ∈ [0, 1). For an integer k ≥ 1, let l∞(I,Rk) be the set of all bounded

functions θ : I → Rk, equipped with supremum norm

||θ||∞ := sup
i∈I
||θ(i)||,

where || · || denotes Euclidean norm.

At first, we consider the behavior under the null hypothesis, i.e. we prove Theorem 2.1.

Lemma A.1. Under H0 and Assumptions (A1) - (A4), in l∞([0, 1],R),

D̂
τ(·)√
T

(
[VarX]τ(·) − σ2

)
→d W1(·)

where σ2 = E(X2
1 )− (E(X1))2 and W1(z) is a one-dimensional Brownian Motion.
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Note that Lemma A.1 gives a result about convergence on the interval [0, 1]. It requires the follow-

ing auxiliary lemma which differs from Lemma A.1 by considering the interval [ε, 1] for arbitrary ε > 0.

Lemma A.2. Under H0 and Assumptions (A1) - (A4), for arbitrary ε > 0, in l∞([ε, 1],R),

D̂
τ(·)√
T

(
[VarX]τ(·) − σ2

)
→d W1(·)

where σ2 = E(X2
1 )− (E(X1))2 and W1(z) is a one-dimensional Brownian Motion.

Lemma A.2 is proved with a basic theorem on a modified functional delta method given in Subsection

A.2 which is also used in Wied et al. (2011). This method is only applicable on the interval [ε, 1] and

not on [0, 1], because supz∈[ε,1]

∣∣∣ √Tτ(z)

∣∣∣→ 0, while supz∈[0,1]

∣∣∣ √Tτ(z)

∣∣∣→∞.

Proof of Lemma A.2

For

Ut =

(
X2
t − E(X2

1 )

Xt − E(X1)

)

we get with a common multivariate invariance principle, in l∞([ε, 1],R),

1√
T

τ(·)∑
t=1

Ut =
τ(·)√
T

(
X2
τ(·) − E(X2

1 )

Xτ(·) − E(X1)

)
→d D

1/2
1 W2(·).

Here, W2(z) is a two-dimensional Brownian Motion with independent components and D1 = E(U1U
′
1)+

2
∑∞

j=1 E(U1U
′
1+j).

Applying Theorem A.5 with the function f : R2 → R, f(x, y) = x− y2, yields

τ(·)√
T

(
X2
τ(·) −

(
Xτ(·)

)2 − σ2
)
→d

(
1 −2E(X1)

)
D

1/2
1 W2(·) =: B W2(·)

resp.

τ(·)√
T

(
[VarX]τ(·) − σ2

)
→d (BB′)1/2W1(·).

The lemma then follows with the continuous mapping theorem and the fact that D1 can be consis-

tently estimated with a kernel estimator from Davidson and de Jong (2000). �

Proof of Lemma A.1

With WT (z) = D̂ τ(z)√
T

(
[VarX]τ(z) − σ2

)
, let

W ε
T (z) =

WT (z), z ≥ ε

0 z < ε
,

10
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W ε(z) =

W1(z), z ≥ ε

0 z < ε
.

Lemma A.2 implies that

W ε
T (·)→d W

ε(·)

in l∞([0, 1],R) and also

W ε(·)→d W1(·)

for rational ε→ 0 in l∞([0, 1],R).

The convergence of WT (·) in l∞([0, 1],R) follows with Theorem 4.2 in Billingsley (1968) if we can show

that

lim
ε→0

lim sup
T→∞

P( sup
z∈[0,1]

|W ε
T (z)−WT (z)| ≥ η) = lim

ε→0
lim sup
T→∞

P( sup
z∈[0,ε]

|WT (z)| ≥ η) = 0

for all η > 0.

For this, note that

WT (z) = D̂
τ(z)√
T

(
X2
τ(z) − E(X2

1 )
)
− D̂ τ(z)√

T

((
Xτ(z)

)2 − (E(X1))2
)

= D̂
τ(z)√
T

(
X2
τ(z) − E(X2

1 )
)
− D̂ τ(z)√

T

(
Xτ(z) − E(X1)

) (
Xτ(z) + E(X1)

)
.

We can deduce that

lim sup
T→∞

P( sup
z∈[0,ε]

|WT (z)| ≥ η) ≤ P( sup
z∈[0,ε]

C1|W ∗1 (z)| ≥ η) + P( sup
z∈[0,ε]

C2|W ∗∗1 (z)| ≥ η),

where C1 and C2 are two constants and W ∗1 (z) and W ∗∗1 (z) are two Brownian motions, respectively.

