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1 Introduction

Over the past two decades, Value at Risk (VaR) has become thalgmemeasure for assessing
the risk of financial investments. Its widespread use in anlwas recognized under the 1996
Market Risk Amendment to the first Basel Accord which allowedKsato employ internal fore-
casting models to calculate their required regulatory tepiSince then, VaR has become the
industry standard for measuring and managing portfolio (&t only for banks but also, e.g., for
insurance companies due to Solvency Il) even though it ldkslesirable property of a coherent
risk measure (see Artzner et al., 1999) for non-Gaussiafit Rraoss (P/L) distributions. Conse-
guently, not only regulators but also the firms that use Vagelves have long been interested
in assessing the forecasting accuracy of their VaR-modedsigih formal backtesting. Nowadays,
risk measures such as the Expected Shortfall, which eiplieike the amount of losses into ac-
count, are of increasing importance. Nevertheless, ag timesmsures are still based on the VaR,
appropriate backtesting has not lost its importance. kphper, we address the highly important
task of backtesting several VaR-forecasts fialent business lines, sub-portfolios or banks across
several points in time. We propose two new multivariate besik that can be used by both risk
managers in individual banks (for backtesting the risk oesal business lines) and by regulators
(for backtesting a whole banking system).

The backtesting of a VaR-model comprises a comparison of théelis out-of-sample VaR-
forecasts and the investment’s actual returns. If the invest is a single trading position or
a portfolio it yields a univariate time series of VaR-fordsaand VaR-violations. In the last
few years, several formal backtests have been proposecifit¢hnature for the case of a uni-
variate sequence of VaR-violations with tests concenfatim the correct number of violations
(unconditional coveragayc in short), the independence of the sample of violations, lamith
properties at the same time (tests of conditional covereg@ short) (see, e.g., Kupiec, 1995;
Christdfersen, 1998; Berkowitz, 2001; Chrifiersen and Pelletier, 2004; Engle and Manganelli,
2004; Haas|, 200%; Candelon et al., 2011; Berkowitz et al., | 2B&lletier and Wei, 2015). Re-

cently,| Ziggel et al.[(2014) proposed a set of tests thattiaadilly test for identically distributed



violations. None of these backtests, however, can be easignded to the multivariate case in
which VaR-violations might not only be correlated acrosstiont also across business lines.
One motivation for considering multivariate VaR backtegtis that financial institutions are usu-
ally interested in forecasts of their trading desk’s aggted?L distribution in contrast to VaR-
forecasts of isolated investments. However, aggregatidiyidual VaR-forecasts often yields bi-
ased results as diversificatioffects between (sub-)portfolios are not adequately modeled.
tackle this problem, multivariate backtests need to accfaurcross-sectional dependence within
the portfolioH While it may also be possible to directly consider VaR for aggtte portfolios (i.e.,
for univariate additive combinations offtkrent investments), the results of a (univariate) backtest
for these always depend on the type of aggregation. Moreawe more importantly, a multi-
variate backtest avoids the problem of multiple testingicWlarises if each business line is tested
separately as prescribed by the regulators. Apart fromaaiuns within a single bank, our newly
proposed tests should also be of great interest to bankategsilas they allow them to backtest
risk forecasts for a set of banks. Our multivariate backtesuld thus be used to identify times
and sources of systemic risk in a banking sector. Finallgddition to the practical relevance of
our backtests for bankers and regulators, our new muléit@backtests process much more data at
once thereby allowing further theoretical applicationd anproving the tests’ power properties.
Despite the importance of multivariate backtesting, onfewa papers in the literature deal with
this topic with most papers leaving the development of seststfor future research (see, e.g.,
Berkowitz et al., 2011} Ziggel et al., 2014). To the best of knowledge, the only exception
is IDanciulescul (2010) who proposes a multivariate uc andgaddence test. The test is based
on a multivariate Portmanteau statistic of Ljung-Box typattfointly tests for the absence of
autocorrelations and cross-correlations in the vectoitefdequences for flerent business lines.
However, to the best of the authors’ knowledge, there ctigremists no multivariate backtest that

explicitly tests for the i.i.d. property (in contrast to theere independence) of VaR-violatiofs.

1 Acknowledging this need to backtest the VaR-forecasts ofirakholistically, the Basel guidelines explicitly

demand that a bank should “[...] perform separate backbesssib-portfolios using daily data on sub-portfolios
subject to specific risk.” (see Basel Committee on Bankinge®tision (BCBS), 2009).
Note that there exist some papers that deal with VaR baskbeshiscellaneous multivariate settings. How-
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In this paper, we suggest new multivariate backtests fatets in VaR-violations which are easy
to implement and have appealing properties under the ndlitla alternative. Moreover, these
tests can easily be extended to cc-versions. We essergialpose two dterent kinds of tests.
First, we consider a CUSUM-test for detecting clusters tlhatcaused by instationarities in the
mean of the VaR-violations. To take the multidimensionatithe VaR-violations into account,
we use the sums of the violations foifférent business lines and sub-portfolios for a single day.
Second, we consideng-test for detecting clusters that are caused by crossesettngor serial
dependencies within the VaR-violations. Finally, we comnsbaur new backtests with a test of
unconditional coverage to yield two new backtests of mattate conditional coverage. All tests
are easy to implement and perform well in simulations. Adddlly, all tests work without Monte
Carlo simulations or bootstrap approximations. Howevergfare bootstrap approximations avail-
able: The one for the CUSUM-tests serves for making it moresbfwhich does not seem to be
necessary, at least in our simulations), while the one feytrests is potentially interesting with
respect to the test's software implementation.

The rest of this paper is organized as follows. In Sediion €,imroduce the notation and the
new multivariate backtests. The performance of the newteatkin finite samples is analyzed in
simulations in Sectionl3. In Sectidh 4, the outline and tssafl our empirical study are presented.

Sectiorl’b concludes.

2 Methodology

In this section, we introduce the notation used throughbetgaper. Moreover, we define the

desirable properties of VaR-violations and present our neNtivariate backtests.

ever, these backtests use multivariate approaches in todiewestigate a univariate time series (see, e.g.,
Hurlin and Tokpavil, 2007).

3 For sake of brevity, the bootstrap approximations are jpositl in the Appendix.
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2.1 Notation and VaR-violation Properties

First, we shortly discuss the univariate case in order terexit in the following to a multivariate
setting. Lety;}i , be the observable part of a time serig$., corresponding to daily observations
of the returns on an asset or a portfolio. We are interestéladeimccuracy of VaR-forecasts. Fol-
lowing|/Dumitrescu et al! (2012), the ex-ante V@RR;;_1(p) (conditionally on an information set
Fi_1) is implicitly defined byPr(y: < —VaR-1(p)) = p, wherep is the VaR coverage probability.
Note that we follow the actuarial convention of a positivgrsior a loss. In practice, the coverage
probability p is typically chosen to be either 1% or 5% (see Chffstigen| 1998). This notation
implies that information up to time- 1 is used to obtain a forecast for timeMoreover, we define

the ex-post indicator variablg(p) for a given VaR-forecast aRy._1(p) as

0, if yy > —~VaRy_1(p);
li(p) = @)
1, if yi < —-VaR1(p).

If this indicator variable is equal to 1, we will call it a VaRelation. The indicator variables may
depend on additional parameters which are assumed to benkswioet that there is no estimation
error. In practice, this is a reasonable assumption giveulteby Escanciano and Olmo (2010).
These authors show for some particular VaR backtests teyan@otically, there is no estimation
error if one uses &ixed forecasting schenfier estimating model parameters.

To backtest a given sequence of VaR-violations, Ziggel €¢Pall4) state three desirable properties
that the VaR-violation process should possess. First, tiewalations are said to have uncondi-

tional coverage (uc hereatfter) if the probability of a VaRtation is equal tq on average, i.e.,

1 n
E[ﬁ D n(p)] =p. o)

t=1

Second, VaR-violations should possess the i.i.d. prop@tiierwise, the sequen¢k(p)} could
exhibit clusters of violations. In fact, there are severakeptial reasons for unexpected temporal

occurrences of clustered VaR-violations. On the one hds{@)} may not be identically distributed



andE(l{(p)) could vary over time. On the other hardp) may not be independent f«(p), Yk #

0. The hypothesis of i.i.d. VaR-violations holds true if

{(p)) " Bern(®), t, (3)

wherep’is an arbitrary probability.

Finally, the uc and i.i.d. properties are combined E[&(p) — p|©2;_1] = O to the property of
conditional coverage (cc hereafter). In detail, a sequehdaR-forecasts is defined to have correct
cc if

{l(p)) " Bern(p), Vt. (4)

Note that in most related studies in the literature, the operty is defined slightly dierently than

it is done in this paper. Moreover, the full i.i.d. hypotrses not discussed at all, with almost
all papers concentrating on the independence propertyRfWalations (see, e.d., Chrigtersen,
1998)@

At this point, we extend our analysis of VaR-violations to altiwariate setting. To this end, we
assume that am-dimensional time seriegY;;};"7,_; of returns exists as well as sequences of

VaR forecastsyaR_1(pi). We then define the indicator variadig(p;) as

0, if Yi; > -VaR,1(pi);
li(pi) = ®)
1, if Vi < -VaRji1(p)-

Here, p; is the VaR coverage probability for sub-portfoiio Note thatp; is explicitly allowed

to vary among dterent sub-portfolios and we do not need to assume partiealaes ofp;,i =
1,...,m. In each column, the resulting matrix contains informafimma single business line, bank
or sub-portfolio (corresponding to the 1-dimensional asdile each row represents a single
trading day. In Figur@ I, we illustrate a stylized matrix ciR-violations across time and business

lines.

4 See Ziggel et all (2014) for a critical discussion of pregitneatments of the uc and the independence properties
in the literature.



