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1 Introduction

Over the last two decades, Value-at-Risk (VaR) has become the de facto standard tool for
measuring and managing risk in the financial services industry. Defined as the p-quantile of a
relevant profit and loss (P/L) distribution where p is regularly set to 1% or 5%, it is now widely
used by commercial banks and insurers aswell as firms outside the financial industry to assess the
risk exposure of singleinvestmentsand portfolios.H A simplereason for thisimportance of VaR for
the financial industry is given by the fact that under the 1996 Market Risk Amendment to the first
Basel Accord, banks were allowed to employ internal VaR-models to calculate capital charges for
thelir risky investments. Despite its popularity with practicioners, however, VaR has also received
criticism from academia due to its lack of subadditivity (and thus coherence, see |Artzner et alJ,
1999) in case of non-gaussian P/L distributionSH Even more importantly, commentators have
blamed VaR in part for the severity of the recent financial crisis as the industry-wide use of VaR
capital constraints enabled externalities to spread in financial markets through the pricing of risk
(seelShin, 2010)Q Consequently, both regulators and financial risk managers have recently taken
an increased interest in model validation and backtests of VaR-forecasts.

Despite its importance for bank regulation, VaR-backtesting has received relatively little at-
tention in the financial econometrics literature compared to the numerous studies on the estima-
tion and forecasting of VaR. One of the first formal statistical backtests for VaR was proposed
by IKupiec (1995) who tests the sequence of VaR-violations for the correct number of violations
(i.e., unconditional coverage). |Christoffersen (1998) and |Christoffersen and Pelletier (2004) ex-
tend these first tests of unconditional coverage by additionally testing for the independence of the
sequence of VaR-violations yielding a combined test of conditional coverage. Recently, an inte-

grated framework for VaR-backtesting that includes the previously mentioned tests was proposed

1 Extensive discussions of the properties of VaR and its use in practice are given, e.g., by [Dowd (1998), Jorion
(2006), and |Alexandetl (2008).

2 Note, however, that evidence by IDanielsson et al! (2005) points out the subadditivity of VaR for most practical
applications.

3 Similar argumentsin favor of a destabilizing effect of bank regulation based on VaR on the economy are stated
by|Leippold et al. (2006) and|Basak and Shapira (2001).



by Berkowitz et al. (2011). Further examplesof the few backtestsfor VaR that are availableto regu-
lators are due to|Berkowitz (2001), Engle and Manganelli (2004), Haas (2005) and/Candelon et al.
(2011), although the test of unconditional coverage continues to be the industry standard mostly
due to the fact that it is implicitly incorporated in the framework for backtesting internal models
proposed by theBasel Committee on Banking Supervision (BCBS) (1996)

In this paper, we propose a new set of backtests for VaR-forecasts that significantly im-
prove upon existing formal VaR-backtests like, e.g., the benchmark models proposed by
Christoffersen and Pelletier (2004). We first restate the definitions of the unconditional coverage
property and propose a new test of the correct number of VaR-exceedances. Extending the current
state-of-the-art, our new test can be used for both one-sided and two-sided testing and is thus able
to test separately whether a VaR-model is too conservative or underestimates the actual risk expo-
sure. Second, we stressthe importance of testing for both the property of independent aswell asthe
property of identically distributed VaR-exceedances and propose a simple approach for testing for
both properties. While it has been noted in previous studies that VaR-violations should ideally be
i.i.d., standard backtestsfocus solely on the independence of the violati ons.H In this paper, we argue
that the property of identically distributed VaR-exceedancesis of vital importance to regul ators and
risk managers. In particular, we show that traditional VaR-backtests that center around first-order
autocorrelation in violation processes are often not able to detect misspecified VaR-models during
calm boom and highly volatile bust cycles. The new test of thei.i.d. property of VaR-violations
explicitly tests for the presence of clustersin VaR-violation processes. This new feature is highly
economically relevant as our test for violation clusters can identify VaR-models that yield inac-
curate risk forecasts when they are most undesirable: during economic busts and financial crises
when extreme losses on investments cluster due to a persistent increase in the volatility level. Fi-
nally, we also propose a weighted backtest of conditional coverage that simultaneously tests for a

correct number and thei.i.d. property of VaR-violations. Our proposed weighted backtest isin the

A review of backtesting proceduresthat have been proposed in the literature is given by |Campbell (2007).