This sum becomes arbitrarily small for ε→ 0 and so the lemma is proved. �

Proof of Theorem 2.1

We have

D̂
τ(z)√
T

(
[VarX]τ(z) − [VarX]T

)
= D̂

τ(z)√
T

(
[VarX]τ(z) − σ2

)
+ D̂

τ(z)√
T

(
σ2 − [VarX]T

)
= D̂

τ(z)√
T

(
[VarX]τ(z) − σ2

)
− τ(z)

T
D̂
τ(1)√
T

(
[VarX]τ(1) − σ2

)
and thus get

D̂
τ(·)√
T

(
[VarX]τ(·) − [VarX]T

)
→d A(·)

11
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with A(z) = W1(z) − zW1(1). This is a representation of a one-dimensional Brownian Bridge. Now,

the theorem follows with the continuous mapping theorem. �

We now prove Theorem 3.1 for the local power properties with essentially the same techniques as

Theorem 2.1.

Lemma A.3. Under Assumptions (A2) - (A5), in l∞([0, 1],R),

D̂
τ(·)√
T

(
[VarX]τ(·) − σ2

)
→d W1(·) +D∗(·)

where σ2 = m2
x − (E(X1))2, W1(z) is a one-dimensional Brownian Motion and

D∗(z) = C

∫ z

0
g(u)du

with a positive constant C that depends on the data.

Lemma A.3 requires

Lemma A.4. Under Assumptions (A2) - (A5), for arbitrary ε > 0, in l∞([ε, 1],R),

D̂
τ(·)√
T

(
[VarX]τ(·) − σ2

)
→d W1(·) +D∗(·)

where σ2 = m2
x − (E(X1))2, W1(z) is a one-dimensional Brownian Motion and D∗(z) is the same as

in Lemma A.3.

Proof of Lemma A.4

For

Ut =

(
X2
t −m2

x − g
(
t
T

)
Xt − E(X1)

)

we get as above in Lemma A.4

1√
T

τ(·)∑
t=1

Ut =
τ(·)√
T

(
X2
τ(·) −m

2
x

Xτ(·) − E(X1)

)
−

(
1
T

∑τ(·)
t=1 g

(
t
T

)
0

)
→d D

1/2
1 W2(·).

Another application of the modified functional delta method yields with B =
(

1 −2E(X1)
)
D

1/2
1 and

D1 from Assumption (A2)

τ(·)√
T

(
[VarX]τ(·) − σ2

)
→d (BB′)1/2W1(·) +

∫ ·
0
g(u)du.

12
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The Continuous Mapping Theorem yields

D̂
τ(·)√
T

(
[VarX]τ(·) − σ2

)
→d W1(·) + (BB′)−1/2

∫ ·
0
g(u)du

which completes the proof with C := (BB′)−1/2. �

Proof of Lemma A.3

The proof is analogous to the proof of Lemma A.1 with

WT (z) = D̂
τ(z)√
T

(
X2
τ(z) −m

2
x

)
− D̂ τ(z)√

T

((
Xτ(z)

)2 − (E(X1))2
)
.

�

Proof of Theorem 3.1

The proof is analogous to the proof of Theorem 2.1. �

Proof of Corollary 3.2

We have

QT (X)→d sup
z∈[0,1]

|B(z) +MD(z)| = M

∣∣∣∣B(z)

M
+D(z)

∣∣∣∣ ,
where D(z) 6= 0 for at least one z. Hence,

M

∣∣∣∣B(z)

M
+D(z)

∣∣∣∣ ≥MR

for a continuously distributed random variable R which is almost surely positive. So the test statistic

becomes arbitrary large, in particular, larger than every quantile of the asymptotic distribution under

the null hypothesis. �

A.2 Modified functional delta method

Theorem A.5. Consider a sequence (θT )T of functions in l∞(I,Rk) converging uniformly to a func-

tion θ ∈ l∞(I,Rk). Furthermore, let (sT )T be a sequence of functions sT : I → R\{0} such that

||s−1
T ||∞ → 0, and let (MT )T be a stochastic processes on I with values in Rk and bounded sample

paths such that

||ZT ||∞ = Op(1) with ZT := sT (MT − θT ).

13
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Furthermore, let f : Rk → Rl be a mapping which is continuously differentiable on an open set Ω ⊂ Rk

with derivative Df . Suppose that

θ(I) is a compact subset of Ω,

where θ(I) stands for the closure of the set {θ(i) : i ∈ I} in Rk. Then it holds

1. sT (·) (f(MT (·))− f(θT (·))) = Df(θ(·))ZT (·) +RT

with a stochastic process such that

||RT ||∞ = op(1).

2. If ZT even converges in distribution (in l∞(I,Rk)) to a stochastic process Z, then

sT (·) (f(MT (·))− f(θT (·)))→d Df(θ(·))Z(·).

Proof. Assertion 2 directly follows from Assertion 1 with the usual continuous mapping theorem.

