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Abstract

We propose a monitoring procedure to test for the constancy of the correlation
coefficient of a sequence of random variables. The idea of the method is that a
historical sample is available and the goal is to monitor for changes in the correlation
as new data become available. We introduce a detector which is based on the
first hitting time of a CUSUM-type statistic over a suitably constructed threshold
function. We derive the asymptotic distribution of the detector and show that the
procedure detects a change with probability approaching unity as the length of the
historical period increases. The method is illustrated by Monte Carlo experiments
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1. INTRODUCTION

The correlation coefficient is the most widely used method to measure dependence be-
tween a sequence of two random variables. In the particular case of financial time series,
the analysis of the correlations between returns are very important in risk management.
Indeed, there is compelling empirical evidence that the correlation structure of financial
returns cannot be assumed to be constant over time, see e.g. Longin and Solnik (1995) and
Krishan et al. (2009). Consequently, in periods of financial crisis, investors are extremely
concerned about changes on correlations because in such periods, the correlation often
increases, a phenomenon which is referred to as “Diversification Meltdown” (Campbell
et al., 2008).

In order to construct an adequate model and to forecast future data, structural stability
is a key point. Testing for structural stability has recently become one of the principal
objectives of statistical analysis. There are two distinctly different approaches to tackle
this problem. On the one hand, the main goal of retrospective procedures is to look
for the presence of change points given an historical dataset of fixed size. On the other
hand, the main goal of sequential detection procedures is to detect as soon as possible
the presence of a change point once new data become available. This article is concerned
with the latter kind of procedures. We adopt the framework in Chu et al. (1996) in which
a historical sample is available and the goal is to monitor for a change point as new
data become available. In particular, we analyze the case of changes in the correlation
structure of a sequence of random variables. Other papers analyzing related problems
under this framework are Chu et al. (1996), Horvéth et al. (2004), Aue et al. (2006), Aue
et al. (2009a), Aue et al. (2009b) and Aue et al. (2011), among others.

The paper is organized as follows. Section 2 proposes a monitoring procedure for de-
tecting a correlation change and presents its asymptotic properties under the null and
alternative hypothesis as well. Section 3 analyzes the finite sample properties of the
proposed procedure via Monte Carlo experiments. Section 4 illustrates the procedure by

analyzing log-returns of the S&P 500 and IBM stock assets. Finally, all proofs are given



in an appendix.

2. THE MONITORING PROCEDURE

Let (X, Y;), for t € Z, be a sequence of bivariate random variables with finite 4-th

moments and correlation
_ Cov(X,,Y))
V/Var(X;)Var(Y;)

Pt

We are interested in the hypothesis of correlation stability of the sequence. For that,
assume that we have observed a sequence of the bivariate random vector (X;,Y;) of size
m. Since we are interested in sequentially monitoring whether or not the correlation
coefficient remains stable over time, we require that the correlation is constant over the

historical period of length m, i.e.:
Assumption 1. p; = ... = p,,, where m is a positive integer.

Although Assumption 1 may appear a strong assumption, in practice, if a sufficient
amount of historical data is available, it can be analyzed with the retrospective change
point method proposed by Galeano and Wied (2012). Given the results of this procedure,
one can make necessary adjustments to ensure correlation stability. Now, we want to test

the null hypothesis given by:

Hy:pr=...=pm =Pmy1=-...

versus the alternative H; that p; changes at some t > m + 1, i.e.

Hi 3" >1:p1=...=pm= .. = Pimik—1 F Ptk = Pmakitl = -

where k* is referred to as the change point and is assumed unknown.

Denote with pl the empirical correlation coefficient calculated from the observations k to



[ with k < [, given by:

b= S (X = X)) (Y, = Vi)
ko - J—
\/Zylf:k(Xt - Xk,l)Q\/ng:k(Yt —Y5,)?

where Yk;,l = ﬁ Zi:k X; and ?k,l = ﬁ Zi:k Y;. The sequential procedure is based
on the detector:
k

Vie = D\/—% (Pl —p") , k €N, (1)

where D is an estimator which is calculated from the first m observations and is given in
the appendix, see also Wied et al. (2012). We stop and declare Hy to be invalid at the
first time k such that the detector V}, exceeds the value of a scaled threshold function w,

therefore yielding the stopping rule:

Tm:min{k§[mT]:]Vk\>c«w(%>}, (2)

where T is a positive constant, ¢ is a suitably chosen constant such that under Hy,
lim,,, oo P(7 < 00) = «, with @ € (0,1), and w is a positive and continuous function.
Here, we write 7, < oo to indicate that the monitoring has been terminated during
the testing period, i.e., the detector Vi has crossed the boundary ¢ - w(k/m) for some
k < [mT]. We write 7,, = oo if the detector has not crossed the boundary during the
testing period (compare Aue et al., 2011). Note that the stopping time 7, need not be
the change point; in fact the change point might be before 7,,. Some comments on the
issue of estimating the change point once Hy has been declared invalid will be given at
the end of this section.

For deriving asymptotic results under Hj,, some additional assumptions are necessary.

The next three assumptions correspond to (Al), (A2) and (A3) in Wied et al. (2012).