[Place Figuréll about here]

As can easily be seen from Figdie I, clusters of VaR-violaioan occur both across time and
across sub-portfoligbusiness lingbanks. Clusters across time indicate a misspecified VaR model
while clusters across sub-portfolibssiness lingbanks indicate low potential for diversification
or considerable systemic risk in the banking sector, rasehye

With this preliminary work, we start to define the desirabteperties of VaR-violations in the
multivariate case. For the uc hypothesis and most uc testextension of the univariate to the
multivariate case is straightforward. To this end, one $ymeeds to study the hit sequences
of several business lines simultaneously and stack thessegether. As doing sdfectively
increases the sample size, we expect the tests to have meee than in the univariate setting.
However, in this paper, we are interested in the multivar@istribution of VaR-violations and
hence neglect this simple issue. In the present contexiydReviolations should ideally exhibit
no clusters, i.e., neither in time (rows) nor across busitiegs (columns). Thus, the matrix of

VaR-violations should fulfill the following multivariate @ependence hypothesis:

li(pi) is independent off_ ;(p;), Vt,i, j andVk > O. (6)

Note, as property (6) is very restrictive, the VaR model i mecessarily wrongly calibrated if
property( 6 is not fulfilled. This is due to the fact that heapedations in one row (trading day)
are, though undesirable, no indicator for an incorrect Vaikieh However, it may provide impor-
tant information concerning diversification, aggregatidmisks, and systemic risk in the banking

sector. Nevertheless, it is also natural to consider trerkestrictive hypothesis

li(pi) is independent off_ ;(p;), Vt,i, j andVk > O. (7

Property [[¥) implies that no information concerning VaRlkimns available to the risk manager
at the time the VaR is estimated is helpful in forecasting & Velation. Thus, as stated in

Berkowitz et al.; 2011, past observations from the hit segeer one business line do not help



to predict violations of this or any other business line & ¥R model is correctly specified. In
particular, property[(7) postulates that lagged violatiare not correlated. However, correlations
within one row (trading day) are explicitly allowed.
As in the univariate case, one can also define the cc-propettye multivariate setting. Here,
properties[(6) and{7) are modified to

{lu(p)) "™ Bern(m), Vt. i. 8)
and

E(lii(pi)) = pi andlyi(py) is independent off_y j(p;), ¥t, 1, j andvVk > O. (9)

Again, property[(B) is more restrictive thdn (9) as coriietad within one row (trading day) are not
allowed. For propertie§{6)£1(9), we propogetests in Sectioh 21 3.

As stated in Ziggel et al. (2014), clusters of VaR-violatiaosild also be caused by other reasons
than simply correlation between the violations. To be maezige, the probability of obtaining a
VaR-violation may change over time. For example, the risk @iaduld not be suited to incorpo-
rate changes from calm market phases to highly volatile heakets or financial crises, and vice
versa. This would in turn lead to clustered VaR-violationgarelless of the question whether the
violations are independent over time or not. In Section)(2v2 consider CUSUM-tests for such

instationarities. To be more precise, we consider the ranssu

e = Z i (i) (10)
=)

and test whetheE(r,) is constant over time (stationarity hypothesis). Morecg@y, we test for

non-constant expectations caused by changg$lif(p;)), resulting in the following hypothesis

E [i ltl(pl)] =C, Vt’ (11)



wherec is an arbitrary constant. In order to define the cc-propéstgothesis[(11) is modified to

> n,mm] = ).t (12)
i=1 i=1

Tablell summarizes all stated hypotheses and comments gaéiséion which user should be most

E

interested in a risk model having the respective property.

[Place Tabléll about here]

2.2 CUSUM-tests for non-constant expectations

In this subsection, we propose a backtest for non-conskaeaicgations. The formal test problem

which corresponds to properfy (11) is given by
Hg : E(ry) = ... = E(ry) vs. H : =HG,

with the row sums., ..., r, being defined as in Equation {10). While the specific expentatare
arbitrary in this test problem, this isftikrent in the test problem which corresponds to property
@2): .

Hy “:E(r) =... =E(ry) = Z pi vs. H 1 =H;.

i=1
Before introducing the test statistics, we impose the falhgnassumption:
Assumption 1 Let r; be defined as before. Then, we assume
1. ry,...,ryare independent.

2. Var(ry) = ... =Var(r,).

If the VaR model is correctly specified, Assumption 1.1 isasmnable consequence. Assumption
1.2 may be violated if the cross-sectional dependence leetWye ..., I iS not constant over

time. We will discuss this issue in detail below. Under Asgtion[1 and if eitheH§ or H5 ¢



holds, the row sums fulfill a functional central limit theorgi.e., the procesd/, n € N) with

Lsnl

V() = % ;‘(rt ~E(ry)), s€ [0, 1],

converges to a Brownian motion. Then, a suitable test staftst H;™“° is given byRC,, =

D1C (RC for “row CUSUM”) with

1
Ceci= max —

i=1,.., n\/ﬁ

i m
Zfr—JZpi‘-
t=1 i=1

Here,D? is the usual variance estimator for independent obsengtie’ = %Z{‘:l(rt —1)? with

r= % >, re. Then, by means of the continuous mapping theorem we imredgiabtain

Theorem 2 Under H;° and assumptionl 1, for r> oo, it holds that RG,, —4 SUR[0.1 W(s)|,

where W is a standard Brownian motion.

With this preliminary work, we get the

Stat-m-cc-test. RejectH; *° wheneveRG, > d;-, gm, Whereg,_,gwm is the 1- a-quantile of the
distribution of sug., 1, IW(s)l. The Q95-quantile is given by .241.

For testingH;, we do not consider any fixed values @f but we use the test statistRCqatn =

D_1Cstat Wlth

Then, by means of the continuous mapping theorem, we imredgiabtain

Theorem 3 Under H; and assumptiofil1, for r> oo, it holds that RGapn —4 SUR(0.1] [B(9)l,

where B is a standard Brownian bridge.

With this preparatory work, we get the
Stat-m-test. RejectH; wheneverRG, > Qi_.ks, Whereq;_, ks is the 1- a-quantile of the

Kolmogorov-Smirnov-distribution. The 0.95-quantile isen by 1358.
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It can be shown that both tests are consistent, e.g., if,nthdelternative,
E(rl) =...= E(rLknJ) # E(rLknJ+1) == E(rn)

holds for ak € (0,1). In this case, it is possible to estimate the location dia@nge point by the

argmax estimator _
1 .
Cec 1= argmax_, n% Z e — JZ Pi

or

Cstat .= argmax_; ,— Zrt - int ,

(see Aue and Ho#éth,[2013).

However, the empirical size is not close to the nominal dizbdre is either weak serial depen-
dence within therg, t = 1,...,n) (such asx-mixing under appropriate conditions as described in
e.g/Billingsley, 1968) andr if the Var(r;) are not constant over tinQeThe test is not consistent in
these cases. For the case of weak serial dependence, thisigadiate consequence of Slutzky’s
theorem. However, for this problem, we will present a nétest for cross-sectional and serial
dependence in Sectién 2.3.

On the other hand, we would like to be robust against nontaohsariances. This issue is dis-
cussed in detail in Zhou (2013). In particular, Zhou (2023)lieitly derives the limit distribution
of a general CUSUM-statistic under the assumption of piesewacal stationarity. Thus, there
is a bootstrap approximation available which potentiallgkes the CUSUM-test more robust to

changes in variancgﬁDetails can be found in AppendixA.2.1.

5 Infact, it is even desirable that serial dependence is thtdiecause this is a potential reason for clustering. On
the other hand, it is desirable to be robust against timgivgwvariances. Note thatar(r;) = 3", Var(lyi(p)) +
2ymt Liss CoMlei(p), 1tj(P))- So, it is possible that, under the null hypothesis, theéavaes ofr, might
be time-varying (so that Assumptiéh 1.2 would be violatenlydecause of time-varying covariances. In this
situation, we would like the test to keep its size.

6 Infact, this bootstrap approximation makes the test rohgainst serial correlation, too.
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2.3 y?-tests for cross-sectional and serial dependence

In this subsection, we propose a framework that can be usdaddtng independence as well as
the corresponding cc-hypothesis taking into account ramyittime lags and business lines. This
test is somewhat similar to the test proposed by Danciul¢2210). The main dference is that
we explicitly allow for estimated violation probabiliti@s each business line and that we make use
of explicit expressions for a certain covariance matrix.

Denote withA the set of all triplesi( j,1),i,j =1,...,m1 =0,1,..., where {, ]) describes a pair

of sub-portfolios and the lag of interest. We consider an arbitrary sul#set A that has to be
chosen by the analyst. This choice allows us to verify parigraperty [7) angbr property [(6).

In fact, to verify property[(I7) as a whol&s would have to consist of all triples with< j and

| > 1, while it would have to consist of all triples with< j andl > O for property [(6). As the
setA would become too large then, further restrictions are resrgs The convention is that we
consider lags up to a fixed upper boukde.g.K = 5, corresponding to one week. Moreover, in
the following we separate the cases of serial dependencerasstsectional dependence, whereas
serial dependence approximates propérty (7) and crossisalcdependence propertyl (6). With
the serial dependence application, one can test for ctustendividual banks; with the cross-
sectional dependence application, one can test for diieton dfects. Formally, this means that
we only consider = j in the first and < j andl = O in the second case. F#&r = 1, we have

As = {(i,i,1)},i = 1,...,m, in the first andAs = {(i, j,0)},i < },i,] = 1,...,m, in the second
case. We focus on these two specifications in the followin§cddrse, other combinations are

also possiblg.

7 It is also possible to use formal methods in order to detegmime maximum number of lags, see
Bender and Grouven (1993).
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The test problem which correspondsl[to (7) ddd (6) is given by

He ™ E((li(p) = B)(eri(py) = ) = Ofor (i, j.1) € Asandt = 1,....n— |

and somey = E(lii(p1)), Bj := E(l1j(pj)) vs.

m-ind . m-ind
H 1 . — HO .

In the above test problem, the expectations;(fo;) and |, ;(p;) are arbitrary. If one is also in-
terested in testing for them (i.e., for the correct numbe¥aR-violations), one can consider a
modified test problem for the cc-hypothesis. Witl, j, I, t) := (I.i(p) — pi)(l,;(P;) — Pj) and the

desired VaR coverage probabilitipsand p;,
Hg™ ¢ : E(f(i, j,1,t)) = 0for (i, j,I) e Asandt = 1,...,n— | vs. H"° : =H{"™*".
First, we consider the cc-test which is based on the vector

1 n-l
Ban = | tzzl(lt,i(pi) — ) (e i(P) - By

(i.1.NeAs

whose dimension is equal to the amount of elements in theAgset Under the assumption
that the VaR model is correct, one obtains by definition of to@ariance that the vectors
f(0, 1.1, )i jneass - --» T, J, 1,n = 1) jnea, are uncorrelated. Moreover, we impose the following

assumption:

Assumption 4 Let the notation be as before. Then, €OV, j, 1, 1) jnea) = ... = CoMf(i, j,I,n—

a.ineas) =t Zs, WhereXs is a positive definite matrix.

