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ABSTRACT
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detecting cross-sectional and serial dependence in the VaR-forecasts. Moreover, we combine our new backtests with

a test of unconditional coverage to yield two new backtests of multivariate conditional coverage. Results from a
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lines. In an empirical study, we show how our multivariate backtests can be employed by regulators to backtest a

banking system.
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1 Introduction

Over the past two decades, Value at Risk (VaR) has become the prevalent measure for assessing

the risk of financial investments. Its widespread use in banking was recognized under the 1996

Market Risk Amendment to the first Basel Accord which allowed banks to employ internal fore-

casting models to calculate their required regulatory capital. Since then, VaR has become the

industry standard for measuring and managing portfolio risk (not only for banks but also, e.g., for

insurance companies due to Solvency II) even though it lacksthe desirable property of a coherent

risk measure (see Artzner et al., 1999) for non-Gaussian Profit & Loss (P/L) distributions. Conse-

quently, not only regulators but also the firms that use VaR themselves have long been interested

in assessing the forecasting accuracy of their VaR-models through formal backtesting. Nowadays,

risk measures such as the Expected Shortfall, which explicitly take the amount of losses into ac-

count, are of increasing importance. Nevertheless, as these measures are still based on the VaR,

appropriate backtesting has not lost its importance. In this paper, we address the highly important

task of backtesting several VaR-forecasts of different business lines, sub-portfolios or banks across

several points in time. We propose two new multivariate backtests that can be used by both risk

managers in individual banks (for backtesting the risk of several business lines) and by regulators

(for backtesting a whole banking system).

The backtesting of a VaR-model comprises a comparison of the model’s out-of-sample VaR-

forecasts and the investment’s actual returns. If the investment is a single trading position or

a portfolio it yields a univariate time series of VaR-forecasts and VaR-violations. In the last

few years, several formal backtests have been proposed in the literature for the case of a uni-

variate sequence of VaR-violations with tests concentrating on the correct number of violations

(unconditional coverage,uc in short), the independence of the sample of violations, andboth

properties at the same time (tests of conditional coverage,cc in short) (see, e.g., Kupiec, 1995;

Christoffersen, 1998; Berkowitz, 2001; Christoffersen and Pelletier, 2004; Engle and Manganelli,

2004; Haas, 2005; Candelon et al., 2011; Berkowitz et al., 2011; Pelletier and Wei, 2015). Re-

cently, Ziggel et al. (2014) proposed a set of tests that additionally test for identically distributed



violations. None of these backtests, however, can be easilyextended to the multivariate case in

which VaR-violations might not only be correlated across time but also across business lines.

One motivation for considering multivariate VaR backtesting is that financial institutions are usu-

ally interested in forecasts of their trading desk’s aggregate P/L distribution in contrast to VaR-

forecasts of isolated investments. However, aggregating individual VaR-forecasts often yields bi-

ased results as diversification effects between (sub-)portfolios are not adequately modeled.To

tackle this problem, multivariate backtests need to account for cross-sectional dependence within

the portfolio.1 While it may also be possible to directly consider VaR for aggregate portfolios (i.e.,

for univariate additive combinations of different investments), the results of a (univariate) backtest

for these always depend on the type of aggregation. Moreover, and more importantly, a multi-

variate backtest avoids the problem of multiple testing, which arises if each business line is tested

separately as prescribed by the regulators. Apart from applications within a single bank, our newly

proposed tests should also be of great interest to bank regulators as they allow them to backtest

risk forecasts for a set of banks. Our multivariate backtests could thus be used to identify times

and sources of systemic risk in a banking sector. Finally, inaddition to the practical relevance of

our backtests for bankers and regulators, our new multivariate backtests process much more data at

once thereby allowing further theoretical applications and improving the tests’ power properties.

Despite the importance of multivariate backtesting, only afew papers in the literature deal with

this topic with most papers leaving the development of such tests for future research (see, e.g.,

Berkowitz et al., 2011; Ziggel et al., 2014). To the best of ourknowledge, the only exception

is Danciulescu (2010) who proposes a multivariate uc and independence test. The test is based

on a multivariate Portmanteau statistic of Ljung-Box type that jointly tests for the absence of

autocorrelations and cross-correlations in the vector of hits sequences for different business lines.

However, to the best of the authors’ knowledge, there currently exists no multivariate backtest that

explicitly tests for the i.i.d. property (in contrast to themere independence) of VaR-violations.2

1 Acknowledging this need to backtest the VaR-forecasts of a bank holistically, the Basel guidelines explicitly
demand that a bank should “[...] perform separate backtestson sub-portfolios using daily data on sub-portfolios
subject to specific risk.” (see Basel Committee on Banking Supervision (BCBS), 2009).

2 Note that there exist some papers that deal with VaR backtests in miscellaneous multivariate settings. How-
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In this paper, we suggest new multivariate backtests for clusters in VaR-violations which are easy

to implement and have appealing properties under the null and the alternative. Moreover, these

tests can easily be extended to cc-versions. We essentiallypropose two different kinds of tests.

First, we consider a CUSUM-test for detecting clusters that are caused by instationarities in the

mean of the VaR-violations. To take the multidimensionalityof the VaR-violations into account,

we use the sums of the violations for different business lines and sub-portfolios for a single day.

Second, we consider aχ2-test for detecting clusters that are caused by cross-sectional and/or serial

dependencies within the VaR-violations. Finally, we combine our new backtests with a test of

unconditional coverage to yield two new backtests of multivariate conditional coverage. All tests

are easy to implement and perform well in simulations. Additionally, all tests work without Monte

Carlo simulations or bootstrap approximations. However, there are bootstrap approximations avail-

able: The one for the CUSUM-tests serves for making it more robust (which does not seem to be

necessary, at least in our simulations), while the one for theχ2-tests is potentially interesting with

respect to the test’s software implementation.3

The rest of this paper is organized as follows. In Section 2, we introduce the notation and the

new multivariate backtests. The performance of the new backtests in finite samples is analyzed in

simulations in Section 3. In Section 4, the outline and results of our empirical study are presented.

Section 5 concludes.

2 Methodology

In this section, we introduce the notation used throughout the paper. Moreover, we define the

desirable properties of VaR-violations and present our new multivariate backtests.

ever, these backtests use multivariate approaches in orderto investigate a univariate time series (see, e.g.,
Hurlin and Tokpavi, 2007).

3 For sake of brevity, the bootstrap approximations are positioned in the Appendix.
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2.1 Notation and VaR-violation Properties

First, we shortly discuss the univariate case in order to extend it in the following to a multivariate

setting. Let{yt}nt=1 be the observable part of a time series{yt}t∈Z corresponding to daily observations

of the returns on an asset or a portfolio. We are interested inthe accuracy of VaR-forecasts. Fol-

lowing Dumitrescu et al. (2012), the ex-ante VaRVaRt|t−1(p) (conditionally on an information set

Ft−1) is implicitly defined byPr(yt < −VaRt|t−1(p)) = p, wherep is the VaR coverage probability.

Note that we follow the actuarial convention of a positive sign for a loss. In practice, the coverage

probability p is typically chosen to be either 1% or 5% (see Christoffersen, 1998). This notation

implies that information up to timet−1 is used to obtain a forecast for timet. Moreover, we define

the ex-post indicator variableIt(p) for a given VaR-forecastVaRt|t−1(p) as

It(p) =































0, if yt ≥ −VaRt|t−1(p);

1, if yt < −VaRt|t−1(p).

(1)

If this indicator variable is equal to 1, we will call it a VaR-violation. The indicator variables may

depend on additional parameters which are assumed to be known such that there is no estimation

error. In practice, this is a reasonable assumption given results by Escanciano and Olmo (2010).

These authors show for some particular VaR backtests that, asymptotically, there is no estimation

error if one uses afixed forecasting schemefor estimating model parameters.

To backtest a given sequence of VaR-violations, Ziggel et al.(2014) state three desirable properties

that the VaR-violation process should possess. First, the VaR-violations are said to have uncondi-

tional coverage (uc hereafter) if the probability of a VaR-violation is equal top on average, i.e.,

E















1
n

n
∑

t=1

It(p)















= p. (2)

Second, VaR-violations should possess the i.i.d. property.Otherwise, the sequence{It(p)} could

exhibit clusters of violations. In fact, there are several potential reasons for unexpected temporal

occurrences of clustered VaR-violations. On the one hand,{It(p)}may not be identically distributed
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andE(It(p)) could vary over time. On the other hand,It(p) may not be independent ofIt−k(p),∀k ,

0. The hypothesis of i.i.d. VaR-violations holds true if

{It(p)} i.i.d.∼ Bern(p̃),∀t, (3)

wherep̃ is an arbitrary probability.

Finally, the uc and i.i.d. properties are combined viaE[It(p) − p|Ωt−1] = 0 to the property of

conditional coverage (cc hereafter). In detail, a sequenceof VaR-forecasts is defined to have correct

cc if

{It(p)} i.i.d.∼ Bern(p),∀t. (4)

Note that in most related studies in the literature, the uc property is defined slightly differently than

it is done in this paper. Moreover, the full i.i.d. hypothesis is not discussed at all, with almost

all papers concentrating on the independence property of VaR-violations (see, e.g., Christoffersen,

1998).4

At this point, we extend our analysis of VaR-violations to a multivariate setting. To this end, we

assume that anm-dimensional time series{Yt,i}n,mt=1,i=1 of returns exists as well asm sequences of

VaR forecasts,VaRt,i|t−1(pi). We then define the indicator variableIt,i(pi) as

It,i(pi) =































0, if Yt,i ≥ −VaRt,i|t−1(pi);

1, if Yt,i < −VaRt,i|t−1(pi).

(5)

Here, pi is the VaR coverage probability for sub-portfolioi. Note thatpi is explicitly allowed

to vary among different sub-portfolios and we do not need to assume particularvalues ofpi , i =

1, . . . ,m. In each column, the resulting matrix contains informationfor a single business line, bank

or sub-portfolio (corresponding to the 1-dimensional case), while each row represents a single

trading day. In Figure I, we illustrate a stylized matrix of VaR-violations across time and business

lines.

4 See Ziggel et al. (2014) for a critical discussion of previous treatments of the uc and the independence properties
in the literature.
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[Place Figure I about here]

As can easily be seen from Figure I, clusters of VaR-violations can occur both across time and

across sub-portfolios/business lines/banks. Clusters across time indicate a misspecified VaR model,

while clusters across sub-portfolios/business lines/banks indicate low potential for diversification

or considerable systemic risk in the banking sector, respectively.

With this preliminary work, we start to define the desirable properties of VaR-violations in the

multivariate case. For the uc hypothesis and most uc tests, an extension of the univariate to the

multivariate case is straightforward. To this end, one simply needs to study the hit sequences

of several business lines simultaneously and stack the series together. As doing so effectively

increases the sample size, we expect the tests to have more power than in the univariate setting.