Assumption 2. For

/
U = (Xg —E(X?), Y2-E(Y?), X;—EX), Yi—EY), XY;— E(Xth))
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P Y/
and S; == ) ;,_, Uy, we have

1
lim E (—SmS;n> =: Dy (finite and positive definite).
m

m—r0o0

Assumption 3. The r-th absolute moments of the components of Uy are uniformly

bounded for some r > 2.

Assumption 4. The vector (Xy,Y;) is Lo-NED (near-epoch dependent) with size —"—

=
where r from Assumption 3, and constants (¢;),t € Z, on a sequence (V;),t € Z, which

is a-mizing of size ¢* 1= —-15 i.e.

(X0 Y2) = E((X0 YD oWty Vi)l < cony
with lim;_,., v; = 0, such that
cr < 2||Ui]2

with Uy from Assumption 3 and the Lao-norm || - ||o.

Furthermore, we impose a stationarity condition. This condition might be slightly relaxed
to allow for some fluctuations in the first and second moments (see (A4) and (A5) in Wied
et al., 2012), but for ease of exposition and because the procedure would remain exactly

the same we stick to this notation.
Assumption 5. (X,,Y)),t € Z, is weak-sense stationary.
Our main result is then:

Theorem 1. Under Hy, Assumptions 1, 2, 3, 4 and 5 and for any T > 0,

Vim. b
limP(Tm<oo)—limP<sup|[—M>c)—P(supm>c), (3)

m—00 m—00 0<b<T U)(b) 0<b<T 'Z,U(b)

where G(+) is a mean zero Gaussian process with covariance E(G(k)G(l)) = min(k, ) +kl.
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Theorem 1 establishes the asymptotic behavior of the monitoring procedure based on
the stopping rule 7,,, in Eq. (2). Following Aue et al. (2011), the limiting probability
in Eq. (3) can be written in an alternative way that allows for finite sample statistical
inference. First, it is easy to see that {G (b) : b€ [0,T]} =4 {W (b) + b€ : b€ [0,T]},
where {W (b) : b > 0} is a standard Brownian Motion independent of the standard Gaus-
sian random variable . Then, it is also easy to see that {W (b) + 0 :b € [0,T]} =4

{1+0)W (b/(1+0b)):be[0,T]} just by comparing their covariance structures. There-

sup LGOI _ supl_”‘w( ' )‘ @)

o<b<T w(b) o<b<T W (b) 1+b

fore,

Eq. (4) leads to an obvious choice of the threshold function: take w (b) = 1 4 b, because

v ()]

With this expression, quantiles of interest can be easily simulated with Monte Carlo

in this case:
|G (b
sup —->+ =4 Ssup
o<b<r w(b) " o<b<T

methods. However, once there occurs a change point, it is very important to quickly
detect it. Therefore, we consider a kind of generalization of this threshold function,

previously considered in Horvath et al. (2004), which is given by:

w(b) = (1+b)~max{(1i+b)7,e} (5)

where 0 < v < % and € > 0 is a fixed constant which can be chosen arbitrarily small in
applications.

Note that, if a correlation change occurs soon after the historical dataset, then, choosing
v as large as possible, the stopping rule 7, will stop nearly instantaneously. Note that
v = 1/2 is excluded, since Hy would else be rejected with probability one regardless
whether it is true or not because of the law of the iterated logarithm for Brownian

Motions at zero, see Aue et al. (2009b). Using the threshold function in Eq. (5) and



calling u = b/ (1+b), Eq. (4) leads to:

G(b 1
sup GO _ sy — L ). (6)
0<us< L max{u?, €}

Finally, calling s = u (T'+ 1) /T and taking into account that {W (u),u € [0,T/(T+1)]}

has the same covariance structure as { W (s),s €0, 1]}, Eq. (6) transforms into:

cwl (T | 3
_d(HT) S e W) )

Therefore, under the conditions in Theorem 1:

) T 27 1
'n”lbl—>H<l>o P(7m < 00) =P ((H——T) 0221 max {s7,e((T"+1)/T)7} W(s)l > C)

and Monte Carlo simulations can be used to obtain the constant ¢ («) such that:

T 3 1
P ((H_—T) 0221 max {s?,e((T"+1)/T)"} Wis)> C(Oé)> -

for any a € (0, 1). In this way, the probability of a false alarm is approximately « if m is
large enough.

For a local power analysis, we impose the assumption

Assumption 6. (X, Y;),t € Z, is weak-sense stationary with the difference that Cov(Xy,Y;) =

\/ng (%) with a bounded functz’on g that can be approzimated by step functions such that
g(z) =0,z €[0,1], df 2)|dz > 0.

Theorem 2 yields consistency of the monitoring procedure. Therefore, a correlation

change will be detected with high probability if the historical period is large enough.

Theorem 2. Under a sequence of local alternatives, Assumptions 1, 2, 3, 4, 5 and 6 and



for any T > 0,

Vim.
lim P(7, < c0) = lim P(sup M>c>:P(sup M>c>,

m—00 m—00 0<b<T W(b) 0<b<T w(b)

where G(-) is as in Theorem 1 and h(b) = H <f1b+1 g(z)dz —b- fol g(z)dz) for a constant

H depending on the data generating process.