To prove the expansion from Assertion 1, note that for any i ∈ I,

RT (i) := sT (i) (f(MT (i))− f(θT (i)))−Df(θ(i))ZT (i)

= sT (i)
(
f
(
θT (i) + s−1

T (i)ZT (i)
)
− f(θT (i))

)
−Df(θ(i))ZT (i)

=

∫ 1

0
Df

(
θT (i) + us−1

T (i)ZT (i)
)
ZT (i)du−Df(θ(i))ZT (i)

=

∫ 1

0

(
Df

(
θT (i) + us−1

T (i)ZT (i)
)
−Df(θ(i))

)
du · ZT (i), (3)

provided that

rn := ||θT − θ||∞ + ||s−1
T ||∞||ZT ||∞ = op(1)

is smaller than

ρ := inf
x∈θ(I),y∈Rk\Ω

||x− y|| > 0.

The latter condition is needed such that (3) is well defined.

Hence

||RT ||∞ ≤ sup
{
||Df(y)−Df(x)|| : x ∈ θ(I), y ∈ Rk, ||y − x|| ≤ rT

}
· ||ZT ||∞. (4)

Here ||Df(y) − Df(x)|| is the usual operator norm of the matrix Df(y) − Df(x) in case of y ∈ Ω.

(In case of y /∈ Ω define ||Df(y) − Df(x)|| = ∞.) One can easily deduce from continuity of Df(·)
on Ω, compactness of θ(I) ∈ Ω and rT = op(1) that the right hand side of (4) converges to zero in

probability.
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T = 200 T = 500 T = 800 T = 1000

ν = 3 < 0.001 < 0.001 0.001 0.001

ν = 4 < 0.001 0.001 0.003 0.001

ν = 5 0.001 0.001 0.002 0.002

ν = 8 0.001 0.002 0.002 0.003

ν = 20 0.001 0.003 0.004 0.005

Table 1: Empirical size (α = 1%)

T = 200 T = 500 T = 800 T = 1000

ν = 3 0.009 0.011 0.018 0.014

ν = 4 0.014 0.021 0.020 0.021

ν = 5 0.016 0.019 0.023 0.027

ν = 8 0.015 0.023 0.028 0.029

ν = 20 0.019 0.025 0.031 0.040

Table 2: Empirical size (α = 5%)

T = 200 T = 500 T = 800 T = 1000

σ2
2 = 2 0.023 0.335 0.672 0.796

σ2
2 = 4 0.202 0.879 0.969 0.982

σ2
2 = 0.5 0.013 0.304 0.650 0.788

σ2
2 = 0.25 0.151 0.872 0.966 0.979

Table 3: Empirical power: The variance is equal to σ2
1 = 1 in the first half of the sample and equal to

σ2
2 in the second half (α = 1%).

T = 200 T = 500 T = 800 T = 1000

σ2
2 = 2 0.262 0.718 0.896 0.939

σ2
2 = 4 0.718 0.972 0.991 0.993

σ2
2 = 0.5 0.216 0.682 0.886 0.931

σ2
2 = 0.25 0.675 0.968 0.987 0.991

Table 4: Empirical power: The variance is equal to σ2
1 = 1 in the first half of the sample and equal to

σ2
2 in the second half (α = 5%).

T = 200 T = 500 T = 800 T = 1000

α = 5% 0.140 0.228 0.270 0.294

α = 1% 0.008 0.016 0.022 0.026

Table 5: Results for the online detection
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S&P DAX REX CRB

02.12.1993 29.01.1988 10.10.1994 17.11.1998

27.03.1997 12.07.1989 18.03.2009 29.05.2009

15.08.2005 04.10.1994 26.06.2009

11.12.2007 21.10.1997

01.12.2008 24.03.2003

10.09.2009 23.12.2004

06.10.2008

Table 6: Rejection dates (α = 1%)

DAX Returns Volatilities

29.01.1988 - 12.07.1989 31,91% 14,33%

12.07.1989 - 04.10.1994 5,28% 19,06%

04.10.1994 - 21.10.1997 21,93% 15,18%

21.10.1997 - 24.03.2003 -7,03% 29,92%

24.03.2003 - 23.12.2004 24,35% 21,21%

23.12.2004 - 06.10.2008 7,91% 16,89%

06.10.2008 - 01.04.2010 4,70% 34,28%

Table 7: Rejection dates and annualized market parameters (α = 1%)

Strategy CRB REX DAX S&P Naive strategy

Return p.a. 5,74% 2,23% 5,76% 8,09% 6,62% 5,68%

Volatility p.a. 8,77% 6,51% 3,30% 22,65% 17,84% 9,09%

Table 8: Summary statistics for all indices and our strategy

18



D. Wied, M. Arnold, N. Bissantz and D. Ziggel: A new fluctuation test for constant variances

Figure 1: Volatility and structural breaks of the DAX

Figure 2: Strategy and underlying assets
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