Assumptiori4 contains a higher-order stationarity assiompas well as a regularity assumption

on the matrix

Zs = (Cor(I i, (Pir) = Pi) (112 (P12) = Pi)s Ui (Pi2) = Pi) (11,2 (Pi2) = Piz)))is.indo).(iz. ol 2)eAs-

12



This matrix can easily be calculated for each given/satinderH . If, e.g.,m = 2 andAs =

{(1,2,0)}, it holds thatts = p1p, — Pap2 — pups + P2p3. If As = {(1,1,1),(2,2,1)}, it holds

| P -2p7+ pf P1,

P 5 —2p; + P3

Zs (13)
with p12 = CoMl1(pa), lt2(p2)). In these situationsss is for example positive definite for &
p1 = p2 < 1landp;; = 0.

In general, under Assumptiopl (9) and in the situation in Whicholds for all triples {, j,1) that

i < jandl > 1, the matrixts consists of the entries

CoMl i, (Piy), 11, (Pi))COMI 1415, (Pj.)s 141,.1,(Pj2))

in the row corresponding to the triple(j1,l1) € As and in the column corresponding to the triple
(i2, j2,12) € As. This general expression contains](13) as a special case.

Under Assumption[(8) and in the situation in which it holds & triples (, j,|) thati < j and

I =0,

X = diag(pip; — pi p,2 - pizpj + pizpjz)(i,j,O)EAs‘

Apart from using explicit expressions f@k;, one could use a bootstrap procedure which is de-
scribed in Appendik/A.Z]2.

Assumptior # could be relaxed to the case in which the matrix= lim,_. Bs, €xists, is pos-
itive definite and can be suitably estimated. An example fieg wwould be the case in which
CoMv(f(i, j, 1, t)q,jneas) IS piecewise constant with a finite number of breaks andtipediefinite in

all parts, which is a special case of the PLS setting discliseghou (2013) and Sectign 2.2. In
this case, the estimators described below are consister}.fo

UnderH{*¢ and Assumption{4), it holds thds,, —4 N(O,Xs), while this quantity diverges fif,

e.g., under the alternative(f(i, j,1,t)) = ¢ # O for (i, j,1) € As. Furthermore, with the continuous
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mapping theorem,

Egl/zBsn —d N(O, l1ay)

and

/ -1 2
Bs’nzs Bsn _)d XlAsl.

Therefore, a suitable test statistic for the cc-test is milsg T = B;n(igc)‘lBsn. Here,
3¢ js an appropriate estimator &£. For As = {(1,1,1),(2 2, 1)}, one would replacgs, with
% S la(p)le2(p2) — p1p2 in Zs. Then, we get by the strong law of large numbers and Slutzky’s

theorem

Theorem 5 Under H“ and Assumptioid), for n — oo, T —4 X|2As|'

We obtain the

Ind-m-cc-test  RejectH™ ¢ if T{ > gi_y2, Whereqy, 2 is the 1- a-quantile of they?-
distribution with|A¢| degress of freedom.

For testing the ind-property, we opt for a test statisticakhs based on the quantity

1 n-| A A
Con = —= ) (li(p) — B 5(Pj) — By)

y/n

t=1 (i.j.)eAs

This is essentially the quantitgs,, whereas the summandsy; and —p; are replaced with-p,
and —p;, respectively. Herep;"and p; are the actual measured percentages of VaR-violations,
b= 130 () andp; i= 2 30 1 j(p)). The test statistic is defined &8, ™ := C/,(E0)~1Cq..
Here, =" is an appropriate estimator Bf. In contrast t&¢, within £, also thep, would have
to be estimated. Interestingly, the asymptotic behaviof i and Tg;i”d are the same, as the

following theorem shows. Its proof is deferred to ApperdilA
Theorem 6 Let H™™ and Assumptioid) be true. Then, as r> co, T ™ —q x7, .

We obtain the
Ind-m-Test. RejectHy~" if T4 > q, , ., whered,_,,2 is the 1- a-quantile of they*

distribution with|A¢| degress of freedom.
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Both the Ind-m-cc-Test and the Ind-m-Test are consistenteify.,, under the alternative
E(f(, j,1,t)) = c+# 0for (, j,I) € Asand if (for the Ind-m-Testp;":= E(li(pi)), P; := E(l¢j(p;)) as

well as Assumptionl4 are fulfilled.

3 Simulation study

To examine the performance of our newly proposed backtedisite samples, we perform a si-
mulation study. Within the study, we distinguish betweeftedent kinds of controllable violations
concerning Assumption$§1(7),1(6),(11)J (9 (8), ahdl (12)e ¥émpute all rejection rates for a

significance level of 5%.

3.1 Non-constant expectations

As a first step in our simulation study, we want to test if thevriests are able to detect non-
constant expectations. We use the Stat-m-test as well dsdha-test. With the latter, the subset
As consists of the vectors,(,1),i = 1,...,m, which corresponds to a time lag of 1. We expect
the CUSUM-test to clearly outperform thé-test in this setting. Basically, the data generating

process used throughout the whole simulation study is dwen

li = I(Xy < 0p), Vi, t. (14)

In the first case we consideg, is the a-quantile of a standard normal distribution. Moreover,
(X1, - - - » Xem) follows a multivariate normal distribution with mean zermarginal variances one

and cross-correlation = 0. Next, we setn = 10, p = 0.01,0.05,n = 250 500, 1, 000, 2,000 and
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use 5000 Monte Carlo repetitions. Finally, we modify equatibnl(&dch that

I(Xii < Qp-2s), 1 < t < 3, Vi;

I(Xti < Opss)s 3 <t <3,V

li =
I(X, < Ops), 3 <t <3, vi;

I(Xi < Opras), 3 <t < n,Vi.

In this setting, VaR-violations are independent over timeenég, clustering is solely based on
changes of the probability of obtaining a VaR-violation. W®ases = Op to analyze the size of
atestand = 0.1p, 0.2p, 0.3p, 0.4p and 05p for the power study.

This setting leads to variations in the probability of obiag a VaR-violation between the four
equal-sized subsamples. Consequently, the violationoadilir unequally distributed. Note that
the probability variations are determined in a way whichueesE (3L, >, Itij) = n-m- p.
The setup of this part of the simulation study covers a reéaksenario in which VaR-models do
not, or not fully, incorporate changes from calm market plas highly volatile bear markets or
financial crises, and vice versa. This in turn leads to ctest&aR-violations regardless of the
guestion whether the data might show signs of dependenagtacarelation. The results of the

simulations are given in Tablé€ II.
[Place Tablé 1l about here]

The results show that the Stat-m-test clearly outperfohasrid-m-test with rejection probabilities

being regularly higher for the Stat-m-test than for the indest. In fact, for the larger sample sizes
of n = 1,000 andn = 2,000 and higher values ©f the probability of the Stat-m-test to reject the
matrix of VaR-violations with non-constant expectationsl@se to one. In contrast, the Ind-m-test

rejectsHy only in 32% of the simulations at most fpr= 0.01.
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3.2 Cross-sectional dependence

In the second part of our simulation study, we want to ingedé if the new tests are able to
detect cross-sectional dependence within VaR-violatidteste, we expect thg?-test to clearly

outperform the CUSUM-test. Again, we simulate random vaesby

lii = I(Xe;i < Qp), Vi, t,

where,q, is thea-quantile of a standard normal distribution. Moreové, (..., X;n) follows a
multivariate normal distribution with mean zero, margimatiances one and cross-correlatjan
In addition, we choosen = 10, p = 0.01,0.05,n = 250,500, 1,00Q 2,000, and again use 600
Monte Carlo repetitions. The cross-correlatjpof the normally distributed random variables is
set to be in0,0.2,0.4,0.6,0.8}. Based on this setting, we analyze the Stat-m-test and thmind
test with time lag 0, that means that we test for cross-seatidependence. The subggtconsists
of the vectorsi( j,0),i < j,i,j=1,...,m.

The results are given in Tallellll.
[Place TabléTll about here]

As can be seen from the simulation results given in Tablethi, probability to detect a matrix
of VaR-violations sttering from cross-correlation is almost always lower for 8iat-m-test than
for the Ind-m-test. While the Ind-m-test has appealing pguweperties in almost all settings, the
Stat-m-test is not able to detect cross-sectional depeedétowever, the Ind-m-test ars from
size distortions fop = 0.01 and small sample sizes.

Next, we also consider the situation with time lag 1 which liegpthat we test for serial depen-
dence in the VaR-violations. Herex(,..., X.m) follows a MA(1)-process with autocorrelation

parametep € {0,0.25,0.5,0.75,1}, i.e.,

(Kids oo Xem) = € + €1
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for a sequence of i.i.d. bivariate normally distributedteese;, t = 1, ..., n, with cross-correlation
set top; = 0.3. The subsef consists of the vectors,(,1),i = 1,...,m. The indicator variables
are defined ak; = I[(Xt,i <gpy1l+ ¢2). The results of the simulations in which both multivariate

backtests are used on data with serially correlated VaRxols are given in Table 1V.
[Place Tablé IV about here]

The results given in Table 1V show that the Ind-m-test aga&iriggms significantly better than the

Stat-m-test.

3.3 Non-constant expectations and serial dependence

In the third part of our simulation study, we investigate gegformance of our new multivariate
backtests in a setting in which the data exhibit a combinatibnon-constant expectations and

serial dependence. For this purpose, we define

I(Xii < Op2s 1+ 62,1t < 0, Vi;
I(Xei < Opesv1+¢2), 5 <t < 3, Vi;
I(Xei < Op-s V1+¢2),5 <t < Vi,

I(Xei < Opeas Y1+ ¢2), 3 <t<nVi.

i =

Here, Xi1,...,X%¢m) follows the same MA(1) process as previously describedr@baConse-
guently, we use the same parametrization as before andtigsesall parameter combinations
of 6 and¢. This setting ensures that we can draw correct conclusionsecning the charac-
teristics of both tests in various situations. We consitier $tat-m-test and the Ind-m-test with
As={(,i,1),i=1,....m

The results are given in Tables V dnd VI.

[Place TablesV and VI about here]
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Again, the results from the simulations show a clear pictuggcept for¢p = 0, the Ind-m-test
always performs significantly better than the Stat-m-tlstontrast, mean rejection probabilities
are only higher for the Stat-m-test in the setting in whidls set to zero. Fop = 0.01, the size of

the Ind-m-test is somewhat higher than expected.