Once the presence of a correlation change is detected, an estimate of its location is
provided by using the statistic proposed in Wied et al. (2012). The estimate of the
change point is k= argmax D, with

1<j<tm—1

D, = D

Pt = pi (®)

J
vV Tm
Note that, except for the estimator D, we do not use the historical period to compute
the value of the statistic D, but only the observations from m +1 to m+ 7, — 1. Monte
Carlo experiments have shown that the inclusion of the historical period severely distorts

the estimates of the change point location. A theoretical analysis of this estimator is

beyond the scope of this paper.

3. SIMULATIONS

In this section, we report the results of the Monte Carlo experiments that we have per-
formed to assess the finite sample performance of the proposed monitoring procedure. In
all the experiments, we consider three different values of the parameter ~ of the threshold
function w(b),b € [0, 7] in Eq. (5), v =0, 0.25 and 0.45, while we have taken ¢ = 107'°.
Figure 1 shows the plot of the three threshold functions considered (which does not yet
give concrete information about the critical values used in the procedure). Note that the
larger the values of 7, the smaller the values of w(b),b € [0,7]. The threshold function
with v = 0.45 is expected to allow for a quick detection of early change points. We

consider three different values of the size of the historical sample, m = 250, 500 and



1000. Note that these values are specially designated for financial returns in which we
can consider large historical samples. Finally, we consider four values of the parameter
T, T =0.5,1,2and 4. Note that these values cover a large number of sample sizes of the
generated bivariate series which is given by n = m + [T'm]. For instance, for m = 500,

the sample sizes of the series generated are 750, 1000, 1500 and 2500, respectively.
Figure 1 goes around here

First, we obtain critical values to apply the monitoring procedure for the different values
considered of v and T'. Table 1 shows the critical values at level o = 0.05 based on 10000
standard Brownian Motion processes approximated on a grid of 10000 equispaced points
in the interval [0,1]. Note that the critical values increases with 7" and/or with ~ as

expected.
Table 1 goes around here

Second, in order to obtain empirical sizes of the monitoring procedure, we generate 1000
bivariate series (X;,Y;), for t = 1,...,n, and any choice of v, T" and m, as follows.
Initially, we generate two series ()Z't, 2), for t = 1,...,n, independently, following the
GARCH(1, 1) models given by:

)?t = hl,tﬁl,t

hiy =0.01 4 0.05X2 | 4 0.8hy,1

and,

2 = h2,t€2,t

hay = 0.01 + 0.1Y,2, + 0.75hg,



respectively, where €;; and €;; are standard Gaussian distributed. Then, we transform
the bivariate series ()?t, f@) into (X;,Y;) by multiplying each value of the pair <)?t, }2)
with 2'/2 where ¥ is a square symmetric matrix with ones in the main diagonal and with
p = 0.5 outside the main diagonal. Then, the correlation between X; and Y; is p = 0.5.
Afterwards, for each simulated dataset, we apply the monitoring procedure from time
m + 1 until time n, with level a = 0.05. Table 2 reports the simulated empirical sizes
for the monitoring procedure based on the detector V,. In most cases, the simulated
empirical sizes slightly exceed the nominal sizes; for v = 0.45 the empirical sizes are
at least twice the nominal size. However, empirical and nominal sizes get closer as m
increases which is reasonable based on the results in Section 2. Also, larger empirical sizes
are found as ~ gets larger and m is small. Therefore, if a correlation change is expected
to occur not shortly after the historical period and we want to minimize the type I error,
the choice of the threshold function with v = 0 appears to be appropriate. However, if
a correlation change is expected to occur shortly after the historical period and we want
to detect it as soon as possible even if a false alarm can happen, it is better to use the

threshold function with v = 0.45.
Table 2 goes around here

Third, in order to estimate the power of the monitoring procedure, the Monte Carlo
setup is similar to the one described previously, but the series are generated with a single
change point in the correlation at two different positions k& = [0.05mT"] and k = [0.5mT,
in which p = 0.5 increases to p = 0.75. Therefore, the first m observations have the same
correlation coefficient, that changes after k£ observations of the monitoring time. The first
change point is at the initial 5% of the monitoring time, so that it is specially designated to
estimate the power of the procedure in situations in which the change point occurs shortly
after the historical period. The second change point is at the middle of the monitoring

time, so that it is specially designated to estimate the power of the procedure in situations
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in which the change point does not occur shortly after the historical period. Tables 3,
4,5, 6,7 and 8 show the results for the three possible values of the v parameter, v = 0,
0.25 and 0.45, and the two possible change points, k = [0.05m7] and k = [0.5mT|. These
tables show the empirical power of the procedure and a summary of both, the empirical
stopping time distribution and the estimated change points, including the quartiles, the
mean, the standard deviation and the coefficient of variation. The tables show that the
power increases with m and it can be large except in cases in which m and T" are small.
Besides, the power for early changepoints is larger than the power for changes at the
middle of the monitoring period. Regarding the empirical stopping time distribution, if
a change occurs shortly after the beginning of the monitoring period, then the threshold
function with v = 0.45 have the shortest detection delay time. However, for a change
point at the middle of the monitoring period with m = 250 and m = 500, the first
quartiles of the empirical stopping times with v = 0.45 are very small indicating that
is more likely to falsely detect a correlation change even before it occurred. On the
other hand, regarding the change point estimates, we can observe that the estimates of
the change point at the beginning of the monitoring period are upward biased, while
the estimates of the change point at the middle of the monitoring period are downward
biased. However, in both cases, the bias reduces substantially if m and/or T increases. In
any case, the precision of the change point detection estimate is quite acceptable specially
when the power is large.