However, in this paper, we are interested in the multivariate distribution of VaR-violations and

hence neglect this simple issue. In the present context, theVaR-violations should ideally exhibit

no clusters, i.e., neither in time (rows) nor across business lines (columns). Thus, the matrix of

VaR-violations should fulfill the following multivariate independence hypothesis:

It,i(pi) is independent ofIt−k, j(pj),∀t, i, j and∀k ≥ 0. (6)

Note, as property (6) is very restrictive, the VaR model is not necessarily wrongly calibrated if

property 6 is not fulfilled. This is due to the fact that heapedviolations in one row (trading day)

are, though undesirable, no indicator for an incorrect VaR model. However, it may provide impor-

tant information concerning diversification, aggregationof risks, and systemic risk in the banking

sector. Nevertheless, it is also natural to consider the less restrictive hypothesis

It,i(pi) is independent ofIt−k, j(pj),∀t, i, j and∀k > 0. (7)

Property (7) implies that no information concerning VaR-violations available to the risk manager

at the time the VaR is estimated is helpful in forecasting a VaR-violation. Thus, as stated in

Berkowitz et al., 2011, past observations from the hit sequence of one business line do not help
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to predict violations of this or any other business line if the VaR model is correctly specified. In

particular, property (7) postulates that lagged violations are not correlated. However, correlations

within one row (trading day) are explicitly allowed.

As in the univariate case, one can also define the cc-propertyin the multivariate setting. Here,

properties (6) and (7) are modified to

{It,i(pi)}
i.i.d.∼ Bern(pi),∀t, i. (8)

and

E(It,i(pi)) = pi andIt,i(pi) is independent ofIt−k, j(pj),∀t, i, j and∀k > 0. (9)

Again, property (8) is more restrictive than (9) as correlations within one row (trading day) are not

allowed. For properties (6)- (9), we proposeχ2-tests in Section 2.3.

As stated in Ziggel et al. (2014), clusters of VaR-violationscould also be caused by other reasons

than simply correlation between the violations. To be more precise, the probability of obtaining a

VaR-violation may change over time. For example, the risk model could not be suited to incorpo-

rate changes from calm market phases to highly volatile bearmarkets or financial crises, and vice

versa. This would in turn lead to clustered VaR-violations regardless of the question whether the

violations are independent over time or not. In Section (2.2), we consider CUSUM-tests for such

instationarities. To be more precise, we consider the row sums

r t :=
m
∑

i=1

It,i(pi) (10)

and test whetherE(r t) is constant over time (stationarity hypothesis). More precisely, we test for

non-constant expectations caused by changes inE(It,i(pi)), resulting in the following hypothesis

E















m
∑

i=1

It,i(pi)















= c,∀t, (11)
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wherec is an arbitrary constant. In order to define the cc-property,hypothesis (11) is modified to

E















m
∑

i=1

It,i(pi)















=

m
∑

i=1

pi ,∀t. (12)

Table I summarizes all stated hypotheses and comments on thequestion which user should be most

interested in a risk model having the respective property.

[Place Table I about here]

2.2 CUSUM-tests for non-constant expectations

In this subsection, we propose a backtest for non-constant expectations. The formal test problem

which corresponds to property (11) is given by

Hs
0 : E(r1) = . . . = E(rn) vs. Hs

1 : ¬Hs
0,

with the row sumsr1, . . . , rn being defined as in Equation (10). While the specific expectations are

arbitrary in this test problem, this is different in the test problem which corresponds to property

(12):

Hs−cc
0 : E(r1) = . . . = E(rn) =

m
∑

i=1

pi vs. Hs
1 : ¬Hs

0.

Before introducing the test statistics, we impose the following assumption:

Assumption 1 Let ri be defined as before. Then, we assume

1. r1, . . . , rn are independent.

2. Var(r1) = . . . = Var(rn).

If the VaR model is correctly specified, Assumption 1.1 is a reasonable consequence. Assumption

1.2 may be violated if the cross-sectional dependence between It,1, . . . , It,m is not constant over

time. We will discuss this issue in detail below. Under Assumption 1 and if eitherHs
0 or Hs−cc

0
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holds, the row sums fulfill a functional central limit theorem, i.e., the process (Vn,n ∈ N) with

Vn(s) =
1
√

n

⌊sn⌋
∑

t=1

(r t − E(r t)), s ∈ [0,1],

converges to a Brownian motion. Then, a suitable test statistic for Hs−cc
0 is given byRCcc,n :=

D−1Ccc (RC for “row CUSUM”) with

Ccc := max
j=1,...,n

1
√

n

∣

∣

∣

∣

∣

∣

∣

j
∑

t=1

r t − j
m
∑

i=1

pi

∣

∣

∣

∣

∣

∣

∣

.

Here,D2 is the usual variance estimator for independent observations, D2 = 1
n

∑n
t=1(r t − r̄)2 with

r̄ = 1
n

∑n
t=1 r t. Then, by means of the continuous mapping theorem we immediately obtain

Theorem 2 Under Hs−cc
0 and assumption 1, for n→ ∞, it holds that RCcc,n →d sups∈[0,1] |W(s)|,

where W is a standard Brownian motion.

With this preliminary work, we get the

Stat-m-cc-test.RejectHs−cc
0 wheneverRCn > q1−α,BM, whereq1−α,BM is the 1− α-quantile of the

distribution of sups∈[0,1] |W(s)|. The 0.95-quantile is given by 2.241.

For testingHs
0, we do not consider any fixed values ofpi, but we use the test statisticRCstat,n :=

D−1Cstat with

Cstat := max
j=1,...,n

1
√

n

∣

∣

∣

∣

∣

∣

∣

j
∑

t=1

r t −
j
n

n
∑

t=1

r t

∣

∣

∣

∣

∣

∣

∣

.

Then, by means of the continuous mapping theorem, we immediately obtain

Theorem 3 Under Hs
0 and assumption 1, for n→ ∞, it holds that RCstat,n →d sups∈[0,1] |B(s)|,

where B is a standard Brownian bridge.

With this preparatory work, we get the

Stat-m-test. Reject Hs
0 wheneverRCn > q1−α,KS, whereq1−α,KS is the 1− α-quantile of the

Kolmogorov-Smirnov-distribution. The 0.95-quantile is given by 1.358.
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It can be shown that both tests are consistent, e.g., if, under the alternative,

E(r1) = . . . = E(r⌊kn⌋) , E(r⌊kn⌋+1) = . . . = E(rn)

holds for ak ∈ (0,1). In this case, it is possible to estimate the location of a change point by the

argmax estimator

Ccc := argmaxj=1,...,n
1
√

n

∣

∣

∣

∣

∣

∣

∣

j
∑

t=1

r t − j
m
∑

i=1

pi

∣

∣

∣

∣

∣

∣

∣

or

Cstat := argmaxj=1,...,n
1
√

n

∣

∣

∣

∣

∣

∣

∣

j
∑

t=1

r t −
j
n

n
∑

t=1

r t

∣

∣

∣

∣

∣

∣

∣

,

(see Aue and Horv́ath, 2013).

However, the empirical size is not close to the nominal size if there is either weak serial depen-

dence within the (r t, t = 1, . . . ,n) (such asα-mixing under appropriate conditions as described in

e.g. Billingsley, 1968) and/or if theVar(r t) are not constant over time.5 The test is not consistent in

these cases. For the case of weak serial dependence, this is an immediate consequence of Slutzky’s

theorem. However, for this problem, we will present a newχ2-test for cross-sectional and serial

dependence in Section 2.3.

On the other hand, we would like to be robust against non-constant variances. This issue is dis-

cussed in detail in Zhou (2013). In particular, Zhou (2013) explicitly derives the limit distribution

of a general CUSUM-statistic under the assumption of piecewise local stationarity. Thus, there

is a bootstrap approximation available which potentially makes the CUSUM-test more robust to

changes in variances.6 Details can be found in Appendix A.2.1.

5 In fact, it is even desirable that serial dependence is detected because this is a potential reason for clustering. On
the other hand, it is desirable to be robust against time-varying variances. Note thatVar(rt) =

∑m
i=1 Var(It,i(p)) +

2
∑m−1

i=1
∑m

j=i+1 Cov(It,i(p), It, j(p)). So, it is possible that, under the null hypothesis, the variances ofrt might
be time-varying (so that Assumption 1.2 would be violated) only because of time-varying covariances. In this
situation, we would like the test to keep its size.

6 In fact, this bootstrap approximation makes the test robustagainst serial correlation, too.
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2.3 χ2-tests for cross-sectional and serial dependence

In this subsection, we propose a framework that can be used for testing independence as well as

the corresponding cc-hypothesis taking into account arbitrary time lags and business lines. This

test is somewhat similar to the test proposed by Danciulescu(2010). The main difference is that

we explicitly allow for estimated violation probabilitiesin each business line and that we make use

of explicit expressions for a certain covariance matrix.

Denote withA the set of all triples (i, j, l), i, j = 1, . . . ,m, l = 0,1, . . ., where (i, j) describes a pair

of sub-portfolios andl the lag of interest. We consider an arbitrary subsetAs ⊆ A that has to be

chosen by the analyst. This choice allows us to verify parts of property (7) and/or property (6).

In fact, to verify property (7) as a whole,As would have to consist of all triples withi ≤ j and

l ≥ 1, while it would have to consist of all triples withi ≤ j and l ≥ 0 for property (6). As the

setA would become too large then, further restrictions are necessary. The convention is that we

consider lags up to a fixed upper boundK, e.g.K = 5, corresponding to one week. Moreover, in

the following we separate the cases of serial dependence andcross-sectional dependence, whereas

serial dependence approximates property (7) and cross-sectional dependence property (6). With

the serial dependence application, one can test for clusters in individual banks; with the cross-

sectional dependence application, one can test for diversification effects. Formally, this means that

we only consideri = j in the first andi < j and l = 0 in the second case. ForK = 1, we have

As = {(i, i,1)}, i = 1, . . . ,m, in the first andAs = {(i, j,0)}, i < j, i, j = 1, . . . ,m, in the second

case. We focus on these two specifications in the following. Of course, other combinations are

also possible.7

7 It is also possible to use formal methods in order to determine the maximum number of lags, see
Bender and Grouven (1993).
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The test problem which corresponds to (7) and (6) is given by

Hm−ind
0 : E((It,i(pi) − p̃i)(It+l, j(pj) − p̃j)) = 0 for (i, j, l) ∈ As andt = 1, . . . ,n− l

and some ˜pi := E(It,i(pi)), p̃j := E(It, j(pj)) vs.

Hm−ind
1 : ¬Hm−ind

0 .

In the above test problem, the expectations ofIt,i(pi) and It, j(pj) are arbitrary. If one is also in-

terested in testing for them (i.e., for the correct number ofVaR-violations), one can consider a

modified test problem for the cc-hypothesis. Withf (i, j, l, t) := (It,i(pi)− pi)(It+l, j(pj)− pj) and the

desired VaR coverage probabilitiespi andpj,

Hm−cc
0 : E( f (i, j, l, t)) = 0 for (i, j, l) ∈ As andt = 1, . . . ,n− l vs. Hm−cc

1 : ¬Hm−cc
0 .