In fact, previous Markov- and duration-based tests of |Christoffersen (1998), |Christoffersen and Pelletier (2004)
and |Candelon et al/ (2011) only consider autocorrelation in VaR-violations as one possible reason why VaR-
violations could be clustered.



spirit of the original backtest of conditional coverage by |Christoffersen and Pelletier (2004), but
generalizes it by allowing the user to choose the weight with which the test of unconditional cov-
erage enters the joint test of conditional coveragell Our newly proposed set of backtestsis simply
based on i.i.d. Bernoulli random variables making them very intuitive and easy to implement. By
construction, these tests automatically keep their level, even for very small sample sizesasthey are
often found in VaR-backtesting.

We employ our proposed backtests in a simulation study using several sets of simulated data
that mimic real-life settings in which the simulated data violate the unconditional coverage, i.i.d.,
and conditional coverage properties to different degrees. The performance of the new tests is
compared to classical tests frequently used in theory and practice as well asto arecently proposed
powerful test. The results indicate that our tests significantly outperform the competing backtests
in several distinct settings.

The paper is structured in a similar fashion as the one of Berkowitz et a. (2011) and is orga-
nized as follows. Section[2 introduces the notation, defines the properties of VaR-violations, and
describes our new set of backtests. Section [3 evaluates the performance of the newly proposed
backtests as well as several benchmark procedures for backtesting VaR-forecasts in a simulation

study. Section 4] concludes the paper.

2 Methodology

In this section, we introduce the notation used throughout the paper, redefine the desirable
properties of VaR-violations that are frequently discussed in the literature and present our new

backtests.

6 The approach of weighting the test statistics could also be pursued using classical uc and ind tests instead of our
new uc and iid test. However, we believe this paper to be thefirst to explicitly point out the possibility to generate
new tests by means of weighting uc and iid tests.



2.1 Notation and VaR-Violation Properties

Let {y:};., be asample of atime seriesy; corresponding to daily observations of the returns on
an asset or a portfolio. We are interested in the accuracy of VaR-forecasts, i.e., an estimation of
confidence intervals. Following/Dumitrescu et al. (2012), the ex-ante VaR VaRy:_1(p) (condition-
aly on aninformation set IF;_;) isimplicitly defined by Pr(y; < —VaRy_1(p)) = p, where p isthe
VaR coverage probability. Note that we follow the actuarial convention of apositivesign for aloss.
In practice, the coverage probability pistypically chosen to be either 1% or 5% (see|Christoffersen,
1998). This notation implies that information up to timet — 1 is used to obtain a forecast for time

t. Moreover, we define the ex-post indicator variable 1;(p) for a given VaR-forecast VaRy:_1(p) as

0, if yy > —VaRy_1(p);
li(p) = @)

1, if y < =VaRy-1(p).
If thisindicator variable is equal to 1, we will call it a VaR-violation.
To backtest a given sequence of VaR-violations, (Christoffersen (1998) state three desirable
properties that the VaR-violation process should possess. First, the VaR-violations are said to have

unconditional coverage (uc thereafter) if the probability of aVaR-violationisequal to p, i.e.,

PlIi(p) = 1] = E[l(P)] = p. )

Second, the independence (ind thereafter) property requires that the variable 1;(p) has to be inde-
pendent of I;_«(p), Yk # 0. Finaly, the uc and ind properties are combined viaE[l(p) — p|Q_1] = 0
to the property of conditional coverage (cc thereafter). In detail, a sequence of VaR-forecasts is

defined to have correct cc if

{1(p)} "< Bern(p), vt. €)

While we agree with the formulation of the cc property, we point out that the uc and the

ind properties as defined above suffer from some serious restrictions. The uc property requires a



test whether the expected coverage is p for each day t individually. To be precise, the equation
P[li(p) = 1] = E[ly(p)] = p holdsonly true if P[I(p) = 1] = p holds for al t. However, it is not
feasible to verify if this assumption holds true for all t individually by means of a statistical test of
uc. Moreover, it is quite likely that the sequence of VaR-violations is not stationary and that the
probability of having a VaR violation varies across different market phases even if % >l equals
p for the total sequence. Evidence for this conjecture is found by [Escanciano and Peil (2012).