In summary, if the bivariate series is going to be monitored for a long time and the
type I error is to be avoided, or if a change in the correlation is expected to occur not
shortly after the beginning of monitoring period, the threshold function with v = 0 may
be a good choice. However, if the focus is to detect a change point in the correlation as
soon as possible, even if a false alarm is accepted, and if the change point is expected to
occur shortly after the beginning of monitoring period, then it is better to use v = 0.45.
Alternately, the threshold function with v = 0.25 appears to be a good compromise

between the previous frameworks.
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Table 3 goes

Table 4 goes

Table 5 goes

Table 6 goes

Table 7 goes

around here

around here

around here

around here

around here

Table 8 goes around here

4. REAL DATA EXAMPLE

In this section, we apply the proposed monitoring procedure discussed in Section 2 to
a real data example. Galeano and Wied (2012) analyzed the log-return series of two
U.S. assets: the Standard & Poors 500 Index and the IBM stock using a posteriori
change point tests. In particular, Galeano and Wied (2012) considered the sample period
starting from January 2, 1997 to December 31, 2010 consisting of n = 3524 observations,
that are plotted in Figure 2. The binary segmentation procedure proposed in that paper
detected a first change point at August 19, 1999 (observation number 664), that can be
associated with the collapse of the dot-com bubble started at the end of the 1990s and
the beginning of the 2000s, and a second change point at November 12, 2007 (observation
number 2734), that can be associated with the beginning of the Global Financial Crisis
around the end of 2007, which is considered by many economists the worst financial crisis

since the Great Depression of the 1930s.

Figure 2 goes around here

Here, we apply the proposed monitoring procedure as follows. The analysis in Galeano
and Wied (2012) indicated that the correlations between both log-returns remained con-

stant for the period starting from January 2, 1997 to August 19, 1999. Then, we use the
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log-returns from January, 2, 1997 until May, 28, 1999, as the historical period, i.e., we
take m = 607. If no correlation changes are found after n —m = 2917 observations (then,
T = 4.8056) the procedure would be terminated. Otherwise, a change point is detected
and a new historical period is defined with m = 607. Then, the monitoring procedure is
applied again in a similar fashion. The results of our analysis are summarized in Table 9
for the three threshold functions with v = 0, 0.25 and 0.45, for which the corresponding
critical values at 5% level are 2.0510 for v = 0, 2.2630 for v = 0.25, and 2.7435 for
v = 0.45, respectively. The proposed procedure with the three values of the threshold
functions detects four change points sequentially. Regarding the first hitting times, the
procedure with v = 0.45 has the shortest detection delay time whereas the procedure
with v = 0 the longest. This is in accordance with the Monte Carlo experiments in
Section 3. Regarding the estimated change points, the procedure with the three values
gives very similar estimates. Indeed, the first and the last detected change points coincide
with the ones given in Galeano and Wied (2012). Finally, Table 10 shows the empirical
correlations between the Standard & Poors 500 and IBM log-returns in the periods given
by the monitoring procedure. As it can be seen, there are substantial differences between

correlations at different periods.

Table 9 goes around here

Table 10 goes around here
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A. APPENDIX

A.1. The scalar D from the test statistic in Eq. (1)

The scalar D from our test statistic in Eq. (1) based on observations from t = 1, ...

can be written as
- PN PN N
D = (FiD31 + FyD35 + F3D33) "2

where

Z51 ﬁ3,1E11 + 153,2E21 + D3,3E31
Fz D3,1E12 + D3,2E22 + b3,3E32 )
F:s D3,1E13 + D3,2E23 + D3,3E33

By = b1,11 — 41, D113 4 472D 33,

E12 = E21 = bmz — Qﬂxbmz’, — 2ﬂyl§1,14 + 4ﬂzﬂybl,34,

Eyy = D1,22 - 4ﬂy[71,24 + 4,&32,151,44,

By = By = _[LyDLlS + Qﬂxﬂybl,% - /%151,14 + 2/1926[71,34 + D1715 - Qﬂxﬁl,%
E23 = E32 = _ﬂyDl,Q?) + Qﬂxﬂybl,u — /lx[)1,24 + 2/1@2,151,34 + Z51,25 - Qﬂyﬁl,zﬁn

E33 = ﬂ§D1,33 + Qﬂxﬂybl,m - Zﬂybl,ss) + /1920[71,44 + D1,55 - 2/1:::[71,457

~ ~ ~ t—u
D, = (Dl,ij)?’jzl = ZZk‘ ( 5 > ViV,

t=1 u=1

1
_U*** 5’/‘ — 1 7
r t I [OgT]

=
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1=z, |zl <1

k(l’): )
0, otherwise
- A 1o, - 1o -
N ~ Y ~—3 TY ~—3
MZ‘:XT’My—YFa 31 = —5 =< 0, 322——A0y,D33=A
2 0y 20, 00y

and

o2 = (XQ)T - (XT)Q: 5}3 = (Yz)r - (}_/;“)27 &xy = (XY)T - XT T
This is the same expression as in Appendix A.1 in Wied et al. (2012).

A.2. Proofs

Proof of Theorem 1

Let D[dy, ds] be the space of cadlag-functions on the interval [d;, d3] equipped with the
supremum norm.