First, we consider the cc-test which is based on the vector

Bs,n :=















1
√

n

n−l
∑

t=1

(It,i(pi) − pi)(It+l, j(pj) − pj)















(i, j,l)∈As

whose dimension is equal to the amount of elements in the setAs. Under the assumption

that the VaR model is correct, one obtains by definition of thecovariance that the vectors

f (i, j, l,1)(i, j,l)∈As, . . . , f (i, j, l,n − l)(i, j,l)∈As are uncorrelated. Moreover, we impose the following

assumption:

Assumption 4 Let the notation be as before. Then, Cov( f (i, j, l,1)(i, j,l)∈As) = . . . = Cov( f (i, j, l,n−

l)(i, j,l)∈As) =: Σs, whereΣs is a positive definite matrix.

Assumption 4 contains a higher-order stationarity assumption, as well as a regularity assumption

on the matrix

Σs = (Cov((I1,i1(pi1) − pi1)(I1+l1, j1(pj1) − pj1), (I1,i2(pi2) − pi2)(I1+l2, j2(pj2) − pj2)))(i1, j1,l1),(i2, j2,l2)∈As.
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This matrix can easily be calculated for each given setAs underHm−cc
0 . If, e.g.,m = 2 andAs =

{(1,2,0)}, it holds thatΣs = p1p2 − p2
1p2 − p1p2

2 + p2
1p2

2. If As = {(1,1,1), (2,2,1)}, it holds

Σs =























p2
1 − 2p3

1 + p4
1 ρ2

12

ρ2
12 p2

2 − 2p3
2 + p4

2























(13)

with ρ12 = Cov(It,1(p1), It,2(p2)). In these situations,Σs is for example positive definite for 0<

p1 = p2 < 1 andρ12 = 0.

In general, under Assumption (9) and in the situation in which it holds for all triples (i, j, l) that

i ≤ j andl ≥ 1, the matrixΣs consists of the entries

Cov(I1,i1(pi1), I1,i2(pi2))Cov(I1+l1, j1(pj1), I1+l2, j2(pj2))

in the row corresponding to the triple (i1, j1, l1) ∈ As and in the column corresponding to the triple

(i2, j2, l2) ∈ As. This general expression contains (13) as a special case.

Under Assumption (8) and in the situation in which it holds for all triples (i, j, l) that i < j and

l = 0,

Σs = diag(pi pj − pi p
2
j − p2

i pj + p2
i p2

j )(i, j,0)∈As.

Apart from using explicit expressions forΣs, one could use a bootstrap procedure which is de-

scribed in Appendix A.2.2.

Assumption 4 could be relaxed to the case in which the matrixΣ∗s := limn→∞ Bs,n exists, is pos-

itive definite and can be suitably estimated. An example for this would be the case in which

Cov( f (i, j, l, t)(i, j,l)∈As) is piecewise constant with a finite number of breaks and positive definite in

all parts, which is a special case of the PLS setting discussed in Zhou (2013) and Section 2.2. In

this case, the estimators described below are consistent for Σ∗s.

UnderHm−cc
0 and Assumption (4), it holds thatBs,n →d N(0,Σs), while this quantity diverges if,

e.g., under the alternative,E( f (i, j, l, t)) = c , 0 for (i, j, l) ∈ As. Furthermore, with the continuous

13



mapping theorem,

Σ−1/2
s Bs,n→d N(0, I |As|)

and

B′s,nΣ
−1
s Bs,n→d χ

2
|As|.

Therefore, a suitable test statistic for the cc-test is given by Tm−cc
s,n := B′s,n(Σ̂

cc
s )−1Bs,n. Here,

Σ̂cc
s is an appropriate estimator ofΣs. For As = {(1,1,1), (2,2,1)}, one would replaceρ12 with

1
T

∑T
t=1 It,1(p1)It,2(p2) − p1p2 in Σs. Then, we get by the strong law of large numbers and Slutzky’s

theorem

Theorem 5 Under Hm−cc
0 and Assumption(4), for n→ ∞, Tm−cc

s,n →d χ
2
|As|.

We obtain the

Ind-m-cc-test. RejectHm−cc
0 if Tm−cc

s,n > q1−α,χ2, whereq1−α,χ2 is the 1− α-quantile of theχ2-

distribution with|As| degress of freedom.

For testing the ind-property, we opt for a test statistic which is based on the quantity

Cs,n :=















1
√

n

n−l
∑

t=1

(It,i(pi) − p̂i)(It+l, j(pj) − p̂j)















(i, j,l)∈As

.

This is essentially the quantityBs,n, whereas the summands−pi and−pj are replaced with−p̂i

and−p̂j, respectively. Here, ˆpi and p̂j are the actual measured percentages of VaR-violations,

p̂i := 1
n

∑n
t=1 It,i(pi) andp̂j := 1

n

∑n
t=1 It, j(pj). The test statistic is defined asTm−ind

s,n := C′s,n(Σ̂
ind
s )−1Cs,n.

Here,Σ̂ind
s is an appropriate estimator ofΣs. In contrast toΣ̂cc

s , within Σ̂ind
s , also thepi would have

to be estimated. Interestingly, the asymptotic behavior ofTm−cc
s,n andTm−ind

s,n are the same, as the

following theorem shows. Its proof is deferred to Appendix A.1.

Theorem 6 Let Hm−ind
0 and Assumption(4) be true. Then, as n→ ∞, Tm−ind

s,n →d χ
2
|As|.

We obtain the

Ind-m-Test. RejectHm−ind
0 if Tm−ind

s,n > q1−α,χ2, whereq1−α,χ2 is the 1− α-quantile of theχ2-

distribution with|As| degress of freedom.

14



Both the Ind-m-cc-Test and the Ind-m-Test are consistent if,e.g., under the alternative

E( f (i, j, l, t)) = c , 0 for (i, j, l) ∈ As and if (for the Ind-m-Test) ˜pi := E(It,i(pi)), p̃j := E(It, j(pj)) as

well as Assumption 4 are fulfilled.

3 Simulation study

To examine the performance of our newly proposed backtests in finite samples, we perform a si-

mulation study. Within the study, we distinguish between different kinds of controllable violations

concerning Assumptions (7), (6), (11), (9), (8), and (12). We compute all rejection rates for a

significance level of 5%.

3.1 Non-constant expectations

As a first step in our simulation study, we want to test if the new tests are able to detect non-

constant expectations. We use the Stat-m-test as well as theInd-m-test. With the latter, the subset

As consists of the vectors (i, i,1), i = 1, . . . ,m, which corresponds to a time lag of 1. We expect

the CUSUM-test to clearly outperform theχ2-test in this setting. Basically, the data generating

process used throughout the whole simulation study is givenby:

It,i = I(Xt,i ≤ qp),∀i, t. (14)

In the first case we consider,qα is theα-quantile of a standard normal distribution. Moreover,

(Xt,1, . . . ,Xt,m) follows a multivariate normal distribution with mean zero, marginal variances one

and cross-correlationρ = 0. Next, we setm = 10, p = 0.01,0.05,n = 250,500,1,000,2,000 and

15



use 5,000 Monte Carlo repetitions. Finally, we modify equation (14) such that

It,i =







































































I(Xt,i ≤ qp−2δ),1 ≤ t ≤ n
4,∀i;

I(Xt,i ≤ qp+δ), n
4 < t ≤ n

2,∀i;

I(Xt,i ≤ qp−δ), n
2 < t ≤ 3n

4 ,∀i;

I(Xt,i ≤ qp+2δ), 3n
4 < t ≤ n,∀i.

In this setting, VaR-violations are independent over time. Hence, clustering is solely based on

changes of the probability of obtaining a VaR-violation. We chooseδ = 0p to analyze the size of

a test andδ = 0.1p, 0.2p, 0.3p, 0.4p and 0.5p for the power study.

This setting leads to variations in the probability of obtaining a VaR-violation between the four

equal-sized subsamples. Consequently, the violations willoccur unequally distributed. Note that

the probability variations are determined in a way which ensuresE
(∑n

t=1

∑m
i=1 It,i

)

= n · m · p.

The setup of this part of the simulation study covers a realistic scenario in which VaR-models do

not, or not fully, incorporate changes from calm market phases to highly volatile bear markets or

financial crises, and vice versa. This in turn leads to clustered VaR-violations regardless of the

question whether the data might show signs of dependence or autocorrelation. The results of the

simulations are given in Table II.

[Place Table II about here]

The results show that the Stat-m-test clearly outperforms the Ind-m-test with rejection probabilities

being regularly higher for the Stat-m-test than for the Ind-m-test. In fact, for the larger sample sizes

of n = 1,000 andn = 2,000 and higher values ofδ, the probability of the Stat-m-test to reject the

matrix of VaR-violations with non-constant expectations isclose to one. In contrast, the Ind-m-test

rejectsH0 only in 32% of the simulations at most forp = 0.01.
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3.2 Cross-sectional dependence

In the second part of our simulation study, we want to investigate if the new tests are able to

detect cross-sectional dependence within VaR-violations.Here, we expect theχ2-test to clearly

outperform the CUSUM-test. Again, we simulate random variables by

It,i = I(Xt,i ≤ qp),∀i, t,

where,qα is theα-quantile of a standard normal distribution. Moreover, (Xt,1, . . . ,Xt,m) follows a

multivariate normal distribution with mean zero, marginalvariances one and cross-correlationρ.

In addition, we choosem = 10, p = 0.01,0.05, n = 250,500,1,000,2,000, and again use 5,000

Monte Carlo repetitions. The cross-correlationρ of the normally distributed random variables is

set to be in{0,0.2,0.4,0.6,0.8}. Based on this setting, we analyze the Stat-m-test and the Ind-m-

test with time lag 0, that means that we test for cross-sectional dependence. The subsetAs consists

of the vectors (i, j,0), i < j, i, j = 1, . . . ,m.

The results are given in Table III.

[Place Table III about here]

As can be seen from the simulation results given in Table III,the probability to detect a matrix

of VaR-violations suffering from cross-correlation is almost always lower for theStat-m-test than

for the Ind-m-test. While the Ind-m-test has appealing powerproperties in almost all settings, the

Stat-m-test is not able to detect cross-sectional dependence. However, the Ind-m-test suffers from

size distortions forp = 0.01 and small sample sizes.

Next, we also consider the situation with time lag 1 which implies that we test for serial depen-

dence in the VaR-violations. Here, (Xt,1, . . . ,Xt,m) follows a MA(1)-process with autocorrelation

parameterφ ∈ {0,0.25,0.5,0.75,1}, i.e.,

(Xt,1, . . . ,Xt,m) = ǫ t + φǫt−1
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for a sequence of i.i.d. bivariate normally distributed vectorsǫt, t = 1, . . . ,n, with cross-correlation

set toρt = 0.3. The subsetAs consists of the vectors (i, i,1), i = 1, . . . ,m. The indicator variables

are defined asIt,i = I
(

Xt,i ≤ qp

√

1+ φ2
)

. The results of the simulations in which both multivariate

backtests are used on data with serially correlated VaR-violations are given in Table IV.