3.4 Violations of the cc-property

Within the last setting of our simulation study, we concatgron violations of the cc-property. To
this end, we simulate data that exhibit serial dependengalgo violations of the uc-property. We

define

li = I(Xi < Opes V1 + ¢2), Vi, L

To be more precise, X1, ..., X, m) follows the same MA(1) process as before aht set to

0.2p, 0.4p, 0.6p, 0.8p, andp, respectively. Apart from that, we use the same paramébiza
as before and investigate all parameter combinatiorsarfd¢. We consider the Stat-m-cc-test
and the Ind-m-cc-test witlhs = {(i,i,1)},i = 1,...,m. The results are given in Tables VII and

VI
[Place TableE V]l an@ VIl about here]

Just like in our simulations with data that exhibit crosstgmal dependence and non-constant
expectations together with serial dependence in the maitivaR-violations, the Ind-m-test again
performs significantly better than the Stat-m-test expexctte setting fop = 0. The Ind-m-test
sufers from size distortions fgo = 0.01 and small sample sizes.

In general, we observe that both the Ind-m-test and therSti#st have dfticient power in almost
all settings of our simulation study even for relatively #insample sizes oh = 250. Moreover,
both tests also hold their nominal level in almost all siniola settings. The simulations thus

underline the suitability of our newly proposed backtestdésting the adequacy of a multivariate
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VaR modeH

4 Empirical study

In this section, we perform an empirical study in which weragéfy the usefulness of our newly
proposed multivariate backtests for the purpose of asgp#ise systemic risk of a banking sec-
tor. To be precise, we perform multivariate backtests & figecasts for a portfolio consisting
of the stocks of the world’s 20 largest banks. The motivatibthis use of our multivariate back-
tests is straightforward. A regulator of the set of bankdade interested in testing both a) the
overall fragility of the banking sector, and b) the tempaall cross-sectional clusters in severe
losses at individual banks. While a bank’s risk manager cbeldnclined to simply aggregate
the risk forecasts for his individual business lines (tbgrebviating the need for our multivariate
backtests), the additional information our backtests igewn the sources of violations (temporal
andor cross-sectional) should be of particular interest tdkbagulators.

We start our empirical analysis by retrieving the mid prioeshe stocks of the 20 largest global
banks available in th#homson Reuters Financial Datastrealatabase according to the banks’
market capitalization on the 1st of January, thﬂur sample period runs from the 1st of February,
2003 until the 31st of December, 2014. In total, our sampiesisbs of 3,549 daily observations of
the bank stocks’ mid prices. All data are retrieved in $ US tbigate a potential bias stemming
from currency risk.

We then proceed by computing daily log returns for each dayeach bank in our 20-dimensional
sample portfolio. For each bank stock and each tradingt dayhe period from January 1, 2004
to December 31, 2014, we forecast the bank’s Value-at-Risk 0.05) on dayt by first fitting a
univariate GJR-GARCH(1,1) model of Glosten et al. (1993) witevged t-distributed innovations

8 All simulations were also performed with = 20. The results are presented in the supplementary madsrial
the general pattern is very similar to the casenof 10.

9 The banks in our sample are: Citigroup, HSBC Holdings (dstihg), UBS, Barclays, BNP Paribas, Mitsubishi
UFJ, RBS, Cedit Agricole, Bank of America, JP Morgan Chase, Deutsch&Blizuho Financial Group, ABN
Amro, Soceté Gérérale, Morgan Stanley, HBOS, Banco Santander, Unicreuiit Gredit Suisse.
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to (a rolling window of) the 500 trading days preceeding tdand then forecasting the estimated
model’s mean and conditional volatility for dayThe forecasted VaRs are then compared with the
actual return on a bank’s stock on the respective day toeaatithe hit matrix of VaR violations
that is inserted into our multivariate backtests.

TablelIX presents summary statistics on the banks’ dailgksteturns as well as the yearly p-values

for every applied test and the results for the argmax estiradbr the CUSUM tests.
[Place Tablé IX about here]

The test results given in TaklellX are in line with our expdota Both cross-sectional tests (the
y2-tests applied witi\s = {(i, j,0)L,i < j,i,j = 1,..., m, as before) have a p-value of 0% for every
year. This is due to the fact that violations often occur legagsulting in 10 or more violations
within one day. Moreover, these results illustrate and dimdethe contagion fects within the
banking sector which could be observed during the last deaadevere losses occur at the same
day and &ect several banks simultaneously. Figuie Il illustrates pinenomenon for the years

2005-2007.
[Place Figuréll about here]

In contrast to this first finding, the results of both seriatse(they?-tests applied withA; =
{(,i,1)},i =1,...,m, as before) vary widely. Here, the ind-test is highly degaridn the number
of subsequent violations, while the cc-tests also readtéadtal number of violations. This ef-
fect is highly visible for the years 2005-2007, during whibke number of (subsequent) violations
increases monotonously while the p-values decrease. fdisg is also in line with economic de-
velopments. Following a stable and calm market phase, thadial crisis started in 2007 resulting
in increased volatility and dependence, especially fokban

Finally, the p-values of the CUSUM-tests are consideralgiéi on average than for the remaining
tests. Here, the cc-test is much less sensitive than its-s@dional and serial counterparts and

has p-values that are lower than 1% only for the years 2002@68. This finding is in line with
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our simulation study presented above. The CUSUM-test forgmstant expectations has to be
interpreted in a slightly dierent way as it has higher power for clusters of violatiortkioced by
instationarities than those induced by serial dependsitfoe lag one). In particular, considerable
instationarities lead to small p-values. So, a possiblkerjpnetation is that, in general, the cluster
effects in our data set are caused by serial dependencies ttadineinstationarities. Nonetheless,
the CUSUM-test for non-constant expectations has a p-valeb% for 3 of the 11 investigated
years. This is not negligible, particularly as the sampke $6 small. A special example is the
year 2006 which is illustrated in Figulre 1l. Here, high rowrsiare highly clustered, resulting in a
p-value of 0.14%. Concerning the argmax estimators it ig@steng to see how the clustering of
violations corresponds to a change in the market condifiorsome cases, there is a very strong
relation. A striking example is again the year 2006. The I8thune represents exactly the date

where several of the considered stocks changed from a bearasbullish market state.

5 Conclusion

In this paper, we have proposed two new multivariate batkfes clusters in VaR-violations. The
first test is a CUSUM-test which is based on the sums of the twoig for diferent business lines
and sub-portfolios for a single day and which attempts tedetlusters in the matrix of VaR-
violations that are caused by instationarities in the mdaheoviolations. Second, we consider a
x>-test for detecting clusters that are caused by crossesettangor serial dependencies within
the VaR-violations. Both tests are easy to implement and wattkowt Monte Carlo simulations
or bootstrap approximations, although bootstrap apprations are readily available.

In simulations, we assess the performance of our new mu#iesbacktests in several distinct set-
tings in which we consider simulated data that exhibit nonstant expectations, cross-sectional
dependence, and serial dependence in the VaR-violationsedver, we also perform simulations
in which the new backtests are used to test the simulated \@Rtens for the property of con-

ditional coverage. With the exception of the setting in vhibe data only exhibit non-constant
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expectations, thg?-test performs better in our simulations than the CUSUM-tBsth tests hold
their nominal level and, more importantly, have consideraimwer for testing the conditional
coverage of the matrix of VaR-violations even for relativeiyall sample sizes.

The multivariate backtests that we propose are intendedhfomuse by risk managers, portfo-
lio managers, and regulators. Especially in the last casepacktests cannot only be used in
the conventional way within individual banks, but also taltast a whole banking sector. To
this end, VaRs are estimated across time and individual b@ngsad of business lines) with
clusters in VaR-violations across banks indicating systemsk in the sector. In this way, our
backtests could be of significant help to regulators to fasetimes of contagion in the finan-
cial system and thereby complement current endeavoursdssstest banking sectors (see, e.g.,

Acharya and Stéen, 2013).
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Appendix

A.1 Proof of Theorem[6

First, we consider the process

. 1 & N .
Csn = i ;(It,i(pi) — B) (e (P) — By) ,

(i,}.)eAs

and show tha€s,, = Cs, + 0p(1).
We definep; := 2 3L, lik(pe). Then, it holds

C..= inz_l| (P i ( .)_n__l".~. _n__IAﬂ. _|_n__|~.~. + 0,(1)

sn = \/ﬁ - ti(Pi)lt+1,j(Pj \/ﬁ Bi B \/ﬁ P; b \/ﬁ Pi Pj P
and
n-l
n-1.. n-Il__. n-1_,

Csn = 7 Z; lei (P) 1, (P)) — ﬁpi P — ﬁpj P + ﬁpi Pj + 0p(1)

such that

C&n—Csn:T( pip; + Bip;) + \f( Pibi + B ) + \F(p.p, pip;)
:%mﬁj—@impjp. pip) = I(p,(p. B) + By(H - B))
_| R 5 . 5
= "= (B - APy - B)

Op(1)op(1) = 0p(2).

Then, the result from the theorem follows from the fact thgtuniform integrability, one directly

obtainsXg = lim,_,., CoMCg) andCsp —4 N(O, Zs).
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A.2 Bootstrap

A.2.1 Bootstrap approximations for the CUSUM-test in Sectiorn 2.2

In order to make the tests more robust against changéaiifr;), one can use a recently proposed
approach by Zhou (2013). Here, we consider the quafjty.e., the test statistic without the
variance estimatoD~!. Critical values are obtained by using a bootstrap appraiema This
bootstrap is an extension of the wild bootstrap and reliedigettly mimicking the behavior of
the partial sum process, instead of mimicking the behavior &. However, despite the theoret-
ical relevance, some robustness checks show that the fzgotkies not seem to be necessary in
the situation of moderate changesMViar(r;). Moreover, there is no power gain from the robust

CUSUM-test.

A.2.2 Bootstrap approximations for they? tests in Section 2.3

To facilitate the tests’ implementation in software, onge eatimate the matriXs with a bootstrap
approximation based on the seminal papelr by Efron (1979%.bb0otstrap is essentially the same
for testingHg“inGI andHJ~, respectively. We distinguish two cases, i.e., Assumgti@y(9) and
@)/@). In the first one, cross-sectional dependence is alldaedavhich is not true in the second
one. LetB be a stficiently large number.

Then, under Assumption](7) and given the observed matrixai®-Violations, we generate, for
b=1,...,B, abootstrap samplgé'ji,t =1,...,ni=1,...,m bydrawingn rows with replacement
from the observed matrix. Thus, the generated bootstrapleanalways fulfill Assumptior (7).
When testing for cross-sectional dependence (that meaAssifmption[(6) holds true under the
null hypothesis), the bootstrap procedure from the pressmaragraph has the drawback that there
IS no variation within each row in the bootstrap samples. sTh this case a bootstrap sample
Itt,]i’t =1,...,ni = 1,...,m is obtained in a dierent way. In order to keep the information
concerningp;,i = 1,...,m, for fixed |, Ifji,t = 1,...,n, is obtained by drawingn values with

replacement of the respective business line from the obdanatrix, whereas the draws are also
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independent with respect to Then, the generated bootstrap samples always fulfill Apsiom

®).