The proof is mainly based on the fact that for fixed ¢ > 0, and m — oo the process

{Pn(d),c < d < T}, defined by

m-d) —[m-c|  ma D,

Pt = DI i

converges in distribution to the process {W(d) — W (c),c < d < T} on Dlc, T] with W(+)
being a standard Brownian Motion. This result is a generalization of Lemma A.3 in Wied
et al. (2012):

First, under Assumptions 2-5, we obtain with Lemma A.1 in Wied et al. (2012) that the

16



process {Qn(d),0 < d < T}, defined by

with
/
Uy = (th —-B(X?) Y?-E(Y? X,—EX) Y.—EY) XY, - E(Xth)> ;

converges to D;Wj(+), where W5 is a 5-dimensional Brownian Motion.
Let co € [0,T] and ¢3 € [0,T] be fixed. By applying the continuous mapping theorem

with the continuous functional

((x(t) — 2(c1)) Lty Jost<r
(z(c3) — z(ca))

(z(t))oe<r —

we have for d > ¢;

R e L [ Zlimarn U] _ [ Quld) = Qule) | [ DiWs(d) = Dils(es)
VIASEE a U] \@ales) = Qulea) D\Ws(es) — DiWs(ca)

in D([cy, T],R®) x R®.

Now, on {R,,(d),c; < d < T} we can (separately for both components) apply all calcula-
tions from the proofs of Lemma A.2 and A.3 (using the delta method argument) in Wied
et al. (2012).

Then, we obtain, for 0 < b < T, with ¢3 =0, ¢; = ¢ = 1, that

PILE (™ )| (W -w()
d

Dy/m (7 — p1) w(1)

Y

S (b) ==

where W (-) is a one-dimensional Brownian Motion.
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Consequently,

converges to the process
{WH+1) —WQ)—bW(1),0<b<Ty={W(bH+1)— (b+1)W(1),0<b< T}

Applying the continuous mapping theorem and calculating the covariance structure of
the limit process proves the result. |
Proof of Theorem 2

The proof uses the same arguments as Theorem 1 and is mainly based on the fact that
for fixed ¢ > 0, and m — oo the process {P,,(d),c < d < T} converges in distribution
to the process {W(d) —W(e) + chdg(z)dz,c <d< T} on Dlc,T] with W(-) being a
standard Brownian Motion. The constant H is, up to a constant, the limit of D under
the null hypothesis, compare the proof of Theorem 2 in Wied et al. (2012). This result
is a generalization of arguments used in Theorem 2 in Wied et al. (2012), executed in

basically the same way as presented in Theorem 1. |
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Figure 1: Threshold functions for different values of v and ¢ = 10710
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Table 1: Critical values.

T ~v=0 =020 =045
0.5 | 1.2870  1.8001 2.6282
1 | 1.5578 1.9924 2.6844
2 | 1.8158  2.1684 2.7215
4 11.9980  2.2467 2.7660
Table 2: Empirical sizes.
T | m=250 m=>500 m = 1000
0.5 0.059 0.058 0.050
vy=20 1 0.077 0.069 0.061
0.066 0.054 0.057
4 0.063 0.071 0.060
0.5 0.075 0.079 0.047
vy=025| 1 0.075 0.064 0.057
2 0.087 0.063 0.052
4 0.073 0.077 0.064
0.5 0.169 0.125 0.109
vy=045| 1 0.174 0.136 0.116
0.164 0.138 0.109
4 0.161 0.128 0.106

19




Levels

Levels

10

5

-10 -5 0

-5

-15

Figure 2: Log-retuns of S&P 500 and IBM indexes

Log—returns of SP500

2000 2005 2010
Year
Log—returns of IBM
T T T
2000 2005 2010
Year

20




81'0 ¢T'L& G8'€0Z ¥Ic  00¢ 161
00 L¥€e CSVIIT  ¥el  F0I 96
7S°0 9968 LLTL ST06 19 87
€L0 LT'9E TV6Y 69 8¢ €z
AD  PIS  UROIN () pig URIPAN () ST

LT0 T8GR 98°ER8Y
61°0 9¥'¢9 ¢6'9¢E
0C¢°0 VL9V LVCET
0¢°0 €1°¢€ ¥.L'8IT
AD  PIS U\

GT'LES  GLY GLTTh
79¢ 1¢ 68T
GT'69C  STT 86T
GZ'88T  GOT  GLTHT
O pig uwepolN ) 18T

oyeryse jyurodaguer))

ouIr) SUIIY 981y [eorrrdusy

000T = w

2e0 TTLE T6°CIT 92T coT 6
€60 TI89¢ €069 €8 8¢ Ly
€0 ¥ Le 1905 69 6€ Ve
€80 L9T¢ 66°L8  8S 0g z1
AD  PIS  TWeSN ) pIig ueIpaN () 98T

¥ 0 8L18 T19°8cE
€C°0 €999 TYIEe
9¢'0 €9V ¥€991
9¢'0 8L'1€ 09'8IT
AD  PIS  UBN

Gz'9.¢  6I¢ 89¢
792 & 161
88T 091 9¢T
Le1 4n c6

O pIg uelpaNy O 18T

ayewiryso jutododury))

owr) 3uryjry 1siy pestardur]