[Place Table IV about here]

The results given in Table IV show that the Ind-m-test again performs significantly better than the

Stat-m-test.

3.3 Non-constant expectations and serial dependence

In the third part of our simulation study, we investigate theperformance of our new multivariate

backtests in a setting in which the data exhibit a combination of non-constant expectations and

serial dependence. For this purpose, we define

It,i =







































































I(Xt,i ≤ qp−2δ

√

1+ φ2),1 ≤ t ≤ n
4,∀i;

I(Xt,i ≤ qp+δ

√

1+ φ2), n
4 < t ≤ n

2,∀i;

I(Xt,i ≤ qp−δ
√

1+ φ2), n
2 < t ≤ 3n

4 ,∀i;

I(Xt,i ≤ qp+2δ

√

1+ φ2), 3n
4 < t ≤ n,∀i.

Here, (Xt,1, . . . ,Xt,m) follows the same MA(1) process as previously described above. Conse-

quently, we use the same parametrization as before and investigate all parameter combinations

of δ andφ. This setting ensures that we can draw correct conclusions concerning the charac-

teristics of both tests in various situations. We consider the Stat-m-test and the Ind-m-test with

As = {(i, i,1)}, i = 1, . . . ,m.

The results are given in Tables V and VI.

[Place Tables V and VI about here]
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Again, the results from the simulations show a clear picture. Except forφ = 0, the Ind-m-test

always performs significantly better than the Stat-m-test.In contrast, mean rejection probabilities

are only higher for the Stat-m-test in the setting in whichφ is set to zero. Forp = 0.01, the size of

the Ind-m-test is somewhat higher than expected.

3.4 Violations of the cc-property

Within the last setting of our simulation study, we concentrate on violations of the cc-property. To

this end, we simulate data that exhibit serial dependence and also violations of the uc-property. We

define

It,i = I(Xt,i ≤ qp+δ

√

1+ φ2),∀i, t.

To be more precise, (Xt,1, . . . ,Xt,m) follows the same MA(1) process as before andδ is set to

0.2p, 0.4p, 0.6p, 0.8p, and p, respectively. Apart from that, we use the same parametrization

as before and investigate all parameter combinations ofδ andφ. We consider the Stat-m-cc-test

and the Ind-m-cc-test withAs = {(i, i,1)}, i = 1, . . . ,m. The results are given in Tables VII and

VIII.

[Place Tables VII and VIII about here]

Just like in our simulations with data that exhibit cross-sectional dependence and non-constant

expectations together with serial dependence in the matrixof VaR-violations, the Ind-m-test again

performs significantly better than the Stat-m-test expect for the setting forφ = 0. The Ind-m-test

suffers from size distortions forp = 0.01 and small sample sizes.

In general, we observe that both the Ind-m-test and the Stat-m-test have sufficient power in almost

all settings of our simulation study even for relatively small sample sizes ofn = 250. Moreover,

both tests also hold their nominal level in almost all simulation settings. The simulations thus

underline the suitability of our newly proposed backtests for testing the adequacy of a multivariate
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VaR model.8

4 Empirical study

In this section, we perform an empirical study in which we exemplify the usefulness of our newly

proposed multivariate backtests for the purpose of assessing the systemic risk of a banking sec-

tor. To be precise, we perform multivariate backtests of risk forecasts for a portfolio consisting

of the stocks of the world’s 20 largest banks. The motivationof this use of our multivariate back-

tests is straightforward. A regulator of the set of banks could be interested in testing both a) the

overall fragility of the banking sector, and b) the temporaland cross-sectional clusters in severe

losses at individual banks. While a bank’s risk manager couldbe inclined to simply aggregate

the risk forecasts for his individual business lines (thereby obviating the need for our multivariate

backtests), the additional information our backtests provide on the sources of violations (temporal

and/or cross-sectional) should be of particular interest to bank regulators.

We start our empirical analysis by retrieving the mid priceson the stocks of the 20 largest global

banks available in theThomson Reuters Financial Datastreamdatabase according to the banks’

market capitalization on the 1st of January, 2002.9 Our sample period runs from the 1st of February,

2003 until the 31st of December, 2014. In total, our sample consists of 3,549 daily observations of

the bank stocks’ mid prices. All data are retrieved in $ US to mitigate a potential bias stemming

from currency risk.

We then proceed by computing daily log returns for each day and each bank in our 20-dimensional

sample portfolio. For each bank stock and each trading dayt in the period from January 1, 2004

to December 31, 2014, we forecast the bank’s Value-at-Risk (p = 0.05) on dayt by first fitting a

univariate GJR-GARCH(1,1) model of Glosten et al. (1993) with skewed t-distributed innovations

8 All simulations were also performed withm = 20. The results are presented in the supplementary materialas
the general pattern is very similar to the case ofm= 10.

9 The banks in our sample are: Citigroup, HSBC Holdings (dual listing), UBS, Barclays, BNP Paribas, Mitsubishi
UFJ, RBS, Cŕedit Agricole, Bank of America, JP Morgan Chase, Deutsche Bank, Mizuho Financial Group, ABN
Amro, Socíet́e Géńerale, Morgan Stanley, HBOS, Banco Santander, Unicredit, and Credit Suisse.

20



to (a rolling window of) the 500 trading days preceeding dayt and then forecasting the estimated

model’s mean and conditional volatility for dayt. The forecasted VaRs are then compared with the

actual return on a bank’s stock on the respective day to arrive at the hit matrix of VaR violations

that is inserted into our multivariate backtests.

Table IX presents summary statistics on the banks’ daily stock returns as well as the yearly p-values

for every applied test and the results for the argmax estimators for the CUSUM tests.

[Place Table IX about here]

The test results given in Table IX are in line with our expectation. Both cross-sectional tests (the

χ2-tests applied withAs = {(i, j,0)}, i < j, i, j = 1, . . . ,m, as before) have a p-value of 0% for every

year. This is due to the fact that violations often occur heaped resulting in 10 or more violations

within one day. Moreover, these results illustrate and underline the contagion effects within the

banking sector which could be observed during the last decade as severe losses occur at the same

day and affect several banks simultaneously. Figure II illustrates this phenomenon for the years

2005-2007.

[Place Figure II about here]

In contrast to this first finding, the results of both serial tests (theχ2-tests applied withAs =

{(i, i,1)}, i = 1, . . . ,m, as before) vary widely. Here, the ind-test is highly dependent on the number

of subsequent violations, while the cc-tests also react to the total number of violations. This ef-

fect is highly visible for the years 2005-2007, during whichthe number of (subsequent) violations

increases monotonously while the p-values decrease. This finding is also in line with economic de-

velopments. Following a stable and calm market phase, the financial crisis started in 2007 resulting

in increased volatility and dependence, especially for banks.

Finally, the p-values of the CUSUM-tests are considerably higher on average than for the remaining

tests. Here, the cc-test is much less sensitive than its cross-sectional and serial counterparts and

has p-values that are lower than 1% only for the years 2007 and2008. This finding is in line with
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our simulation study presented above. The CUSUM-test for non-constant expectations has to be

interpreted in a slightly different way as it has higher power for clusters of violations induced by

instationarities than those induced by serial dependencies (for lag one). In particular, considerable

instationarities lead to small p-values. So, a possible interpretation is that, in general, the cluster

effects in our data set are caused by serial dependencies ratherthan instationarities. Nonetheless,

the CUSUM-test for non-constant expectations has a p-value below 5% for 3 of the 11 investigated

years. This is not negligible, particularly as the sample size is small. A special example is the

year 2006 which is illustrated in Figure II. Here, high row sums are highly clustered, resulting in a

p-value of 0.14%. Concerning the argmax estimators it is interesting to see how the clustering of

violations corresponds to a change in the market condition.In some cases, there is a very strong

relation. A striking example is again the year 2006. The 13thof June represents exactly the date

where several of the considered stocks changed from a bearish to a bullish market state.

5 Conclusion

In this paper, we have proposed two new multivariate backtests for clusters in VaR-violations. The

first test is a CUSUM-test which is based on the sums of the violations for different business lines

and sub-portfolios for a single day and which attempts to detect clusters in the matrix of VaR-

violations that are caused by instationarities in the mean of the violations. Second, we consider a

χ2-test for detecting clusters that are caused by cross-sectional and/or serial dependencies within

the VaR-violations. Both tests are easy to implement and work without Monte Carlo simulations

or bootstrap approximations, although bootstrap approximations are readily available.

In simulations, we assess the performance of our new multivariate backtests in several distinct set-

tings in which we consider simulated data that exhibit non-constant expectations, cross-sectional

dependence, and serial dependence in the VaR-violations. Moreover, we also perform simulations

in which the new backtests are used to test the simulated VaR-violations for the property of con-

ditional coverage. With the exception of the setting in which the data only exhibit non-constant
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expectations, theχ2-test performs better in our simulations than the CUSUM-test. Both tests hold

their nominal level and, more importantly, have considerable power for testing the conditional

coverage of the matrix of VaR-violations even for relativelysmall sample sizes.

The multivariate backtests that we propose are intended forthe use by risk managers, portfo-

lio managers, and regulators. Especially in the last case, our backtests cannot only be used in

the conventional way within individual banks, but also to backtest a whole banking sector. To

this end, VaRs are estimated across time and individual banks(instead of business lines) with

clusters in VaR-violations across banks indicating systemic risk in the sector. In this way, our

backtests could be of significant help to regulators to forecast times of contagion in the finan-

cial system and thereby complement current endeavours to stress-test banking sectors (see, e.g.,

Acharya and Steffen, 2013).

23



Appendix

A.1 Proof of Theorem 6

First, we consider the process

C̃s,n :=















1
√

n

n−l
∑

t=1

(It,i(pi) − p̃i)(It+l, j(pj) − p̃j)















(i, j,l)∈As

,

and show that̃Cs,n = Cs,n + op(1).

We define ˆpk := 1
n

∑n
t=1 It,k(pk). Then, it holds

C̃s,n =
1
√

n

n−l
∑

t=1

It,i(pi)It+l, j(pj) −
n− l
√

n
p̂i p̃j −

n− l
√

n
p̂j p̃i +

n− l
√

n
p̃i p̃j + op(1)

and

Cs,n =
1
√

n

n−l
∑

t=1

It,i(pi)It+l, j(pj) −
n− l
√

n
p̂i p̂j −

n− l
√

n
p̂j p̂i +

n− l
√

n
p̂i p̂j + op(1)

such that

C̃s,n −Cs,n =
n− l
√

n
(−p̂i p̃j + p̂i p̂j) +

n− l
√

n
(−p̂j p̃i + p̂j p̂i) +

n− l
√

n
(p̃i p̃j − p̂i p̂j)

=
n− l
√

n
(p̃i p̃j − p̂i p̃j + p̂j p̂i − p̂j p̃i) =

n− l
√

n
(p̃j(p̃i − p̂i) + p̂j(p̂i − p̃i))

=
n− l
√

n
(p̂i − p̃i)(p̂j − p̃j)

= Op(1)op(1) = op(1).