Having obtained a bootstrap sample, we calculate the vé:@ppand consider the estimator
1o - -
ZE = E Z(an - CsB,n)(Cts),n - an),
b=1

with CB := £ 3'8, C. The test statistic foHJ*¢ is then given byl := B, (28)!Bgy, the
one forHg™" is given by T ™ := C{(£8)*Csn. Both need to be compared with the-lo-
guantile of thgyisl-distribution. The validity of this approach under the nwipothesis follows
from standard bootstrap theory (bootstrap central limebtem, see Goncalves and White, 2002,
uniform integrability, see Kato, 2011, Lemma 1), the validinder the alternative follows from
the fact that the generated vect61§1 remain stochastically bounded due to the arguments given
in the previous paragraph.

Simulations show that the bootstrap tests fdr (7) and (6§ hartually the same size and power
properties as the tests based on an explicit derivationeafnidtrixXs. While in case of[(9) and {8),
the bootstrap does work in the sense of accuracy under thaypdthesis and consistency under
the alternative, there is some power loss compared to tleeicaghich the matrixy is calculated

directly. Under Assumptiori[8), a better alternative isegivby drawing thd®,t = 1,...,n,i =

ti?

1,...,m, independently from Bernoulli distributions with the resppeep;,i = 1,...,m.
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Figures and Tables

Figure I: Multivariate Value-at-Risk hit matrix.

The Figure presents a stylized matrix of Value-at-Risk (Maiglations form business lines, banks, or sub-portfolios
and evaluations fon days. If the realized return in business linen dayj exceeds the corresponding VaR-forecast,
the respective entry in the hit matrix is one, and zero otlexwStylized clusters of VaR-violations in time (third
column) and across business lines (first row) are highlayhte

\ Linel Line2 Line3 Line4 Line5 Line6 --- Linem
Dayl | 0 1o T 1) 0 0
Day 2 0 077N (o R 1 0 0
Day3 1 0 11 1 0 1 0
Day4 0 0 1) 0 1 0 1
Day5 0 1 0 0 1 0 0
Day n 0 0 1 0 1 0 0
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Figure 1I: Daily row sums of the multivariate Value-at-Risi imatrix.

This figure presents the daily row sums of the multivariati®aat-Risk hit matrix for the years 2005-2007 from our
empirical study. The sample consists of log returns on thet pnices of the stocks of the 20 largest global banks
available in theThomson Reuters Financial Datastreatatabase according to the banks’ market capitalization on
the 1st of January, 2002. The banks in our sample are: QigigrBlSBC Holdings (dual listing), UBS, Barclays,
BNP Paribas, Mitsubishi UFJ, RBS, &ifit Agricole, Bank of America, JP Morgan Chase, DeutschekB&izuho
Financial Group, ABN Amro, Soéié Gérérale, Morgan Stanley, HBOS, Banco Santander, Unicredd, Gredit
Suisse. Our sample period runs from the 1st of February, 8603he 31st of December, 2014. All data are retrieved
in $ US. VaR forecasts are computed using GJR-GARCH(1,1)efsaslith skewed t-distributed innovations based on
rolling windows of 500 observations anq= 0.05. Consequently, witpp = 0.05 and assuming that the VaR-model is
correct, the expected value is 1 for each row.
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Table I: Summary of all stated hypotheses and test statistic

This table summarized theftirent properties that are tested within the present atiigjether with the corresponding test statistics.
Note, the Ind-m-test and the Ind-m-cc-test can be used f@rakproperties depending on the choicédgf In addition, the last column
of the table comments on which stakehold group should be misested in a risk model having the respective propedyithbeing

tested.

Tested property of violations Ho Proposed test Test statistic & Main test user(s)
Asymptotic distribution
Ind. of all violations E((lti(p) — P)(Iesrj(pj) — B;)) =0 Ind-m-Test CLn(ZM)Cqp Regulators
Equatiori 6 Xag Portfolio managers
Ind. of lagged violations  E((li(pi) — Bi)(l+,j(pj) — P;)) =0 Ind-m-Test C;n(zigd)—lcs,n Risk managers
Equatior ¥ Xag
Ind. of all violations E(f(, j,1,t)) =0 Ind-m-cc-test B’sn(ng)—lBs,n Regulators
Constant expectations X|2As| Portfolio managers
Unconditional coverage
Equatiori 8
Ind. of lagged violations E(f(, j,1,t) =0 Ind-m-cc-test B.n(2%) ! Bsn Risk managers
Constant expectations X|2As|
Unconditional coverage
Equatior 9
Constant expectations E(r) =...=E(n) =c Stat-m-test  max;_n % |Zt‘:1 -1y, rt| Risk managers
Equatior 1l SUR.[0.11 1B(S)|
Constant expectations E(r) =...=E(r) =X, p Stat-m-cc-test magx;_n %‘ |Zt'=1 re—jxm, pi| Risk managers
Unconditional coverage SUR(0.1 W(9)|

Equatiori 1P




Table 1I: Simulated rejection probabilities for non-cargtexpectations.

The table presents the rejections probabilities of the-i@t&tst and the Ind-m-test based on simulated data with
non-constant expectations wigh= 0.01 (Panel A) ang = 0.05 (Panel B).

Panel A: p= 0.01

[ [ Stat-m-test [ Ind-m-test |
o/p 0.0 0.1 0.2 0.3 0.4 0.5 0.0 0.1 0.2 0.3 0.4 0.5
250 0.04 006 013 028 048 0.770.09 009 0.09 0.11 013 0.1
500 0.04 008 025 057 089 1.0p0.15 0.15 0.17 0.18 0.22 0.2
1,000 | 0.05 0.14 051 092 100 1000.13 015 0.16 020 0.23 0.2
2,000 0.05 028 08 100 100 100012 0.12 0.14 0.18 023 0.3
Panel B: p= 0.05
[ [ Stat-m-test [ Ind-m-test |
o/p 0.0 0.1 0.2 0.3 0.4 0.5 0.0 0.1 0.2 0.3 0.4 0.5
250 0.04 016 061 097 100 1.000.06 0.07 0.08 0.14 021 03
500 0.04 034 094 100 100 1.0p0.06 007 009 015 026 04
1,000 | 0.05 065 100 100 100 1.0p0.05 0.06 010 0.19 0.38 0.6
2,000 0.05 094 100 100 100 1.000.05 0.07 011 0.26 059 0.9
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Table Ill: Simulated rejection probabilities for crosszgenal correlation.

The table presents the rejection probabilities of the Bkdest and the Ind-m-test based on simulated data with-cross
sectional correlatiop, p = 0.01 (Panel A) ang = 0.05 (Panel B).

Panel A: p= 0.01
[ [ Stat-m-test [ Ind-m-test |

0 0.0 0.2 0.4 0.6 0.8 0.0 0.2 0.4 0.6 0.8
250 0.04 0.04 0.03 0.02 0.02 028 081 099 1.00 1.0¢
n 500 0.04 0.04 0.04 003 002026 089 1.00 1.00 1.0¢
1,000 | 0.04 0.04 004 003 0.03 021 098 1.00 1.00 1.00
2,000 | 0.04 004 004 004 004 015 100 1.00 1.00 1.00
Panel B: p= 0.05
[ [ Stat-m-test [ Ind-m-test |

P 0.0 0.2 0.4 06 08| 0.0 0.2 0.4 0.6 0.8
250 0.04 0.04 0.03 0.03 0.04 009 097 1.00 100 1.00
n 500 0.04 004 0.04 004 004008 100 1.00 100 1.00
1,000 | 0.04 0.04 0.04 004 0.04 006 1.00 100 1.00 1.00
2,000 | 0.05 005 004 0.05 0.04 005 100 1.00 1.00 1.0C

Table IV: Simulated rejection probabilities for serial @eplence.

The table presents the rejections probabilities of the-iBtatst and the Ind-m-test based on simulated data with
autocorrelatiorp, cross-correlatiop = 0.3, p = 0.01 (Panel A) ang = 0.05 (Panel B).

Panel A: p= 0.01
[ [ Stat-m-test [ Ind-m-test ]

I3 0.0 0.25 0.5 0.75 1.0 0.0 0.25 0.5 0.75 1.0
250 0.03 0.05 0.07 0.09 0.10 0.09 041 0.74 0.88 0.9¢
500 0.04 0.06 008 010 0.10 0.16 059 091 0.98 0.99
1,000 | 0.04 0.06 0.09 0.10 0.11 024 0.77 099 1.00 1.00¢
2,000 | 0.05 0.07 010 011 011 011 091 1.00 1.00 1.0¢
Panel B: p= 0.05
[ [ Stat-m-test [ Ind-m-test |

[ 0.0 0.25 05 075 10/ 00 0.25 05 0.75 1.0
250 0.04 0.08 012 0.15 0.1% 0.07 0.73 0.99 100 1.00
500 0.05 0.08 0.12 0.16 0.17 0.06 0.92 1.00 1.00 1.0¢
1,000 | 0.05 0.09 014 0.17 0.7 0.05 1.00 100 1.00 1.00
2,000 | 0.04 0.10 0.15 0.17 0.1 0.05 1.00 1.00 1.00 1.00¢
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Table V: Simulated rejection probabilities for non-comstexpectations and serial dependence
with p = 0.01.

The table presents the rejections probabilities of theiBtédst and the Ind-m-test based on simulated data thabiexhi
a combination of non-constant expectations and serialrdipee with autocorrelatiahand cross-correlatign= 0.3.