00§ = w

€90 Go'ly L8VL 06 19 8F
LL°0 LLOV 9€es L9 6€ qc
G8'0 ¢cee €0'6¢ 6¢ 0¢ ¢l
780 99¢'¢¢ 8G'9C GC 0V GG 9

LE0 TV'I6 ¥Peve
Ge'0 1919 €LELT
1€0 TI'8E €R'ICI
¥¢'0 LZ0C 6¥'18

GLV8C VT 8LIT
4\ré 091 1€T1
gcevl  GIl 76
96 08 99

AD  PIS U O PIg UeIPIN ) 18T

AD  PIS TR\

O pig uempdlN ) 18T

ayewiryso jutododury))

owr) 3uryjry 1siy peostardur]

0S¢ = w

[Lws0 0] =y pue () = A 10] ejewr)se qutodegueryp pue aurry surddols ‘Temod eornduiy :

T | (002) ¥
T | (001) %
I (09) 1
I |(cg)co
waod | () L
T | (001) ¥
I (09) g
I (¢z) 1
L6670 | (21) €0
MO @: I
8660 | (09) ¥
€660 | (52) ¢
260 | (1)1
7880 | (9) 60
MO @: I
¢ dquL,

21



9T'0 TI'00¢ 88°0L8T 8661  9L6T  GO6T 9T°0 G8GEY GL'G99Z C'916C 889z G8eve 1 | (0002) ¥
9T°0 0Z'SST 29926 0001 G686 G626 910 6L°9%¢ €6'86ST SThST  G6ST  S1LET 96670 | (0001) @
QT'0 ¥I'¢8 T0LSF 10S  68F  GTOFF SI'0 CFOIT CEeh.  €T8 i@ 9.9  8¢6°0 | (009) T
8T'0 ¢61¥ 062.e¢ 1S¢  T¥e GIZ  ¥1°0 089S TE86E S cov €9¢ €680 | (052) S0
AD  PIS  URIN D PIg WRIPdN D IST AD  PIS W  { pIg WRIPAN ) IST Tomod | () L
orewrryse yurodaguet)) ouIry) Sury sy [eorrduryy
0001 = W
LT°0 €6'99T €1°086 0001 686 676 020 G200 TLTLVT G6.9T L6FT €28l S16°0 | (000T) ¥
GT'0 96TL T1°99F T10S  06F LGP 9T°0 GT'Sel 0969L 068  G¥LL 969 9680 | (009) @
€00 9v1¢  LT'€Ce 0S¢ €F¢  GLTIT LT'0 06°0L 18968 S i L6e 0rL0 | (052) T
620 08T1¢ €€801 LTI 611 G6  CGI'0 SI'TE €9°¢0Z 08¢ 80¢ 88T 0G0 | (G2T) S0
AD  PIS  UBN D Pig UeIdN O IST AD  PIS U ) pIg RPN ) ST mmod | () [
orewrryso jyurodaguer)) owIry) Sury 181y eorrrduryy
00G = W
720 68111 68°8%F  ¢0S I6F  GZeSh €20 S9FST 61°CLL ST06 G608 G669 9850 | (00%) ¥
620 91°€9 0zL1Z 16¢  GTI¥e G280 €20 0L06 0868¢ GLGGF  S0F  Go0se #1¢0 | (092) ¢
10 L9°€E  60°80T LT 11 96 610 T1S68 L8T0C TET 4K e8T L1620 | (gg1) 1
970 TSI VT 9 €9 z§ 62 €20 8TET 99001 LTI L0T g6 98¢0 | (29) S0
AD  PIS  uedN D pig WeIPAN D ST AD  PIS  uBON ) pig uwerpoly O IST 1mod | (¥) I
@pdaﬂmw ﬁ:ogwwgdﬂo @EE wgﬁﬁﬂ pmm@ ﬂmUTEQE@
067 = W

‘[Lws 0] =y pue ( = A 10] 9jewin)se quiodesueyp pue autry surddols ‘Tomod eorndwy :f S[qr],

22



91°0 TI°€E 8€L6T TIC 66T  GLLST 0Z0 ¢I'98 9%’ 1¢F CL¥ o1y 19¢ T (002) ¥
620 ¥F1E 61°90T LIT G101 6  T0 0879 €618¢ 6I¢ GLT GEeT I (001) ©
870 ¥8°0¢ FIF9 Gg'LL  9G GL9% GZ'0 ST'6V T0C6T 61¢ L8T  GLOST 1 (0g) 1
1.0 GL0¢ 66CF  SG e €¢  LT0 €8¢ TIO0OPT €91 Gel eIt I |(cg)co
AD  PIS  ueolN O pig uweIpAlN D IST  AD  PIS  UBON ) pig URIPON ) IST 1omod | (¥) [
oyeryse jyurodaguer)) QuII) SUIY 9811y [eorardusy
0001 = W
ee'0 ¥29¢ S6'90T LTI 201 6 620 TLES G6'G8C CTTee  GLT ke T (001) ¥
8¢°0 ¥0'8¢ 0969 9. GG LV Ge0 260L 0520z €8¢ 061 65T T (09) ¢
0.0 62CE S8SF 19 9¢ e €20 €06F STHFPT  TLI Gel 111 T (ce) 1
68°0 05°0¢ COFE TS i T $€0 GL9¢ COL0T 82T 101 08 €660 |(21) g0
AD  PIS  UBOIN ) PIg URIPOIN O IST AD  PIS  UBON ) PIg URIPOIN ) IST  1emod | () [
@pﬁaﬂww ﬁiogwwgﬁﬂo @EE wgﬁﬁﬂ pmpm EUEMQEM
00G = w
G9'0 9¢FF 0%°L9 8L GG 9%  FF0 8096 LLCIC ¥GC 96T  GZ'0ST 86670 | (09) ¥
98°0 SZFF S0'TS L9 L€ ¢ ¥P0 C0TlL FT09T 68T )l ITT 88670 | (S2) ¢
68°0 L0°€¢ 669¢ €S LT IT  8¢0 8L'€F ST'EIT ST6ET  S0T  GL08 ¥#960 | (21)1
€60 8¢ ¥SVe L€ ST 9 1€0 9FVFc 68°9L  G6 9. 665 2080 (9) g0
AD  PIS  UBOIN ) PIg URIPOIN O IST AD  PIS  UBON ) PIg URIPAIN ) IST  1emod | () [