Then, the result from the theorem follows from the fact that,by uniform integrability, one directly

obtainsΣs = limn→∞Cov(Cs,n) andCs,n→d N(0,Σs).

�
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A.2 Bootstrap

A.2.1 Bootstrap approximations for the CUSUM-test in Section 2.2

In order to make the tests more robust against changes inVar(r t), one can use a recently proposed

approach by Zhou (2013). Here, we consider the quantityC, i.e., the test statistic without the

variance estimatorD−1. Critical values are obtained by using a bootstrap approximation. This

bootstrap is an extension of the wild bootstrap and relies ondirectly mimicking the behavior of

the partial sum processVn instead of mimicking the behavior ofC. However, despite the theoret-

ical relevance, some robustness checks show that the bootstrap does not seem to be necessary in

the situation of moderate changes inVar(r t). Moreover, there is no power gain from the robust

CUSUM-test.

A.2.2 Bootstrap approximations for theχ2 tests in Section 2.3

To facilitate the tests’ implementation in software, one can estimate the matrixΣs with a bootstrap

approximation based on the seminal paper by Efron (1979). The bootstrap is essentially the same

for testingHm−ind
0 andHm−cc

0 , respectively. We distinguish two cases, i.e., Assumptions (7)/(9) and

(6)/(8). In the first one, cross-sectional dependence is allowedfor, which is not true in the second

one. LetB be a sufficiently large number.

Then, under Assumption (7) and given the observed matrix of VaR-violations, we generate, for

b = 1, . . . , B, a bootstrap sampleIb
t,i , t = 1, . . . ,n, i = 1, . . . ,m, by drawingn rows with replacement

from the observed matrix. Thus, the generated bootstrap samples always fulfill Assumption (7).

When testing for cross-sectional dependence (that means, ifAssumption (6) holds true under the

null hypothesis), the bootstrap procedure from the previous paragraph has the drawback that there

is no variation within each row in the bootstrap samples. Thus, in this case a bootstrap sample

Ib
t,i , t = 1, . . . ,n, i = 1, . . . ,m, is obtained in a different way. In order to keep the information

concerningpi , i = 1, . . . ,m, for fixed i, Ib
t,i , t = 1, . . . ,n, is obtained by drawingn values with

replacement of the respective business line from the observed matrix, whereas the draws are also
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independent with respect toi. Then, the generated bootstrap samples always fulfill Assumption

(6).

Having obtained a bootstrap sample, we calculate the vectorCb
s,n and consider the estimator

ΣB
s :=

1
B

B
∑

b=1

(Cb
s,n − C̄B

s,n)(C
b
s,n − C̄B

s,n)
′

with C̄B
s,n := 1

B

∑B
b=1 Cb

s,n. The test statistic forHm−cc
0 is then given byTm−cc

b,n := B′s,n(Σ
B
s)−1Bs,n, the

one for Hm−iid
0 is given byTm−iid

b,n := C′s,n(Σ
B
s)−1Cs,n. Both need to be compared with the 1− α-

quantile of theχ2
|As|-distribution. The validity of this approach under the nullhypothesis follows

from standard bootstrap theory (bootstrap central limit theorem, see Gonçalves and White, 2002,

uniform integrability, see Kato, 2011, Lemma 1), the validity under the alternative follows from

the fact that the generated vectorsCb
s,n remain stochastically bounded due to the arguments given

in the previous paragraph.

Simulations show that the bootstrap tests for (7) and (6) have virtually the same size and power

properties as the tests based on an explicit derivation of the matrixΣs. While in case of (9) and (8),

the bootstrap does work in the sense of accuracy under the null hypothesis and consistency under

the alternative, there is some power loss compared to the case in which the matrixΣs is calculated

directly. Under Assumption (8), a better alternative is given by drawing theIb
t,i , t = 1, . . . ,n, i =

1, . . . ,m, independently from Bernoulli distributions with the respective pi , i = 1, . . . ,m.
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Aue, A. and L. Horváth (2013): “Structual Breaks in Time Series,”Journal of Time Series Analy-
sis, 34, 1–16.

Basel Committee on Banking Supervision (BCBS) (2009): “Revisions to the Basel II market risk
framework,”http://www.bis.org/publ/bcbs158.pdf.

26

http://www.bis.org/publ/bcbs158.pdf


Bender, R. and U. Grouven (1993): “On the Choice of the Number of Residual Autocovariances
for the Portmanteau Test of Multivariate Autoregressive Models,”Communications in Statistics-
Simulation and Computation, 22, 19–32.

Berkowitz, J. (2001): “Testing Density Forecasts, with Applicationsto Risk Management,”Jour-
nal of Business and Economic Statistics, 19, 465–474.

Berkowitz, J., P. Christoffersen, and D. Pelletier (2011): “Evaluating Value-at-Risk Models
with Desk-Level Data,”Management Science, 57, 2213–2227.

Billingsley, P. (1968):Convergence of Probability Measures, Wiley, New York.

Candelon, B., G. Colletaz, C. Hurlin, and S. Tokpavi (2011): “Backtesting Value-at-Risk: A
GMM Duration-based Test,”Journal of Financial Econometrics, 9(2), 314–343.

Christoffersen, P. (1998): “Evaluating Interval Forecasts,”International Economic Review, 39,
841–862.

Christoffersen, P.and D. Pelletier (2004): “Backtesting Value-at-Risk: A Duration-Based Ap-
proach,”Journal of Financial Econometrics, 2(1), 84–108.

Danciulescu, C. (2010): “Backtesting Value-at-Risk Models: A Multivariate Approach,”SSRN
working paper (1591049).

Dumitrescu, E.-I., C. Hurlin, and V. Pham (2012): “Backtesting Value-at-Risk: from dynamic
quantile to dynamic binary tests,”Finance, 33, 79–112.

Efron, B. (1979): “Bootstrap Methods: Another Look at the Jackknife,” Annals of Statistics, 7,
1–25.

Engle, R.and S. Manganelli (2004): “CAViaR: Conditional Autoregressive Value-at-Risk byRe-
gression Quantiles,”Journal of Business and Economic Statistics, 22, 367–381.

Escanciano, J. C.and J. Olmo (2010): “Backtesting Parametric Value-at-Risk With Estimation
Risk,” Journal of Business and Economic Statistics, 28, 36–51.

Glosten, L. R., R. Jagannathan, andD.E. Runkle (1993): “On The Relation between The Expected
Value and The Volatility of Nominal Excess Return on stocks,”Journal of Finance, 48, 1779–
1801.
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Figures and Tables

Figure I: Multivariate Value-at-Risk hit matrix.

The Figure presents a stylized matrix of Value-at-Risk (VaR) violations form business lines, banks, or sub-portfolios
and evaluations forn days. If the realized return in business linei on day j exceeds the corresponding VaR-forecast,
the respective entry in the hit matrix is one, and zero otherwise. Stylized clusters of VaR-violations in time (third
column) and across business lines (first row) are highlighted.

Line 1 Line 2 Line 3 Line 4 Line 5 Line 6 · · · Line m

Day1 0 1 1 1 1 0 · · · 0
Day2 0 0 1 0 1 0 · · · 0
Day3 1 0 1 1 0 1 · · · 0
Day4 0 0 1 0 1 0 · · · 1
Day5 0 1 0 0 1 0 · · · 0
.
.
.

.

.

.
.
.
.

Day n 0 0 1 0 1 0 · · · 0
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Figure II: Daily row sums of the multivariate Value-at-Risk hit matrix.

This figure presents the daily row sums of the multivariate Value-at-Risk hit matrix for the years 2005-2007 from our
empirical study. The sample consists of log returns on the mid prices of the stocks of the 20 largest global banks
available in theThomson Reuters Financial Datastreamdatabase according to the banks’ market capitalization on
the 1st of January, 2002. The banks in our sample are: Citigroup, HSBC Holdings (dual listing), UBS, Barclays,
BNP Paribas, Mitsubishi UFJ, RBS, Crédit Agricole, Bank of America, JP Morgan Chase, Deutsche Bank, Mizuho
Financial Group, ABN Amro, Sociét́e Géńerale, Morgan Stanley, HBOS, Banco Santander, Unicredit, and Credit
Suisse. Our sample period runs from the 1st of February, 2003until the 31st of December, 2014. All data are retrieved
in $ US. VaR forecasts are computed using GJR-GARCH(1,1) models with skewed t-distributed innovations based on
rolling windows of 500 observations andp = 0.05. Consequently, withp = 0.05 and assuming that the VaR-model is
correct, the expected value is 1 for each row.
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Table I: Summary of all stated hypotheses and test statistics.

This table summarized the different properties that are tested within the present articletogether with the corresponding test statistics.
Note, the Ind-m-test and the Ind-m-cc-test can be used for several properties depending on the choice ofAs. In addition, the last column
of the table comments on which stakehold group should be mostinterested in a risk model having the respective property that is being
tested.

Tested property of violations H0 Proposed test Test statistic & Main test user(s)
Asymptotic distribution

Ind. of all violations E((It,i(pi) − p̃i)(It+l, j(pj) − p̃j)) = 0 Ind-m-Test C′s,n(Σ̂
ind
s )−1Cs,n Regulators

Equation 6 χ2
|As| Portfolio managers

Ind. of lagged violations E((It,i(pi) − p̃i)(It+l, j(pj) − p̃j)) = 0 Ind-m-Test C′s,n(Σ̂
ind
s )−1Cs,n Risk managers

Equation 7 χ2
|As|

Ind. of all violations E( f (i, j, l, t)) = 0 Ind-m-cc-test B′s,n(Σ̂
cc
s )−1Bs,n Regulators

Constant expectations χ2
|As| Portfolio managers

Unconditional coverage
Equation 8

Ind. of lagged violations E( f (i, j, l, t)) = 0 Ind-m-cc-test B′s,n(Σ̂
cc
s )−1Bs,n Risk managers

Constant expectations χ2
|As|

Unconditional coverage
Equation 9

Constant expectations E(r1) = . . . = E(rn) = c Stat-m-test maxj=1,...,n
1√
n

∣

∣

∣

∑ j
t=1 r t − j

n

∑n
t=1 r t

∣

∣

∣ Risk managers
Equation 11 sups∈[0,1] |B(s)|

Constant expectations E(r1) = . . . = E(rn) =
∑m

i=1 pi Stat-m-cc-test maxj=1,...,n
1√
n

∣

∣

∣

∑ j
t=1 r t − j

∑m
i=1 pi

∣

∣

∣ Risk managers
Unconditional coverage sups∈[0,1] |W(s)|

Equation 12
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Table II: Simulated rejection probabilities for non-constant expectations.

The table presents the rejections probabilities of the Stat-m-test and the Ind-m-test based on simulated data with
non-constant expectations withp = 0.01 (Panel A) andp = 0.05 (Panel B).