Panel A:¢ =0
[ [ Stat-m-test [ Ind-m-test |
o/p 0.0 0.1 0.2 0.3 0.4 0.5/ 0.0 0.1 0.2 0.3 0.4 0.5
250 0.04 005 010 0.17 030 045010 0.09 0.0 0.12 0.13 0.1
500 0.04 0.07 018 037 064 095015 015 0.17 0.19 0.21 0.2
1000 | 0.04 0.10 035 0.75 098 1.000.13 0.15 0.17 0.20 0.22 0.2
2000 | 0.05 0.19 069 098 100 1.00p0.12 0.12 0.214 0.18 0.24 0.3
Panel B:¢ = 0.25
[ [ Stat-m-test [ Ind-m-test |

o/p 0.0 0.1 0.2 0.3 04 05| 0.0 0.1 0.2 0.3 0.4 0.5

OOy Ut

250 | 0.05 0.06 013 022 033 049040 039 043 045 048 058
n 500 0.06 010 020 040 0.67 095060 060 0.63 065 0.70 0.74
1000 | 0.06 0.13 039 076 098 10pO0.77 077 079 083 0.86 0.89
2000 | 0.06 023 071 099 100 100091 091 093 094 096 0.98

Panel C:¢ = 0.5
[ [ Stat-m-test [ Ind-m-test |
o/p 0.0 0.1 0.2 0.3 04 05| 0.0 0.1 0.2 0.3 0.4 0.5

250 | 0.07v 010 016 025 038 058075 076 076 0.78 0.81 0.8
500 0.08 011 023 044 069 094092 092 092 094 095 09
1000 | 0.08 0.17 042 076 098 10p099 099 099 099 100 1.0
2000 | 0.10 026 072 098 1.00 1.001.00 100 100 1.00 100 1.0
Panel D:¢ = 0.75

[ [ Stat-m-test [ Ind-m-test |

o/p 0.0 0.1 0.2 0.3 0.4 05| 00 0.1 0.2 0.3 0.4 0.5

OO O &~

250 0.09 011 017 026 040 056088 089 088 090 0.92 0.92

n 500 0.10 0.13 025 045 070 095098 098 098 098 099 0.99

1000 { 0.11 0.19 044 078 098 100100 100 100 100 1.00 1.00

2000 | 0.112 0.28 0.73 098 100 100100 2100 100 100 1.00 1.00
Panel E:¢p =1

[ [ Stat-m-test [ Ind-m-test ]

6/p 0.0 0.1 0.2 0.3 0.4 0.5/ 0.0 0.1 0.2 0.3 0.4 0.5

250 0.09 011 017 027 040 057090 091 092 092 093 09
500 009 015 0.27 045 070 095098 099 099 099 099 0.9
1000 | 0.11 020 046 0.78 098 1.001.00 1.00 100 1.00 1.00 1.0
2000 0.12 030 0.73 098 100 100100 100 1.00 1.00 1.00 1.0

O O O Ut
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Table VI: Simulated rejection probabilities for non-cargtexpectations and serial dependence
with p = 0.05.

The table presents the rejections probabilities of thei@tédst and the Ind-m-test based on simulated data thabtiexhi
a combination of non-constant expectations and serialrtbgree with autocorrelatiahand cross-correlatign= 0.3.

Panel A:¢ =0
[ [ Stat-m-test [ Ind-m-test |

o/p 0.0 0.1 0.2 0.3 0.4 0.5 0.0 0.1 0.2 0.3 0.4 0.5
250 0.04 010 032 071 097 1.0p0.06 0.07r 0.09 0.13 020 03
500 0.05 0.18 067 098 100 1.0p0.06 0.06 0.08 0.14 026 0.4
1000 | 0.04 037 096 100 100 1.000.06 0.07 0.10 0.19 034 0.6
2000 | 0.05 069 100 100 100 1.0p0.0O5 0.06 010 024 055 0.8

Panel B:¢ = 0.25

[ [ Stat-m-test [ Ind-m-test |

6/p 0.0 0.1 0.2 0.3 04 05| 0.0 0.1 0.2 0.3 0.4 0.5
250 0.08 014 038 0.72 097 100072 073 077 084 089 09

D

n 500 0.09 024 070 098 100 100092 093 095 098 099 1.00

1000 | 0.09 043 095 100 100 100100 100 100 1.00 1.00 1.00

2000 | 0.09 0.72 100 100 100 10p100 12100 12100 100 1.00 1.00
Panel C:¢ = 0.5

[ [ Stat-m-test [ Ind-m-test |

é/p 0.0 0.1 0.2 0.3 0.4 0.5/ 0.0 0.1 0.2 0.3 0.4 0.5

250 0.12 020 041 074 096 100099 099 100 1.00 1.00 1.0
500 0.13 029 071 098 100 100100 100 100 1.00 100 1.0
1000 | 0.24 047 095 100 100 100100 100 100 100 100 10
2000 | 0.15 074 100 100 100 10p100 100 100 100 100 1.0
Panel D:¢ = 0.75

[ [ Stat-m-test [ Ind-m-test

o/p 0.0 0.1 0.2 0.3 04 05| 0.0 0.1 0.2 0.3 0.4 0.5
250 | 015 022 046 076 096 1.0p1.00 100 1.00 1.00 100 1.0

O O OO

0

n 500 0.15 033 072 098 100 100100 100 100 1.00 1.00 1.00

1000 | 0.17 050 095 100 100 10p1.00 100 1.00 100 1.00 1.00

2000 | 0.18 0.76 1.00 100 100 1.0p1.00 100 100 1.00 1.00 1.00
Panel E:¢p =1

[ [ Stat-m-test [ Ind-m-test |

o/p 0.0 0.1 0.2 0.3 04 05| 0.0 0.1 0.2 0.3 0.4 0.5

250 015 024 046 075 096 10p1.00 100 1.00 100 1.00 1.0
500 0.16 033 0.72 098 1.00 1.0p1.00 100 1.00 100 1.00 1.0
1000 | 0.18 052 095 100 100 1.001.00 1.00 100 1.00 1.00 1.0
2000 | 0.19 0.75 100 1.00 100 1.0p1.00 1.00 100 1.00 1.00 1.0

O O OO
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Table VII: Simulated rejection probabilities for violatiaf the cc-property wittp = 0.01.

The table presents the rejections probabilities of the@tatst and the Ind-m-test based on simulated data thaiteiol
the cc-property with autocorrelatighand cross-correlation = 0.3.

Panel A:¢ =0
[ [ Stat-m-cc-test [ Ind-m-cc-test |
o/p 0.0 0.2 0.4 0.6 0.8 1.0/ 0.0 0.2 0.4 0.6 0.8 1.0
250 0.02 008 024 047 069 086024 030 038 0.42 048 0.5
500 0.05 012 045 081 095 099027 036 044 059 068 0.7
1000 | 0.05 028 079 099 100 1.000.12 023 036 052 0.67 0.8
2000 | 0.05 055 098 100 100 1.0p0.15 029 046 062 0.76 0.8
Panel B:¢ = 0.25
[ [ Stat-m-cc—test [ Ind-m-cc-test |
o/p 0.0 0.2 0.4 0.6 0.8 1.0/ 0.0 0.2 0.4 0.6 0.8 1.0
250 0.03 010 027 049 069 085065 073 078 0.82 08 0.8

Oy O UT ™

D
n 500 0.06 0.15 047 078 094 0990.73 084 090 094 096 0.96
1000 | 0.07 029 079 098 100 1.000.78 091 097 0.99 1.00 1.00
2000 | 0.07 055 098 100 100 10p091 097 099 100 1.00 1.00

Panel C:¢ = 0.5
[ [ Stat-m-cc-test [ Ind-m-cc-test |
é/p 0.0 0.2 0.4 0.6 0.8 1.0/ 0.0 0.2 0.4 0.6 0.8 1.0

250 | 0.05 013 029 052 071 084089 092 093 094 093 09
500 0.08 0.17 047 078 093 098095 097 099 099 098 0.9
1000 | 0.09 031 077 097 100 10p0.99 100 1.00 100 1.00 1.0
2000 | 0.09 055 097 100 100 1.001.00 100 100 1.00 100 1.0
Panel D:¢ = 0.75

[ [ Stat-m-cc-test [ Ind-m-cc-test |
o/p 0.0 0.2 0.4 0.6 0.8 10| 0.0 0.2 0.4 0.6 0.8 1.0

OO NI

250 | 005 015 031 052 072 084095 096 096 096 094 0.98

n 500 0.09 019 048 077 093 098098 099 099 099 098 0.9y

1000 | 0.10 033 0.77 097 100 10p1.00 100 1.00 100 1.00 1.00

2000 | 0.11 056 097 100 100 1.001.00 100 100 1.00 1.00 1.0
Panel E:¢p =1

[ [ Stat-m-cc-test [ Ind-m-cc-test |

o/p 0.0 0.2 0.4 0.6 0.8 10/ 0.0 0.2 0.4 0.6 0.8 1.0

250 006 015 034 053 071 0838096 097 097 09 094 0.9
500 0.10 020 048 0.77 093 098099 099 099 099 098 0.9
1000 | 0.12 031 0.78 097 100 100100 100 100 1.00 1.00 1.0
2000 011 056 097 100 100 100100 100 100 1.00 1.00 1.0
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Table VIII: Simulated rejection probabilities for violati of the cc-property withp = 0.05.

The table presents the rejections probabilities of the@tatst and the Ind-m-test based on simulated data thaiteiol
the cc-property with autocorrelatighand cross-correlation = 0.3.

Panel A:¢ =0
[ [ Stat-m-cc-Test [ Ind-m-cc-Test |
o/p 0.0 0.2 0.4 0.6 0.8 1.0/ 0.0 0.2 0.4 0.6 0.8 1.0
250 0.05 027 079 098 100 1.000.10 025 046 068 080 0.8
500 0.05 053 098 100 100 1.0p0.08 0.24 048 0.69 0.87 0.9
1000 | 0.05 086 100 100 100 1.000.06 023 050 0.73 089 0.9
2000 | 0.05 099 100 100 100 1.0p0.06 023 051 079 09 0.9
Panel B:¢ = 0.25

O =10

[ [ Stat-m-cc-Test [ Ind-m-cc-Test |
o/p 0.0 0.2 0.4 0.6 0.8 1.0/ 0.0 0.2 0.4 0.6 0.8 1.0
250 0.09 029 078 097 100 1.000.74 090 097 098 0.96 0.92
n 500 0.09 055 097 100 100 100092 099 100 100 1.00 0.99
1000 | 0.09 083 100 100 100 100100 100 100 1.00 1.00 1.00
2000 | 0.09 099 100 100 100 10p100 12100 12100 100 1.00 1.00

Panel C:¢ = 0.5
[ [ Stat-m-cc-Test [ Ind-m-cc-Test |
é/p 0.0 0.2 0.4 0.6 0.8 1.0/ 0.0 0.2 0.4 0.6 0.8 1.0

250 | 012 033 075 097 100 100099 100 100 0.99 097 0.9
500 0.12 055 09 100 1.00 10p1.00 100 1.00 100 1.00 0.9
1000 | 0.12 082 100 100 100 10p1.00 100 1.00 100 1.00 1.0
2000 | 0.12 098 1.00 100 100 1.001.00 100 100 1.00 100 1.0
Panel D:¢ = 0.75
[ [ Stat-m-cc-Test [ Ind-m-cc-Test |
o/p 0.0 0.2 0.4 0.6 0.8 10| 0.0 0.2 0.4 0.6 0.8 1.0
250 | 014 035 075 095 100 100100 1.00 100 0.99 098 0.9

O O WO Ut

D

n 500 0.14 056 09 100 100 100100 1.00 100 1.00 1.00 0.99

1000 | 0.14 082 100 100 100 10p1.00 100 1.00 100 1.00 1.0D

2000 | 0.15 097 1.00 100 100 1.0p1.00 100 100 1.00 1.00 1.0
Panel E:¢p =1

[ [ Stat-m-cc-Test [ Ind-m-cc-Test |

o/p 0.0 0.2 0.4 0.6 0.8 10/ 0.0 0.2 0.4 0.6 0.8 1.0

250 015 034 075 09 100 100100 100 100 099 097 0.9
500 0.15 056 095 100 1.00 1.0p1.00 100 100 100 1.00 0.9
1000 | 0.15 082 100 100 100 1.001.00 1.00 100 1.00 1.00 1.0
2000 | 0.16 098 100 100 100 100100 100 100 1.00 1.00 1.0

O O O Ut
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Table IX: Summary statistics and test results for the erogiistudy.