Consequently, we redefine the uc property smply as

1 n
E[ﬁ Z |t(p)] =p. (4)

t=1

With respect to theind property, it isinteresting to note that the current state-of -the-art backtests
in the financial econometrics literature do not focus on testing the property of VaR-violations
being identically distributed. In fact, the sequence {I;(p)} could exhibit clusters of violations while
still possessing the property of independence as defined above. Besides, unexpected temporal
occurrences of clustered VaR-violations may have severa potential reasons. On the one hand,
{I:(p)} may not be identically distributed and E(l{(p)) could vary over time. On the other hand,
l:(p) may not be independent of I, «(p), Yk # 0. We therefore reformulate the ind property as the
i.i.d. property (i.i.d. thereafter). The hypothesisof i.i.d. VaR-violations holds true if

{(p)} "= Bern(p), vt (5)

where p is an arbitrary probability. Note that the i.i.d. hypothesis does not deal with the relative
amount of VaR-violations. Hence, if appropriate, p will be replaced by its empirical counterpart
p (the estimated violation rate) within the respective test statistics later on. To be more precise,
P is replaced by p in equation (15) and indirectly also in (I7), (22) and ([24). In contrast to the
i.i.d. hypothesis, the relative amount of VaR-violations is additionally and simultaneously taken
into account within the cc property.

In the following, we describe our new set of backtests that includes separate tests for all men-



tioned properties of VaR-violation processes. Pseudocode for all new tests is provided in the

Appendix to this paper.

2.2 A New Test of Unconditional Coverage

At this point, we are interested in testing the null hypothesis E [% > It(p)] = p against the
dtemative E |2 X1, 1((p)| # p. Infact, as we will see later, our new test statistic also allows us
to separately test against the alternatives E [% Sy It(p)] > pand E [% pW It(p)] < p. The most

intuitive and commonly used test statistic for the test of uc is given by (see [Christoffersen, [1998):

LRYP = —210g[L(P; 11, 12, «oes 1n)/L(D; 11, 125 ooy 1)] = 4P(D), (6)
where p = nl'}no, n; isthe number of violations and ng = n — n;. Moreover, we have
L(p; 11, 12, ... 1) = p™(1 = )™ (7)
and
L(p; 11, 12, ... 10) = pP™(1 — p)™. (8

Candelon et al| (2011) recently introduced an alternative test for the uc hypothesis us-
ing orthonormal polynomias and the GMM test framework proposed by Bontemps (2006),
Bontemps and Meddahil (2005) and Bontemps and Meddahil (2012). Their test statistic is given
by

Je = (1)=[izm]wl (d--p))zaﬂ (1) ©
uc cc Jm L 1\, X L)

where M, is an orthonormal polynomial associated with a geometric distribution with a success
probability p and d; denotes the duration between two consecutive violations (see/Candelon et al),
2011, for more details).

However, both tests suffer from significant drawbacks. First, without modifications, it is not

possible to construct one-sided confidence intervals. Such an additional feature, on the other hand,

6



would be of particular interest to bank regulators and risk-averse investors who are primarily inter-
ested in limiting downside risk. Whileit istrivia to check whether a rejection was due to a model
being too conservative or not conservative enough, none of the existing tests yields one-sided crit-
ical values. In this context, results from our simulation study illustrate that the power of one-sided
tests is significantly higher. The second drawback is concerned with the behaviour of the testsin
finite samples. Aswe deal with tail forecasts based on binary sequences, the number of violations
is comparatively small and discrete. Hence, ties between the sample test value and those obtained
from Monte Carlo simulation under the null hypothesis need to be broken. That means that we
have to ensure that the probability for two equal values of the test statistic for two different data
sets is zero. Christoffersen and Pelletier (2004) propose to use the IDufour (2006) Monte Carlo
testing technique to break ties between test values. Astheir approach, however, is computationally
demanding and unnecessarily complex, we propose a different tie breaking procedure.