Panel A: p= 0.01
Stat-m-test Ind-m-test

δ/p 0.0 0.1 0.2 0.3 0.4 0.5 0.0 0.1 0.2 0.3 0.4 0.5

n

250 0.04 0.06 0.13 0.28 0.48 0.77 0.09 0.09 0.09 0.11 0.13 0.14
500 0.04 0.08 0.25 0.57 0.89 1.00 0.15 0.15 0.17 0.18 0.22 0.25
1,000 0.05 0.14 0.51 0.92 1.00 1.00 0.13 0.15 0.16 0.20 0.23 0.28
2,000 0.05 0.28 0.86 1.00 1.00 1.00 0.12 0.12 0.14 0.18 0.23 0.32

Panel B: p= 0.05
Stat-m-test Ind-m-test

δ/p 0.0 0.1 0.2 0.3 0.4 0.5 0.0 0.1 0.2 0.3 0.4 0.5

n

250 0.04 0.16 0.61 0.97 1.00 1.00 0.06 0.07 0.08 0.14 0.21 0.32
500 0.04 0.34 0.94 1.00 1.00 1.00 0.06 0.07 0.09 0.15 0.26 0.47
1,000 0.05 0.65 1.00 1.00 1.00 1.00 0.05 0.06 0.10 0.19 0.38 0.68
2,000 0.05 0.94 1.00 1.00 1.00 1.00 0.05 0.07 0.11 0.26 0.59 0.91

Table III: Simulated rejection probabilities for cross-sectional correlation.

The table presents the rejection probabilities of the Stat-m-test and the Ind-m-test based on simulated data with cross-
sectional correlationρ, p = 0.01 (Panel A) andp = 0.05 (Panel B).

Panel A: p= 0.01
Stat-m-test Ind-m-test

ρ 0.0 0.2 0.4 0.6 0.8 0.0 0.2 0.4 0.6 0.8

n
250 0.04 0.04 0.03 0.02 0.02 0.28 0.81 0.99 1.00 1.00
500 0.04 0.04 0.04 0.03 0.02 0.26 0.89 1.00 1.00 1.00
1,000 0.04 0.04 0.04 0.03 0.03 0.21 0.98 1.00 1.00 1.00
2,000 0.04 0.04 0.04 0.04 0.04 0.15 1.00 1.00 1.00 1.00

Panel B: p= 0.05
Stat-m-test Ind-m-test

ρ 0.0 0.2 0.4 0.6 0.8 0.0 0.2 0.4 0.6 0.8

n
250 0.04 0.04 0.03 0.03 0.04 0.09 0.97 1.00 1.00 1.00
500 0.04 0.04 0.04 0.04 0.04 0.08 1.00 1.00 1.00 1.00
1,000 0.04 0.04 0.04 0.04 0.04 0.06 1.00 1.00 1.00 1.00
2,000 0.05 0.05 0.04 0.05 0.04 0.05 1.00 1.00 1.00 1.00

Table IV: Simulated rejection probabilities for serial dependence.

The table presents the rejections probabilities of the Stat-m-test and the Ind-m-test based on simulated data with
autocorrelationφ, cross-correlationρ = 0.3, p = 0.01 (Panel A) andp = 0.05 (Panel B).

Panel A: p= 0.01
Stat-m-test Ind-m-test

φ 0.0 0.25 0.5 0.75 1.0 0.0 0.25 0.5 0.75 1.0

n

250 0.03 0.05 0.07 0.09 0.10 0.09 0.41 0.74 0.88 0.90
500 0.04 0.06 0.08 0.10 0.10 0.16 0.59 0.91 0.98 0.99
1,000 0.04 0.06 0.09 0.10 0.11 0.14 0.77 0.99 1.00 1.00
2,000 0.05 0.07 0.10 0.11 0.11 0.11 0.91 1.00 1.00 1.00

Panel B: p= 0.05
Stat-m-test Ind-m-test

φ 0.0 0.25 0.5 0.75 1.0 0.0 0.25 0.5 0.75 1.0

n

250 0.04 0.08 0.12 0.15 0.15 0.07 0.73 0.99 1.00 1.00
500 0.05 0.08 0.12 0.16 0.17 0.06 0.92 1.00 1.00 1.00
1,000 0.05 0.09 0.14 0.17 0.17 0.05 1.00 1.00 1.00 1.00
2,000 0.04 0.10 0.15 0.17 0.18 0.05 1.00 1.00 1.00 1.00
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Table V: Simulated rejection probabilities for non-constant expectations and serial dependence
with p = 0.01.

The table presents the rejections probabilities of the Stat-m-test and the Ind-m-test based on simulated data that exhibit
a combination of non-constant expectations and serial dependence with autocorrelationφ and cross-correlationρ = 0.3.

Panel A:φ = 0
Stat-m-test Ind-m-test

δ/p 0.0 0.1 0.2 0.3 0.4 0.5 0.0 0.1 0.2 0.3 0.4 0.5

n

250 0.04 0.05 0.10 0.17 0.30 0.45 0.10 0.09 0.10 0.12 0.13 0.15
500 0.04 0.07 0.18 0.37 0.64 0.95 0.15 0.15 0.17 0.19 0.21 0.26
1000 0.04 0.10 0.35 0.75 0.98 1.00 0.13 0.15 0.17 0.20 0.22 0.29
2000 0.05 0.19 0.69 0.98 1.00 1.00 0.12 0.12 0.14 0.18 0.24 0.31

Panel B:φ = 0.25
Stat-m-test Ind-m-test

δ/p 0.0 0.1 0.2 0.3 0.4 0.5 0.0 0.1 0.2 0.3 0.4 0.5

n

250 0.05 0.06 0.13 0.22 0.33 0.49 0.40 0.39 0.43 0.45 0.48 0.53
500 0.06 0.10 0.20 0.40 0.67 0.95 0.60 0.60 0.63 0.65 0.70 0.74
1000 0.06 0.13 0.39 0.76 0.98 1.00 0.77 0.77 0.79 0.83 0.86 0.89
2000 0.06 0.23 0.71 0.99 1.00 1.00 0.91 0.91 0.93 0.94 0.96 0.98

Panel C:φ = 0.5
Stat-m-test Ind-m-test

δ/p 0.0 0.1 0.2 0.3 0.4 0.5 0.0 0.1 0.2 0.3 0.4 0.5

n

250 0.07 0.10 0.16 0.25 0.38 0.53 0.75 0.76 0.76 0.78 0.81 0.84
500 0.08 0.11 0.23 0.44 0.69 0.94 0.92 0.92 0.92 0.94 0.95 0.96
1000 0.08 0.17 0.42 0.76 0.98 1.00 0.99 0.99 0.99 0.99 1.00 1.00
2000 0.10 0.26 0.72 0.98 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Panel D:φ = 0.75
Stat-m-test Ind-m-test

δ/p 0.0 0.1 0.2 0.3 0.4 0.5 0.0 0.1 0.2 0.3 0.4 0.5

n

250 0.09 0.11 0.17 0.26 0.40 0.56 0.88 0.89 0.88 0.90 0.92 0.92
500 0.10 0.13 0.25 0.45 0.70 0.95 0.98 0.98 0.98 0.98 0.99 0.99
1000 0.11 0.19 0.44 0.78 0.98 1.00 1.00 1.00 1.00 1.00 1.00 1.00
2000 0.11 0.28 0.73 0.98 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Panel E:φ = 1
Stat-m-test Ind-m-test

δ/p 0.0 0.1 0.2 0.3 0.4 0.5 0.0 0.1 0.2 0.3 0.4 0.5

n

250 0.09 0.11 0.17 0.27 0.40 0.57 0.90 0.91 0.92 0.92 0.93 0.95
500 0.09 0.15 0.27 0.45 0.70 0.95 0.98 0.99 0.99 0.99 0.99 0.99
1000 0.11 0.20 0.46 0.78 0.98 1.00 1.00 1.00 1.00 1.00 1.00 1.00
2000 0.12 0.30 0.73 0.98 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
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Table VI: Simulated rejection probabilities for non-constant expectations and serial dependence
with p = 0.05.

The table presents the rejections probabilities of the Stat-m-test and the Ind-m-test based on simulated data that exhibit
a combination of non-constant expectations and serial dependence with autocorrelationφ and cross-correlationρ = 0.3.

Panel A:φ = 0
Stat-m-test Ind-m-test

δ/p 0.0 0.1 0.2 0.3 0.4 0.5 0.0 0.1 0.2 0.3 0.4 0.5

n

250 0.04 0.10 0.32 0.71 0.97 1.00 0.06 0.07 0.09 0.13 0.20 0.31
500 0.05 0.18 0.67 0.98 1.00 1.00 0.06 0.06 0.08 0.14 0.26 0.43
1000 0.04 0.37 0.96 1.00 1.00 1.00 0.06 0.07 0.10 0.19 0.34 0.63
2000 0.05 0.69 1.00 1.00 1.00 1.00 0.05 0.06 0.10 0.24 0.55 0.87

Panel B:φ = 0.25
Stat-m-test Ind-m-test

δ/p 0.0 0.1 0.2 0.3 0.4 0.5 0.0 0.1 0.2 0.3 0.4 0.5

n

250 0.08 0.14 0.38 0.72 0.97 1.00 0.72 0.73 0.77 0.84 0.89 0.95
500 0.09 0.24 0.70 0.98 1.00 1.00 0.92 0.93 0.95 0.98 0.99 1.00
1000 0.09 0.43 0.95 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
2000 0.09 0.72 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Panel C:φ = 0.5
Stat-m-test Ind-m-test

δ/p 0.0 0.1 0.2 0.3 0.4 0.5 0.0 0.1 0.2 0.3 0.4 0.5

n

250 0.12 0.20 0.41 0.74 0.96 1.00 0.99 0.99 1.00 1.00 1.00 1.00
500 0.13 0.29 0.71 0.98 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
1000 0.14 0.47 0.95 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
2000 0.15 0.74 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Panel D:φ = 0.75
Stat-m-test Ind-m-test

δ/p 0.0 0.1 0.2 0.3 0.4 0.5 0.0 0.1 0.2 0.3 0.4 0.5

n

250 0.15 0.22 0.46 0.76 0.96 1.00 1.00 1.00 1.00 1.00 1.00 1.00
500 0.15 0.33 0.72 0.98 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
1000 0.17 0.50 0.95 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
2000 0.18 0.76 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Panel E:φ = 1
Stat-m-test Ind-m-test

δ/p 0.0 0.1 0.2 0.3 0.4 0.5 0.0 0.1 0.2 0.3 0.4 0.5

n

250 0.15 0.24 0.46 0.75 0.96 1.00 1.00 1.00 1.00 1.00 1.00 1.00
500 0.16 0.33 0.72 0.98 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
1000 0.18 0.52 0.95 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
2000 0.19 0.75 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
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Table VII: Simulated rejection probabilities for violation of the cc-property withp = 0.01.

The table presents the rejections probabilities of the Stat-m-test and the Ind-m-test based on simulated data that violate
the cc-property with autocorrelationφ and cross-correlationρ = 0.3.