The table presents some yearly summary statistics for thariead study, including the average daily return and
volatility, the number of (subsequent) violations, theghue for every applied test and the results for the argmax est
mators for the CUSUM tests. The sample consists of log retonrthe mid prices of the stocks of the 20 largest global
banks available in thEhomson Reuters Financial Datastreaatabase according to the banks’ market capitalization
on the 1st of January, 2002. The banks in our sample are:r@ifig HSBC Holdings (dual listing), UBS, Barclays,
BNP Paribas, Mitsubishi UFJ, RBS, &lit Agricole, Bank of America, JP Morgan Chase, DeutschekB&lizuho
Financial Group, ABN Amro, Soété Gérérale, Morgan Stanley, HBOS, Banco Santander, Unicredit Gredit Su-
isse. Our sample period runs from the 1st of February, 20@iBtba 31st of December, 2014. All data are retrieved
in $ US. VaR forecasts are computed using GJR-GARCH(1,1)efsoslith skewed t-distributed innovations based on

rolling windows of 500 observations am= 0.05.

Year 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2
@ Return per day 0.05% 0.03% 0.08% -0.07% -0.40% 0.09% -0.04% -0.18% 0.11% 09%. -0.04%
@ Volatility per day 1.37% 1.12% 1.28% 1.72% 5.17% 4.92% 2.37% 3.16% 2.48% 1.68%.35%L
Number of violations 220 267 295 433 404 279 223 324 221 277 3
Number of 2 subsequent violation 26 14 21 78 64 32 18 45 17 24 4
TR Cross-sectional (p-value) 0.00% 0.00%  0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%.00%0
ng'”d Cross-sectional (p-value) 0.00% 0.00%  0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%.009®
TZR Serial (p-value) 0.01% 28.86% 0.28% 0.00% 0.00% 0.00% 12.25% 0.00% 0.10% 99.00 0.00%
ng'”d Serial (p-value) 0.00% 26.19% 1.91% 0.01% 0.00% 0.25% 3.57% 1.82% 13.57% 1%t.2 0.34%
RCccn (p-value) 31.11% 41.84% 4.21% 0.07% 0.18% 21.89% 55.15% 6.94% 44.31%.72% 2.97%
RC¢cn (argmax) 31.12. 02.05. 13.06. 17.12. 24.12. 31.03. 31.12. 09.11. 1231. 24.06. 16.12.
RG, (p-value) 430% 12.95% 0.14% 22.66% 40.28% 2.41% 44.19% 18.95% 10.7280.54%  25.16%
RG, (argmax) 10.05. 02.05. 13.06. 17.07. 22.01. 30.03. 07.05. 14.06. 0802. 24.06. 24.09.
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Supplementary material for “Evaluating Value-at-Risk Forecasts: A New Set of Multivariate
Backtests”.

Table IA.I: Simulated rejection probabilities for non-aant expectations.

The table presents the rejections probabilities of the-iBtéest and the Ind-m-test based on simulated data with
non-constant expectations wigh= 0.01 (Panel A) ang = 0.05 (Panel B).

Panel A: p= 0.01
[ [ Stat-m-test [ Ind-m-test |

o/p 0.0 0.1 0.2 0.3 04 05| 0.0 0.1 0.2 0.3 0.4 0.5
250 | 0.04 0.09 025 057 090 100008 0.08 010 012 013 0.1
500 0.04 014 052 09 100 100013 014 016 018 0.23 0.2
1000 | 0.04 0.27 086 100 100 10pO0.15 0.14 018 021 0.27 03
2000 | 0.04 053 099 100 100 1.000.14 013 0.16 022 031 04

Panel B: p= 0.05

[ [ Stat-m-test [ Ind-m-test |

o/p 0.0 0.1 0.2 0.3 04 05| 0.0 0.1 0.2 0.3 0.4 0.5
250 004 031 092 100 100 1.000.06 006 009 015 0.27 0.4
500 0.04 065 1.00 100 1.00 1.0p0.06 007 010 019 036 06
1000 | 0.05 094 100 100 100 1.000.05 0.06 012 024 055 0.8
2000 | 0.04 1.00 100 1.00 100 1.0p0.05 0.06 0.14 037 080 0.9

=0y 00 OY
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Table IA.ll: Simulated rejection probabilities for crossetional correlation.

The table presents the rejection probabilities of the Staest and the Ind-m-test based on simulated data with-cross
sectional correlatiop, p = 0.01 (Panel A) ang = 0.05 (Panel B).

Panel A: p= 0.01
[ [ Stat-m-test [ Ind-m-test |

P 0.0 0.2 0.4 0.6 0.8 0.0 0.2 0.4 0.6 0.8
250 0.04 0.03 0.03 0.02 002032 098 1.00 1.00 1.0
500 0.04 0.04 0.04 003 0.03 029 100 1.00 1.00 1.0¢
1000 | 0.04 0.04 004 004 003 024 100 100 1.00 1.00
2000 | 0.05 0.04 004 004 0.04 016 100 1.00 1.00 1.00
Panel B: p= 0.05
[ [ Stat-m-test [ Ind-m-test |

0 0.0 0.2 0.4 0.6 08| 0.0 0.2 0.4 0.6 0.8
250 0.04 004 004 004 003010 100 1.00 100 1.00
500 0.04 0.04 0.04 0.04 0.040.07 100 1.00 100 1.00
1000 | 0.05 0.04 0.05 0.04 0.04 006 1.00 100 1.00 1.00
2000 | 0.04 0.05 0.04 0.05 0.0% 0.06 100 1.00 1.00 1.00
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Table IA.lll: Simulated rejection probabilities for ser@ependence.

The table presents the rejections probabilities of the-iBtatst and the Ind-m-test based on simulated data with
autocorrelatiorp, cross-correlatiop = 0.3, p = 0.01 (Panel A) ang = 0.05 (Panel B).

Panel A: p= 0.01
[ [ Stat-m-test [ Ind-m-test |

3 0.0 0.25 0.5 0.75 1.0/ 0.0 0.25 0.5 0.75 1.0
250 0.03 0.06 0.09 011 0.12 0.10 055 091 0.98 0.99
500 0.03 0.06 010 0.12 012 0.15 0.75 099 1.00 1.04
1000 | 0.04 0.07 0.09 0.12 0.12 015 092 1.00 1.00 1.0(¢
2000 | 0.04 0.07 0.10 0.13 0.14 013 0.98 1.00 1.00 1.0¢
Panel B: p= 0.05
[ [ Stat-m-test [ Ind-m-test |

[ 0.0 0.25 05 075 1.0/ 00 0.25 05 0.75 1.0
250 0.04 0.08 013 0.16 0.17 0.06 0.88 1.00 1.00 1.00
500 0.04 009 015 0.17 019 006 0.99 1.00 100 1.00
1000 | 0.05 0.09 0.15 0.18 0.20 0.05 1.00 1.00 1.00 1.00
2000 | 0.05 0.10 016 019 0.20 0.06 1.00 100 1.00 1.0Q
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Table IA.IV: Simulated rejection probabilities for nonssiant expectations and serial depen-
dence withp = 0.01.

The table presents the rejections probabilities of theiBtédst and the Ind-m-test based on simulated data thabiexhi
a combination of non-constant expectations and serialrdipee with autocorrelatiahand cross-correlatign= 0.3.

Panel A:¢ =0
[ [ Stat-m-cc-test [ Ind-m-cc-test |
o/p 0.0 0.1 0.2 0.3 0.4 0.5 0.0 0.1 0.2 0.3 0.4 0.9
250 0.04 012 042 084 100 10p0.06 008 0.11 0.16 027 04
500 004 024 081 100 100 1.0p0.06 0.07 010 0.18 036 05
1000 | 0.04 048 099 100 100 1.000.05 006 011 0.24 049 0.7
2000 | 0.04 081 100 100 100 1000.05 0.07 013 033 0.71 0.9
Panel B:¢ = 0.25
[ [ Stat-m-cc-test [ Ind-m-cc-test |
é/p 0.0 0.1 0.2 0.3 04 05| 0.0 0.1 0.2 0.3 0.4 0.5
250 009 018 048 085 100 100089 090 092 095 098 0.9
500 009 031 083 099 100 100099 099 099 100 1.00 1.0
1000 | 0.10 053 099 100 100 100100 100 100 1.00 100 1.0
2000 | 010 0.84 100 100 100 100100 100 100 100 1.00 1.0
Panel C:¢ = 0.5
[ [ Stat-m-cc-test [ Ind-m-cc-test |
6/p 0.0 0.1 0.2 0.3 04 05| 0.0 0.1 0.2 0.3 0.4 0.5
250 013 023 054 08 099 100100 100 100 1.00 1.00 1.0
500 015 035 083 099 100 100100 100 100 1.00 1.00 1.0
1000 | 0.14 058 099 100 100 100100 100 100 1.00 100 1.0
2000 | 0.16 0.84 100 100 100 100100 100 100 100 1.00 1.0
Panel D:¢ = 0.75
[ [ Stat-m-cc-test [ Ind-m-cc-test |
6/p 0.0 0.1 0.2 0.3 04 05| 0.0 0.1 0.2 0.3 0.4 0.5
250 0.16 027 056 087 099 100100 100 100 1.00 1.00 1.0
500 0.17 039 082 099 100 100100 100 100 1.00 1.00 1.0
1000 | 0.20 060 099 100 100 100100 100 100 100 100 1.0
2000| 0.19 084 100 100 100 10p100 100 100 100 100 1.0
Panel E:¢p =1
[ [ Stat-m-cc-test [ Ind-m-cc-test ]
é/p 0.0 0.1 0.2 0.3 04 05 0.0 0.1 0.2 0.3 0.4 0.5
250 0.16 028 055 086 099 10p100 100 100 100 100 1.0
500 019 041 083 099 100 100100 100 100 1.00 1.00 1.0
1000 | 0.20 059 099 100 100 100100 100 100 100 100 1.0
2000 | 0.20 084 100 100 100 10p100 100 100 100 1.00 1.0

Oy O 00+
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Table IA.V: Simulated rejection probabilities for non-abant expectations and serial depen-
dence withp = 0.05.