ayewiryso jutodo3ury))

owr) Surry sy pestrrduyy

0S¢ = w

[Lws0 0] =y pue Gg'( = A 10J 9jewn)se Juiodagueyo pue autry surddols ‘Temod eorndwy :G 9[qR],

23



CT'0 8€'86C L9I8ST 6661  6L6T  FI6T 9T'0 0G'8ST L1°869¢ C'296c 01Lc S¥8¥e T | (0002) ¥
9T'0 TLTST €L'GE6 666 986 €76 8T'0 8%'9GC GR'CThT  9LGT  LePl  L6CT  €66°0 | (0001) @
610 TI¥V68 T1C9SF 00S  68F €GF  LT°0 99°€ET 6CFFL  G€E8  0GL  G0L9 T1S6°0 | (009) T
GC'0 L6'6S G€Tec  19¢  SIVC  GIc 610 WLLL 8V'E6E  LiF 90 09¢ 7080 | (092) S0
AD  PIS  URIN D PIg WRIPdN D IST AD  PIS W  { pIg WRIPAN ) IST Tomod | () L
orewrryse yurodaguet)) ouIry) Sury sy [eorrduryy
0001 = w
€00 L30Ic 19116 0001 886 966 FC'0 €T9E €L6SPT €691  €0ST  0TET L6870 | (000T) ¥
020 7€T6 ©CILSy 10 06V  G€SF 080 €oLST OFTLL 9.8 68L 9269 €080 | (009) ¢
€00 79€C €e€Cc  ©se  €7e €1¢ 120 88°C8 6E°€6E 9T Iy €9e €790 | (092) 1
ve'0 ¥89¢ 62901 8¢T  6IIT ¢6 €0 0897 TE86T  0£¢ 602 08T  L67°0 | (SeT) S0
AD  PIS  UBN D Pig UeIdN O IST AD  PIS U ) pIg RPN ) ST mmod | () [
orewrryso jyurodaguer)) owIry) Sury 181y eorrrduryy
00§ = w
1€°0 G99eT 0S°0eF T0S  88F  GLGEY T€0 9%°06C 6£68L Sc088  F08  C€LT89 93¢0 | (00¢) ¥
650 6%°€9 LSL1C ¢St SIVE  GL0IC 920 VO'E0T LTH8E  GGF 607 0gse  alvo | (092) @
cr0 €0eh 066 92T PIT  GTLL €€0 6809 PI'GRT  GTT 0¢ L9T  06€0 | (¢gI) T
960 9T'¥C  GLTy 19 0S 8T 9¢0 g9ee LT'I6  CII 201 78 1750 | (29) §°0
AD  PIS  UBN D Pig UeIPdN O IST AD  PIS U ) Pig URIpAN ) IST mmod | () [

ayewir)so jurodosury))

owIr) Suryy 18Iy reorarduy

0S¢ = w

‘[Lwe 0] =y pue Gg'( = A 10] ejewin)se Jutodagueyo pue auwiry surddols ‘romod eorndwy :9 a[qr],