Panel A:φ = 0
Stat-m-cc-test Ind-m-cc-test

δ/p 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

n

250 0.02 0.08 0.24 0.47 0.69 0.86 0.24 0.30 0.38 0.42 0.48 0.53
500 0.05 0.12 0.45 0.81 0.95 0.99 0.27 0.36 0.44 0.59 0.68 0.75
1000 0.05 0.28 0.79 0.99 1.00 1.00 0.12 0.23 0.36 0.52 0.67 0.80
2000 0.05 0.55 0.98 1.00 1.00 1.00 0.15 0.29 0.46 0.62 0.76 0.86

Panel B:φ = 0.25
Stat-m-cc–test Ind-m-cc-test

δ/p 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

n

250 0.03 0.10 0.27 0.49 0.69 0.85 0.65 0.73 0.78 0.82 0.85 0.85
500 0.06 0.15 0.47 0.78 0.94 0.99 0.73 0.84 0.90 0.94 0.96 0.96
1000 0.07 0.29 0.79 0.98 1.00 1.00 0.78 0.91 0.97 0.99 1.00 1.00
2000 0.07 0.55 0.98 1.00 1.00 1.00 0.91 0.97 0.99 1.00 1.00 1.00

Panel C:φ = 0.5
Stat-m-cc-test Ind-m-cc-test

δ/p 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

n

250 0.05 0.13 0.29 0.52 0.71 0.84 0.89 0.92 0.93 0.94 0.93 0.92
500 0.08 0.17 0.47 0.78 0.93 0.98 0.95 0.97 0.99 0.99 0.98 0.97
1000 0.09 0.31 0.77 0.97 1.00 1.00 0.99 1.00 1.00 1.00 1.00 1.00
2000 0.09 0.55 0.97 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Panel D:φ = 0.75
Stat-m-cc-test Ind-m-cc-test

δ/p 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

n

250 0.05 0.15 0.31 0.52 0.72 0.84 0.95 0.96 0.96 0.96 0.94 0.93
500 0.09 0.19 0.48 0.77 0.93 0.98 0.98 0.99 0.99 0.99 0.98 0.97
1000 0.10 0.33 0.77 0.97 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
2000 0.11 0.56 0.97 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Panel E:φ = 1
Stat-m-cc-test Ind-m-cc-test

δ/p 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

n

250 0.06 0.15 0.34 0.53 0.71 0.83 0.96 0.97 0.97 0.96 0.94 0.93
500 0.10 0.20 0.48 0.77 0.93 0.98 0.99 0.99 0.99 0.99 0.98 0.97
1000 0.12 0.31 0.78 0.97 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
2000 0.11 0.56 0.97 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
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Table VIII: Simulated rejection probabilities for violation of the cc-property withp = 0.05.

The table presents the rejections probabilities of the Stat-m-test and the Ind-m-test based on simulated data that violate
the cc-property with autocorrelationφ and cross-correlationρ = 0.3.

Panel A:φ = 0
Stat-m-cc-Test Ind-m-cc-Test

δ/p 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

n

250 0.05 0.27 0.79 0.98 1.00 1.00 0.10 0.25 0.46 0.68 0.80 0.82
500 0.05 0.53 0.98 1.00 1.00 1.00 0.08 0.24 0.48 0.69 0.87 0.94
1000 0.05 0.86 1.00 1.00 1.00 1.00 0.06 0.23 0.50 0.73 0.89 0.97
2000 0.05 0.99 1.00 1.00 1.00 1.00 0.06 0.23 0.51 0.79 0.95 0.99

Panel B:φ = 0.25
Stat-m-cc-Test Ind-m-cc-Test

δ/p 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

n

250 0.09 0.29 0.78 0.97 1.00 1.00 0.74 0.90 0.97 0.98 0.96 0.92
500 0.09 0.55 0.97 1.00 1.00 1.00 0.92 0.99 1.00 1.00 1.00 0.99
1000 0.09 0.83 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
2000 0.09 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Panel C:φ = 0.5
Stat-m-cc-Test Ind-m-cc-Test

δ/p 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

n

250 0.12 0.33 0.75 0.97 1.00 1.00 0.99 1.00 1.00 0.99 0.97 0.95
500 0.12 0.55 0.96 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99
1000 0.12 0.82 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
2000 0.12 0.98 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Panel D:φ = 0.75
Stat-m-cc-Test Ind-m-cc-Test

δ/p 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

n

250 0.14 0.35 0.75 0.95 1.00 1.00 1.00 1.00 1.00 0.99 0.98 0.95
500 0.14 0.56 0.96 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99
1000 0.14 0.82 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
2000 0.15 0.97 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Panel E:φ = 1
Stat-m-cc-Test Ind-m-cc-Test

δ/p 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

n

250 0.15 0.34 0.75 0.96 1.00 1.00 1.00 1.00 1.00 0.99 0.97 0.95
500 0.15 0.56 0.95 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99
1000 0.15 0.82 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
2000 0.16 0.98 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
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Table IX: Summary statistics and test results for the empirical study.

The table presents some yearly summary statistics for the empirical study, including the average daily return and
volatility, the number of (subsequent) violations, the p-value for every applied test and the results for the argmax esti-
mators for the CUSUM tests. The sample consists of log returns on the mid prices of the stocks of the 20 largest global
banks available in theThomson Reuters Financial Datastreamdatabase according to the banks’ market capitalization
on the 1st of January, 2002. The banks in our sample are: Citigroup, HSBC Holdings (dual listing), UBS, Barclays,
BNP Paribas, Mitsubishi UFJ, RBS, Crédit Agricole, Bank of America, JP Morgan Chase, Deutsche Bank, Mizuho
Financial Group, ABN Amro, Sociét́e Géńerale, Morgan Stanley, HBOS, Banco Santander, Unicredit, and Credit Su-
isse. Our sample period runs from the 1st of February, 2003 until the 31st of December, 2014. All data are retrieved
in $ US. VaR forecasts are computed using GJR-GARCH(1,1) models with skewed t-distributed innovations based on
rolling windows of 500 observations andp = 0.05.

Year 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014
∅ Return per day 0.05% 0.03% 0.08% -0.07% -0.40% 0.09% -0.04% -0.18% 0.11% 0.09% -0.04%
∅ Volatility per day 1.37% 1.12% 1.28% 1.72% 5.17% 4.92% 2.37% 3.16% 2.48% 1.68% 1.35%
Number of violations 220 267 295 433 404 279 223 324 221 277 334
Number of 2 subsequent violations 26 14 21 78 64 32 18 45 17 24 44
Tm−cc

s,n Cross-sectional (p-value) 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
Tm−ind

s,n Cross-sectional (p-value) 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
Tm−cc

s,n Serial (p-value) 0.01% 28.86% 0.28% 0.00% 0.00% 0.00% 12.25% 0.00% 0.10% 0.00% 0.00%
Tm−ind

s,n Serial (p-value) 0.00% 26.19% 1.91% 0.01% 0.00% 0.25% 3.57% 1.82% 13.57% 14.21% 0.34%
RCcc,n (p-value) 31.11% 41.84% 4.21% 0.07% 0.18% 21.89% 55.15% 6.94% 44.31% 52.72% 2.97%
RCcc,n (argmax) 31.12. 02.05. 13.06. 17.12. 24.12. 31.03. 31.12. 09.11. 31.12. 24.06. 16.12.
RCn (p-value) 4.30% 12.95% 0.14% 22.66% 40.28% 2.41% 44.19% 18.95% 10.72%40.54% 25.16%
RCn (argmax) 10.05. 02.05. 13.06. 17.07. 22.01. 30.03. 07.05. 14.06. 02.08. 24.06. 24.09.
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Supplementary material for “Evaluating Value-at-Risk Forecasts: A New Set of Multivariate
Backtests”.

Table IA.I: Simulated rejection probabilities for non-constant expectations.

The table presents the rejections probabilities of the Stat-m-test and the Ind-m-test based on simulated data with
non-constant expectations withp = 0.01 (Panel A) andp = 0.05 (Panel B).

Panel A: p= 0.01
Stat-m-test Ind-m-test

δ/p 0.0 0.1 0.2 0.3 0.4 0.5 0.0 0.1 0.2 0.3 0.4 0.5

n

250 0.04 0.09 0.25 0.57 0.90 1.00 0.08 0.08 0.10 0.12 0.13 0.16
500 0.04 0.14 0.52 0.90 1.00 1.00 0.13 0.14 0.16 0.18 0.23 0.28
1000 0.04 0.27 0.86 1.00 1.00 1.00 0.15 0.14 0.18 0.21 0.27 0.36
2000 0.04 0.53 0.99 1.00 1.00 1.00 0.14 0.13 0.16 0.22 0.31 0.41

Panel B: p= 0.05
Stat-m-test Ind-m-test

δ/p 0.0 0.1 0.2 0.3 0.4 0.5 0.0 0.1 0.2 0.3 0.4 0.5

n

250 0.04 0.31 0.92 1.00 1.00 1.00 0.06 0.06 0.09 0.15 0.27 0.44
500 0.04 0.65 1.00 1.00 1.00 1.00 0.06 0.07 0.10 0.19 0.36 0.65
1000 0.05 0.94 1.00 1.00 1.00 1.00 0.05 0.06 0.12 0.24 0.55 0.88
2000 0.04 1.00 1.00 1.00 1.00 1.00 0.05 0.06 0.14 0.37 0.80 0.99

Table IA.II: Simulated rejection probabilities for cross-sectional correlation.

The table presents the rejection probabilities of the Stat-m-test and the Ind-m-test based on simulated data with cross-
sectional correlationρ, p = 0.01 (Panel A) andp = 0.05 (Panel B).

Panel A: p= 0.01
Stat-m-test Ind-m-test

ρ 0.0 0.2 0.4 0.6 0.8 0.0 0.2 0.4 0.6 0.8

n

250 0.04 0.03 0.03 0.02 0.02 0.32 0.98 1.00 1.00 1.00
500 0.04 0.04 0.04 0.03 0.03 0.29 1.00 1.00 1.00 1.00
1000 0.04 0.04 0.04 0.04 0.03 0.24 1.00 1.00 1.00 1.00
2000 0.05 0.04 0.04 0.04 0.04 0.16 1.00 1.00 1.00 1.00

Panel B: p= 0.05
Stat-m-test Ind-m-test

ρ 0.0 0.2 0.4 0.6 0.8 0.0 0.2 0.4 0.6 0.8

n

250 0.04 0.04 0.04 0.04 0.03 0.10 1.00 1.00 1.00 1.00
500 0.04 0.04 0.04 0.04 0.04 0.07 1.00 1.00 1.00 1.00
1000 0.05 0.04 0.05 0.04 0.04 0.06 1.00 1.00 1.00 1.00
2000 0.04 0.05 0.04 0.05 0.05 0.06 1.00 1.00 1.00 1.00
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Table IA.III: Simulated rejection probabilities for serial dependence.

The table presents the rejections probabilities of the Stat-m-test and the Ind-m-test based on simulated data with
autocorrelationφ, cross-correlationρ = 0.3, p = 0.01 (Panel A) andp = 0.05 (Panel B).