The table presents the rejections probabilities of thei@tédst and the Ind-m-test based on simulated data thabiexhi
a combination of non-constant expectations and serialrtbgree with autocorrelatiahand cross-correlatign= 0.3.

Panel A:¢ =0
[ [ Stat-m-cc-test [ Ind-m-cc-test |
o/p 0.0 0.1 0.2 0.3 0.4 0.5 0.0 0.1 0.2 0.3 0.4 0.5
250 0.04 011 042 085 100 1.000.06 007 0.09 0.16 026 04
500 0.04 022 081 100 100 1.0p0.06 0.07 010 0.19 0.34 0.5
1000 | 0.04 047 099 100 100 1.000.05 0.07 0.12 0.23 0.48 0.8
2000 | 0.05 082 100 100 100 1.0p0.0O5 0.07 0.212 032 070 0.9
Panel B:¢ = 0.25
[ [ Stat-m-cc-test [ Ind-m-cc-test
o/p 0.0 0.1 0.2 0.3 0.4 0.5 0.0 0.1 0.2 0.3 0.4 0.5

N O 001N

250 0.08 0.18 046 085 099 100089 090 092 095 0.98 0.99
n 500 0.10 031 082 100 100 100099 099 099 100 1.00 1.00
1000 | 0.11 054 099 100 100 100100 100 100 1.00 1.00 1.00
2000 | 0.10 083 100 100 100 10p100 12100 12100 100 1.00 1.00

Panel C:¢ = 0.5
[ [ Stat-m-cc-test [ Ind-m-cc-test |
é/p 0.0 0.1 0.2 0.3 0.4 0.5/ 0.0 0.1 0.2 0.3 0.4 0.5

250 | 0.14 025 053 08 099 100100 1.00 100 100 100 10

500 | 0.14 037 083 100 100 1.001.00 100 100 1.00 100 1.0

1000 | 0.16 058 099 100 100 10p1.00 100 1.00 100 1.00 1.0

2000 | 0.17 084 100 100 100 1.001.00 100 100 1.00 100 1.0

Panel D:¢ = 0.75

[ [ Stat-m-cc-test [ Ind-m-cc-test

o/p 0.0 0.1 0.2 0.3 04 05| 0.0 0.1 0.2 0.3 0.4 0.5
250 | 0.16 026 055 086 099 100100 1.00 100 1.00 100 1.0

0

n 500 0.18 038 083 099 100 100100 100 100 1.00 1.00 1.00

1000 | 0.19 059 098 100 100 10p1.00 100 1.00 100 1.00 1.00

2000 | 0.19 084 1.00 100 100 1.0p1.00 100 100 1.00 1.00 1.0
Panel E:¢p =1

[ [ Stat-m-cc-test [ Ind-m-cc-test |

o/p 0.0 0.1 0.2 0.3 04 05| 0.0 0.1 0.2 0.3 0.4 0.5

250 0.17 028 055 086 099 10p1.00 100 1.00 100 1.00 1.0
500 019 040 082 099 1.00 10p1.00 100 1.00 100 1.00 1.0
1000 | 0.20 060 098 1.00 100 1.001.00 1.00 100 1.00 1.00 1.0
2000 | 0.20 0.83 100 1.00 100 1.0p1.00 1.00 100 1.00 1.00 1.0
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Table IA.VI: Simulated rejection probabilities for violah of the cc-property withp = 0.01.

The table presents the rejections probabilities of the@tatst and the Ind-m-test based on simulated data thaiteiol
the cc-property with autocorrelatighand cross-correlation = 0.3.

Panel A:¢ =0
[ [ Stat-m-cc-test [ Ind-m-cc-test |
o/p 0.0 0.2 0.4 0.6 0.8 1.0/ 0.0 0.2 0.4 0.6 0.8 1.0
250 0.06 034 09 100 100 100011 038 069 084 083 0.7
500 0.05 066 100 100 100 1.0p0.09 035 069 089 096 0.9
1000 | 0.05 093 100 100 100 1.000.07 033 068 091 099 1.0
2000 | 0.05 100 100 100 100 1.0p0.06 033 073 094 099 1.0
Panel B:¢ = 0.25
[ [ Stat-m-cc-test [ Ind-m-cc-test |
o/p 0.0 0.2 0.4 0.6 0.8 1.0/ 0.0 0.2 0.4 0.6 0.8 1.0

250 0.09 036 087 099 100 100089 098 099 095 090 0.83

n 500 0.09 065 099 100 100 100099 100 1.00 100 0.99 0.9

1000 | 0.09 091 100 100 100 100100 100 100 1.00 1.00 1.00

2000 | 0.09 100 100 100 100 10p100 12100 12100 100 1.00 1.00
Panel C:¢ = 0.5

[ [ Stat-m-cc-test [ Ind-m-cc-test |

é/p 0.0 0.2 0.4 0.6 0.8 1.0/ 0.0 0.2 0.4 0.6 0.8 1.0

250 | 0.13 040 085 099 100 100100 1.00 099 096 092 0.8
500 0.13 067 099 100 1.00 1.0p1.00 100 1.00 100 0.99 0.9
1000 | 0.13 089 100 100 100 10p1.00 100 1.00 100 1.00 1.0
2000 | 0.13 099 1.00 100 100 1.001.00 100 100 1.00 100 1.0
Panel D:¢ = 0.75

[ [ Stat-m-cc-test [ Ind-m-cc-test |
o/p 0.0 0.2 0.4 0.6 0.8 10| 0.0 0.2 0.4 0.6 0.8 1.0

O O O ©

250 | 0.16 041 085 099 100 1.00100 1.00 099 097 094 0.90

n 500 0.16 066 099 100 100 100100 100 100 1.00 0.99 0.9y

1000 | 0.15 089 100 100 100 10p1.00 100 1.00 100 1.00 1.0

2000 | 0.17 099 1.00 100 100 1.0p1.00 100 100 1.00 1.00 1.0
Panel E:¢p =1

[ [ Stat-m-cc-test [ Ind-m-cc-test |

o/p 0.0 0.2 0.4 0.6 0.8 10/ 0.0 0.2 0.4 0.6 0.8 1.0

250 0.16 042 084 098 100 100100 1.00 099 097 094 09
500 0.17 065 098 100 1.00 1.0p1.00 1.00 100 100 0.99 0.9
1000 | 0.16 089 100 100 100 1.001.00 1.00 100 1.00 1.00 1.0
2000 0.17 0.99 100 100 100 100100 100 100 1.00 1.00 1.0

OO NI

42



Table IA.VIl: Simulated rejection probabilities for vidlan of the cc-property witlp = 0.05.

The table presents the rejections probabilities of the@tatst and the Ind-m-test based on simulated data thaiteiol
the cc-property with autocorrelatighand cross-correlation = 0.3.

Panel A:¢ =0
[ [ Stat-m-cc-test [ Ind-m-cc-test |
o/p 0.0 0.2 0.4 0.6 0.8 1.0/ 0.0 0.2 0.4 0.6 0.8 1.0
250 0.06 034 09 100 100 1.000.12 038 069 083 082 0.7
500 0.05 067 100 100 100 1.0p0.09 036 069 091 0.97 0.9
1000 | 0.06 093 100 100 100 1.000.07 034 069 091 099 1.0
2000 | 0.05 100 100 100 100 1.0p0.06 034 073 094 099 1.0
Panel B:¢ = 0.25
[ [ Stat-m-cc-test [ Ind-m-cc-test |
o/p 0.0 0.2 0.4 0.6 0.8 1.0/ 0.0 0.2 0.4 0.6 0.8 1.0

250 0.09 037 08 099 100 100089 098 099 096 090 0.83

n 500 0.10 066 099 100 100 100099 100 1.00 100 0.99 0.9

1000 | 0.10 091 100 100 100 100100 100 100 1.00 1.00 1.00

2000 | 0.09 100 100 100 100 10p100 12100 12100 100 1.00 1.00
Panel C:¢ = 0.5

[ [ Stat-m-cc-test [ Ind-m-cc-test |

é/p 0.0 0.2 0.4 0.6 0.8 1.0/ 0.0 0.2 0.4 0.6 0.8 1.0

250 | 0.14 039 085 098 100 100100 1.00 099 096 093 0.8
500 013 064 099 100 1.00 10p1.00 100 1.00 100 0.99 0.9
1000 | 0.14 090 100 100 100 10p1.00 100 1.00 100 1.00 10
2000 | 0.14 099 100 100 100 1.001.00 100 100 1.00 100 1.0
Panel D:¢ = 0.75

[ [ Stat-m-cc-test [ Ind-m-cc-test |
o/p 0.0 0.2 0.4 0.6 0.8 10| 0.0 0.2 0.4 0.6 0.8 1.0

O O Oy o

250 | 0.17 041 085 098 100 1.00100 1.00 099 097 094 0091

n 500 0.15 065 099 100 100 100100 1.00 100 1.00 0.99 0.9y

1000 | 0.16 089 100 100 100 10p1.00 100 1.00 100 1.00 1.00

2000 | 0.15 099 1.00 100 100 1.00p1.00 100 100 1.00 1.00 1.0
Panel E:¢p =1

[ [ Stat-m-cc-test [ Ind-m-cc-test |

o/p 0.0 0.2 0.4 0.6 0.8 10/ 0.0 0.2 0.4 0.6 0.8 1.0

250 0.16 041 083 098 100 100100 1.00 099 097 094 09
500 0.15 066 098 100 1.00 1.0p1.00 1.00 100 100 0.99 0.9
1000 | 0.16 088 1.00 100 100 1.001.00 1.00 100 1.00 1.00 1.0
2000 0.17 0.99 100 100 100 100100 100 100 1.00 1.00 1.0
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