We address the latter problem by exploiting an idea used, among others, by
Podolskij and Ziggel (2009) and propose to use the test statistic

n

MCSuc = ) I(P) + e (10)

t=1

where € is a continuously distributed random variable with small variance that servesto break ties
between test values!] Critical values of the test statistic are computed viaMonte Carlo simulations
(MCYS) asisdone for all other backtests throughout this paper. For fixed n and p, the distribution
of the test statistic is known. We then simulate a large number of realizations of the test statistic
under the respective null hypothesis and use the resulting quantile for testing the uc hypothesis.
Adding the random variable e guarantees that the test exactly keepsitssizeif the number of Monte
Carlo simulations for obtaining the critical value tends to infi nity.H Note that without the addition

of the random variable ¢, the test statistic would have a discrete distribution and not all possible

7 |Podolskij and Ziggell (200S) employ the idea of adding a small random variable to a test statistic to construct a
new class of tests for jumpsin semimartigale models.

The theoretical foundation of our approach is given by [Dufour (2006) who considers a more general context and
solves this problem by introducing randomized ranks according to a uniform distribution.

7



levels could be attained. Additionally, note that the choice of € is not crucial for testing the uc
hypothesis. We noticed in robustness checks that the finite sample performances of the tests are
not substantially affected by changesin the distribution of € aslong asit remains continuouswith a
small, non-zero variance. Consequently, it isintuitiveto use normally distributed random variables
for e. Nevertheless, one needs to assure that the test statistic for v — 1 violations is smaller then
the test statistic for v violations. Followingly, we set € ~ 0.001 - N(O, 1) in our simulation study.
Finally, it isinstructiveto see that our new approach allowsfor one-sided and two-sided testing for
every desired test level.

Critical values for all our tests are then computed via MCS instead of, e.g., making use of
explicit expressionsof the exact or asymptotic distributions. Basically, all test statisticswe consider
are given as the sum of a discrete random variable (determined by Bernoulli distributed random
variables) and a continuous random variable with known distribution that is independent from the
discrete random variable. Thus, on the one hand, the distributions of the test statistics are uniquely
determined for fixed n and p and additionally it is basically useful to consider MCS. On the other
hand, due to the continuous part, the test statistics are also continuously distributed. This follows
from the genera fact that, for a discrete random variable X with support My and a continuous

random variable Y such that X and Y are independent,

PX+Y<a)= Z P(x+Y < aX=xP(X = X) = Z P(Y < a— X)P(X = X).

XeMy XeMy

Thus, the cumulative distribution function of X+Y can be written as a countable sum of continuous
functions so that it is continuous as well. Using aresult from [Dufour (2006), the empirical critical
valuesthen yield atest that exactly keeps its size if the number of MCS tends to infinity.

Instead of using MCS, one could basically also derive the exact distribution functions of the
test statistics, athough this would indubitably be a cumbersome task. It would aso be possible
to derive asymptotic results if the test statistics are appropriately standardized and if one imposes

additional moment assumptions on the continuous random variable. For example, a suitably stan-



dardized uc test statistic might be \/iﬁ Soi((p) — p) + %e. However, we believe that, although of
some interest, such an asymptotic analysisis not necessary in our setting. In practice, n and p are
fixed and by an increasing number of Monte Carlo repetitions we can get arbitrarily exact critical
values of the test statistics in reasonable time. Since one typically deals with a low number of
VaR violations, one could moreover expect the asymptotic approximation to be highly inaccurate,
which is confirmed by several studies (see, e.g., Berkowitz et al., [2011).

Basically, the one-sided version of our new uc test can be regarded as a generalization of
the Basel traffic light approach as described in|Campbell (2007). The Basel approach provides a
method which can be easily applied. Here, the 1% VaR violationsin the last 250 days are counted.
The traffic light is green whenever the number of violations is less than 5, yellow whenever the
number lies between 5 and 9 and red otherwise. With the decision rule “Reject the null hypoth-
esis of avalid VaR model whenever the traffic light is red” the procedure can be interpreted as a
significance test. In fact, then the Basel test statistic is a special case (with n = 250, p = 0.01,
a < 0.001 and € = 0) of our uc test statistic. Information concerning the size and power of the
Basel test can be found inBasel Committee on Banking Supervision (BCBS) (1996). However, an
application of thistest is not possible as soon as the input parameters change. In contrast to that,

our new approach allows, e.g., to increase the sample size or to vary the significance level.