Panel A: p= 0.01
Stat-m-test Ind-m-test

φ 0.0 0.25 0.5 0.75 1.0 0.0 0.25 0.5 0.75 1.0

n

250 0.03 0.06 0.09 0.11 0.12 0.10 0.55 0.91 0.98 0.99
500 0.03 0.06 0.10 0.12 0.12 0.15 0.75 0.99 1.00 1.00
1000 0.04 0.07 0.09 0.12 0.12 0.15 0.92 1.00 1.00 1.00
2000 0.04 0.07 0.10 0.13 0.14 0.13 0.98 1.00 1.00 1.00

Panel B: p= 0.05
Stat-m-test Ind-m-test

φ 0.0 0.25 0.5 0.75 1.0 0.0 0.25 0.5 0.75 1.0

n

250 0.04 0.08 0.13 0.16 0.17 0.06 0.88 1.00 1.00 1.00
500 0.04 0.09 0.15 0.17 0.19 0.06 0.99 1.00 1.00 1.00
1000 0.05 0.09 0.15 0.18 0.20 0.05 1.00 1.00 1.00 1.00
2000 0.05 0.10 0.16 0.19 0.20 0.06 1.00 1.00 1.00 1.00
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Table IA.IV: Simulated rejection probabilities for non-constant expectations and serial depen-
dence withp = 0.01.

The table presents the rejections probabilities of the Stat-m-test and the Ind-m-test based on simulated data that exhibit
a combination of non-constant expectations and serial dependence with autocorrelationφ and cross-correlationρ = 0.3.

Panel A:φ = 0
Stat-m-cc-test Ind-m-cc-test

δ/p 0.0 0.1 0.2 0.3 0.4 0.5 0.0 0.1 0.2 0.3 0.4 0.5

n

250 0.04 0.12 0.42 0.84 1.00 1.00 0.06 0.08 0.11 0.16 0.27 0.41
500 0.04 0.24 0.81 1.00 1.00 1.00 0.06 0.07 0.10 0.18 0.36 0.58
1000 0.04 0.48 0.99 1.00 1.00 1.00 0.05 0.06 0.11 0.24 0.49 0.79
2000 0.04 0.81 1.00 1.00 1.00 1.00 0.05 0.07 0.13 0.33 0.71 0.96

Panel B:φ = 0.25
Stat-m-cc-test Ind-m-cc-test

δ/p 0.0 0.1 0.2 0.3 0.4 0.5 0.0 0.1 0.2 0.3 0.4 0.5

n

250 0.09 0.18 0.48 0.85 1.00 1.00 0.89 0.90 0.92 0.95 0.98 0.99
500 0.09 0.31 0.83 0.99 1.00 1.00 0.99 0.99 0.99 1.00 1.00 1.00
1000 0.10 0.53 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
2000 0.10 0.84 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Panel C:φ = 0.5
Stat-m-cc-test Ind-m-cc-test

δ/p 0.0 0.1 0.2 0.3 0.4 0.5 0.0 0.1 0.2 0.3 0.4 0.5

n

250 0.13 0.23 0.54 0.86 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00
500 0.15 0.35 0.83 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
1000 0.14 0.58 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
2000 0.16 0.84 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Panel D:φ = 0.75
Stat-m-cc-test Ind-m-cc-test

δ/p 0.0 0.1 0.2 0.3 0.4 0.5 0.0 0.1 0.2 0.3 0.4 0.5

n

250 0.16 0.27 0.56 0.87 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00
500 0.17 0.39 0.82 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
1000 0.20 0.60 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
2000 0.19 0.84 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Panel E:φ = 1
Stat-m-cc-test Ind-m-cc-test

δ/p 0.0 0.1 0.2 0.3 0.4 0.5 0.0 0.1 0.2 0.3 0.4 0.5

n

250 0.16 0.28 0.55 0.86 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00
500 0.19 0.41 0.83 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
1000 0.20 0.59 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
2000 0.20 0.84 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
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Table IA.V: Simulated rejection probabilities for non-constant expectations and serial depen-
dence withp = 0.05.

The table presents the rejections probabilities of the Stat-m-test and the Ind-m-test based on simulated data that exhibit
a combination of non-constant expectations and serial dependence with autocorrelationφ and cross-correlationρ = 0.3.

Panel A:φ = 0
Stat-m-cc-test Ind-m-cc-test

δ/p 0.0 0.1 0.2 0.3 0.4 0.5 0.0 0.1 0.2 0.3 0.4 0.5

n

250 0.04 0.11 0.42 0.85 1.00 1.00 0.06 0.07 0.09 0.16 0.26 0.42
500 0.04 0.22 0.81 1.00 1.00 1.00 0.06 0.07 0.10 0.19 0.34 0.58
1000 0.04 0.47 0.99 1.00 1.00 1.00 0.05 0.07 0.12 0.23 0.48 0.80
2000 0.05 0.82 1.00 1.00 1.00 1.00 0.05 0.07 0.12 0.32 0.70 0.97

Panel B:φ = 0.25
Stat-m-cc-test Ind-m-cc-test

δ/p 0.0 0.1 0.2 0.3 0.4 0.5 0.0 0.1 0.2 0.3 0.4 0.5

n

250 0.08 0.18 0.46 0.85 0.99 1.00 0.89 0.90 0.92 0.95 0.98 0.99
500 0.10 0.31 0.82 1.00 1.00 1.00 0.99 0.99 0.99 1.00 1.00 1.00
1000 0.11 0.54 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
2000 0.10 0.83 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Panel C:φ = 0.5
Stat-m-cc-test Ind-m-cc-test

δ/p 0.0 0.1 0.2 0.3 0.4 0.5 0.0 0.1 0.2 0.3 0.4 0.5

n

250 0.14 0.25 0.53 0.85 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00
500 0.14 0.37 0.83 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
1000 0.16 0.58 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
2000 0.17 0.84 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Panel D:φ = 0.75
Stat-m-cc-test Ind-m-cc-test

δ/p 0.0 0.1 0.2 0.3 0.4 0.5 0.0 0.1 0.2 0.3 0.4 0.5

n

250 0.16 0.26 0.55 0.86 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00
500 0.18 0.38 0.83 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
1000 0.19 0.59 0.98 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
2000 0.19 0.84 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Panel E:φ = 1
Stat-m-cc-test Ind-m-cc-test

δ/p 0.0 0.1 0.2 0.3 0.4 0.5 0.0 0.1 0.2 0.3 0.4 0.5

n

250 0.17 0.28 0.55 0.86 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00
500 0.19 0.40 0.82 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
1000 0.20 0.60 0.98 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
2000 0.20 0.83 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
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Table IA.VI: Simulated rejection probabilities for violation of the cc-property withp = 0.01.

The table presents the rejections probabilities of the Stat-m-test and the Ind-m-test based on simulated data that violate
the cc-property with autocorrelationφ and cross-correlationρ = 0.3.

Panel A:φ = 0
Stat-m-cc-test Ind-m-cc-test

δ/p 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

n

250 0.06 0.34 0.90 1.00 1.00 1.00 0.11 0.38 0.69 0.84 0.83 0.73
500 0.05 0.66 1.00 1.00 1.00 1.00 0.09 0.35 0.69 0.89 0.96 0.93
1000 0.05 0.93 1.00 1.00 1.00 1.00 0.07 0.33 0.68 0.91 0.99 1.00
2000 0.05 1.00 1.00 1.00 1.00 1.00 0.06 0.33 0.73 0.94 0.99 1.00

Panel B:φ = 0.25
Stat-m-cc-test Ind-m-cc-test

δ/p 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

n

250 0.09 0.36 0.87 0.99 1.00 1.00 0.89 0.98 0.99 0.95 0.90 0.83
500 0.09 0.65 0.99 1.00 1.00 1.00 0.99 1.00 1.00 1.00 0.99 0.95
1000 0.09 0.91 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
2000 0.09 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Panel C:φ = 0.5
Stat-m-cc-test Ind-m-cc-test

δ/p 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

n

250 0.13 0.40 0.85 0.99 1.00 1.00 1.00 1.00 0.99 0.96 0.92 0.89
500 0.13 0.67 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.96
1000 0.13 0.89 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
2000 0.13 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Panel D:φ = 0.75
Stat-m-cc-test Ind-m-cc-test

δ/p 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

n

250 0.16 0.41 0.85 0.99 1.00 1.00 1.00 1.00 0.99 0.97 0.94 0.90
500 0.16 0.66 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.97
1000 0.15 0.89 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
2000 0.17 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Panel E:φ = 1
Stat-m-cc-test Ind-m-cc-test

δ/p 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

n

250 0.16 0.42 0.84 0.98 1.00 1.00 1.00 1.00 0.99 0.97 0.94 0.92
500 0.17 0.65 0.98 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.97
1000 0.16 0.89 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
2000 0.17 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

42



Table IA.VII: Simulated rejection probabilities for violation of the cc-property withp = 0.05.

The table presents the rejections probabilities of the Stat-m-test and the Ind-m-test based on simulated data that violate
the cc-property with autocorrelationφ and cross-correlationρ = 0.3.

Panel A:φ = 0
Stat-m-cc-test Ind-m-cc-test

δ/p 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

n

250 0.06 0.34 0.90 1.00 1.00 1.00 0.12 0.38 0.69 0.83 0.82 0.73
500 0.05 0.67 1.00 1.00 1.00 1.00 0.09 0.36 0.69 0.91 0.97 0.93
1000 0.06 0.93 1.00 1.00 1.00 1.00 0.07 0.34 0.69 0.91 0.99 1.00
2000 0.05 1.00 1.00 1.00 1.00 1.00 0.06 0.34 0.73 0.94 0.99 1.00

Panel B:φ = 0.25
Stat-m-cc-test Ind-m-cc-test

δ/p 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

n

250 0.09 0.37 0.86 0.99 1.00 1.00 0.89 0.98 0.99 0.96 0.90 0.83
500 0.10 0.66 0.99 1.00 1.00 1.00 0.99 1.00 1.00 1.00 0.99 0.95
1000 0.10 0.91 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
2000 0.09 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Panel C:φ = 0.5
Stat-m-cc-test Ind-m-cc-test

δ/p 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

n

250 0.14 0.39 0.85 0.98 1.00 1.00 1.00 1.00 0.99 0.96 0.93 0.88
500 0.13 0.64 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.96
1000 0.14 0.90 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
2000 0.14 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Panel D:φ = 0.75
Stat-m-cc-test Ind-m-cc-test

δ/p 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

n

250 0.17 0.41 0.85 0.98 1.00 1.00 1.00 1.00 0.99 0.97 0.94 0.91
500 0.15 0.65 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.97
1000 0.16 0.89 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
2000 0.15 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Panel E:φ = 1
Stat-m-cc-test Ind-m-cc-test

δ/p 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

n

250 0.16 0.41 0.83 0.98 1.00 1.00 1.00 1.00 0.99 0.97 0.94 0.91
500 0.15 0.66 0.98 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.97
1000 0.16 0.88 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
2000 0.17 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
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