24



€0 1919 $C6LT S0 L61 ¢LT 920 TT'SET TS6LE  FSF 768 0¢e T (002) ¥
0 LLOV TOL6  SIT 66 98 0F0 L1666 €F'8¢c 16¢  STve 00T T (001) T
9¢'0 08°T¢ ¥19S 0L ¢ CLTIV TV0 FF69 6791 S0C L91 62T T (0g) 1
780 €L€¢ €00 €S 08  GL6T LVO0 €6'¢S 69LIT 0ST 91T L8 I |(cg)co
AD  PIS  ueolN O pig uepON O IST AD  PIS  UBON ) pig URIPON ) 3T 1omod | () L
orewryse jurodegury)) ouIr) SUIIY 981y [eorrrdusy
0001 = W
V0 Se9F TE'86  FIIT 00T 98 970 S¢0¢T €£1°6S¢ GTg 092 €0g T (001) ¥
990 9168 0765 Tl g IF 050 0798 COTLT 61¢ 69T LTT T (09) ¢
88°0 TT'8¢ 6TEYF LS g Iz IS0 0§99 ¢€F6¢T 991 ve1 26 8660 | (¢2) 1
960 0L°€¢ L8FE 1S i 0T 9S°0 €I¥S 9666 LTT 26 €9 0860 |(21) S0
AD  PIS UBOIN ) PIg URIPOIN O ST AD  PIS  UBSN ) PIg URIPON ) ST Iomod | (¥) L
@p@dﬁpm@ ﬁ:ogwwgdﬂmv @EE wgﬂﬁﬂ @mmﬂ Mﬁoﬂﬁgam
00G = w
G0 8279 00€L 98 9¢ ¢ 0L°0 €9°€ST CT'SIC ¥SC V61 0¢T €660 | (09) ¥
00T TO'IS 1905  S9 g 12 $90 €€¥6 0S9FT  L6T Le1 16 6460 | ($2) ¢
G6'0 $SO¢ TI'SS GG LT 0T 80 0ST9 C0G0T €FT  ¢10T L9 2e60 | (21)1
96'0 L€ ¥9F¥C S8¢ LI v S0 CI'SE 8CT9 06 89 ¢F 68,0 | (9) ¢0
AD  PIS UBOIN ) PIg URIPAIN O ST AD  PIS  UBON ) PIg URIPON ) ST Tomod | (¥) L
@ﬁwdﬁpm@ ﬁ:ogwwgdﬂmv @EE wgﬂﬁﬂ pmm@ M@UEMQEM
0z = W

[Lws0 0] =y pue Gy’ = A 10J ejewnyse Jutodadueyo pue aurry) urddols ‘Temod eorndwy :) 9[qR],

25



8Z°0 S6'€IG TSTELT 6661  I86T  S6ST  0£°0 6SCI8 L6°€89Z  ¥ITE  €68¢  0.8C  €66°0 | (0002) ¥
7S'0 9¢°€6¢ 807098 866 086 SL0T6 S0 L9LLF S6°SPET GT1€9T  FFPT 622821 086°0 | (000T) €
8¢'0 €9°6ST ST'8TF 009 06F  GLEF L&0 1999C G6°€0L  ST9S 08. G'e89 6680 | (00%) T
V'O LS06 0TT6T  6¥C veC  GTILT FP0 68°GST €TLFE  SEE 90¥ 9¢e  81L°0 | (052) G0
AD  PIS  uBON D pig uwempoly O IST AD  PIS  UBON D PpIg uepolN ) ¥S[ 1omod | (¥) [
oyeryse jyurodaguer)) ouIry) Sury sy [eorrduryy
0001 = W
70 L£GG¢ S0FIS 000T €86 G168 CF0 FI'CI9 CS'CEET GLLT  ¥HGI ¥6c1 0280 | (0001) ¥
0 ¥6'CLT S5 90F  10S 98y  GTch SF0 99°G0¢ €0°6L9 G168 ¥ 9%9  €0L0 | (009) g
G0 7866 TTTST  1GC cee 12T #S°0 ISPLT 66008 GTLVP  00F  GL'69¢ ¥2g0 | (052) 1
€0 TS9s  L89L  ¥el 6 ¥ 690 ¢8L6 O0LOFT  ¥2C 68T ) €ov0 | (s21) S0
AD  PIS  ueoly O PpIig uwerpdlNy O IST AD  PIS U D pig Uepoly IS 1omod | (¥) L
@pﬁaﬂww ﬁiogwwgdﬂo @EE wgﬁﬁﬂ pwmm EUTEQEE
00G = w
290 ¥T€IC 61°CPe G86F  TL¥ GGy 0L0 TT'I6E 69°2.6C 788 S50 ¢1z L0 | (009) ¥
TL0 TOCIT €9°9ST  8¥C L1T 9 9L0 L120z S€¥9z  OFF GTLE 9 91%°0 | (0¢2)
08°0 L£'GS L6889  Tcl G18 ¢ €80 L000T ST6IT  91¢ LGT G 01€0 | (¢21) 1
02T 7592 11°C¢ 1S id ¢ 61T 66LFV c¢I'0F <96 8 ¢ 1€2°0 | (29) €0
AD  PIS  uBolN D pig uwelpolN O ST AD  PIS  ueolN D pig uepoly O ST wemod | (¥) [

ayewiryso jutodo3ury))

owIr) Suryy 18Iy reorarduy

0S¢ = w

‘[Lwe 0] =y pue Gy = A 10] ejewn)se Jutodagueyo pue auwiry surddols ‘romod eornidwy :Q S[qr],

26



Table 9: Results of the monitoring procedure for three values of v (EFHT stands for empirical
first hitting times).

=0 v =10.25 v =0.45

EFHT Est. changepoints EFHT Est. changepoints EFHT Est. changepoints

984 665 (1999/08/20) 808 682 (1999/09/15) 772 682 (1999/09/15)
1580 1399 (2002/07/25) 1554 1399 (2002/07/25) 1529 1399 (2002/07/25)
2222 2196 (2005/09/22) 2209 2053 (2005/03/01) 2208 2053 (2005/03,/01)
3014 2936 (2008/09/02) 2945 2733 (2007/11/09) 2890 2733 (2007/11,/09)

Table 10: Empirical correlations at different periods.
Period =0 =025 =045
1 0.6274  0.6237 0.6237

2 0.5245  0.5264 0.5264
3 0.7249  0.7410 0.7410
4 0.6033  0.5364 0.5364
5 0.8021  0.7800 0.7800
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