2.3 A New Test of |.1.D. VaR-Violations

As stated in IChristoffersen (1998), testing solely for correct uc of a VaR-model neglects the
possibility that violations might cluster over time. Consequently, (Christoffersen (1998) propose
atest of the violations being independent against an explicit first-order Markov alternative. The

resulting test statisic is given by:

LRiG = -2 log[L(IT2; 11, 12, ooey In)/L(TT1; 11, 12, s 10)] % P(D). (1)



Here, the likelihood functions are given by:

Noo No1 N10 N11
L(ﬁl;ll,lz,...,ln):(l— Moy ) ( Moy ) (1— N ) ( M ) (12)

Noo + Noz Noo + Noz1 Ny + N11 Nio + N11

and

No1 + N11 )n00+n10 ( No1 + N11 )n01+nll (13)

L((To; 1y, 02,y 1) = |1 —
Ngo + N1 + Noy + N1 Ngo + N1 + No1 + N1

where I1; and II, are two transition matrices (see (Christoffersen, 1998 for details) and nj; is
the number of observations with value i followed by j. Note that this first-order Markov al-
ternative has only limited power against general forms of clustering. Moreover, as shown in
Christoffersen and Pelletier (2004), this test is not suited for several settings and has a poor be-
haviour in finite samples. The test can then be combined with the test of uc presented in the
previous subsection to yield afull test of cc. Despite the aforementioned shortcomings, however,
itis still one of the most frequently used backtestsin practice (see/Candelon et al., [2011).

In a subsequent work, |Christoffersen and Pelletier (2004) introduce more flexible tests which
are based on durations between the violations. The intuition behind these testsis that the clustering
of violations will induce an excessive number of relatively short and long no-hit durations. Under

the null hypothesis, the no-hit durations D should then be exponentially distributed with
fexp(D; P) = e, (14

where D is the no-hit duration. In their work, (Christoffersen and Pelletier (2004) employ the
Weibull and the gamma distribution to test for an exponential distribution of the no-hit durations.
Nevertheless, we will only consider the Weibull test in our simulation study as it yields consid-
erably better results than the gamma test (see Haas, |I2005). In addition to the mentioned tests,
the literature on VaR-backtesting also includes the standard Ljung-Box test, the CAViaR test of

Engle and Manganellil (2004), the regression based dynamic quantile test by Tokpavi and Hurlin

10



(2007) and spectral density tests. However, the level of most of these testsis poor for finite sam-
ples and therefore critical values need to be calculated based on the Dufour Monte Carlo testing
technique (seeBerkowitz et a ., 2011).

Recently, [Candelon et al.! (2011) introduced a new test for thei.i.d. hypothesis. As described
above, this test is based on orthonormal polynomias and the GMM test framework. The test

statistic is given by

1 & TN &
Jigla) = | — S M(d:: — % M(d; p) | x0). 15
4(0) [ﬁmi;j ( 5)]( _m; ( 5)] x2(9) (15)

where M(d;; p) denotes a (g,1) vector whose components are the orthonormal polynomials
Mj(d;; p), for j = 1,..., g, evaluated for the estimated violation rate p.

To introduce our new test statistic, we first define the set of points in time on which a VaR-
violation occurs via

V=il = 1) = (t, ..., t). (16)

Thetest statistic for our new i.i.d. hypothesisisthen given by

m
MCSiiam =t + (= tm)? + > (t —ti-2)? + €. (17)
i=2

This sum essentially consists of the squared durations between two violations. Basically, the
ideabehind thistest statistic followsthe principle of the Run-Test proposed by Wald and Wolfowitz
(1940). To be precise, the sum of the squared durations between two violations is minimal if
the violations are exactly equally spread across the whole sample period. If the violations are
clustered and occur heaped, this sum increases. Just like in the Run-Test, both systematic and
heaped occurences of violations could be undesirable in arisk management setting. For example,
the process of VaR-violations could exhibit an undesirable cyclical or seasonal behaviour that is
detected by our new test of thei.i.d. property asthetest statistic tendsto itsmini mum.H At the same

time, too large values of MCS;iy m, could indicate aclustering of violationsindicating asignificantly

9 Thisfeatureis of particular interest, e.g., in commodity and weather risk management.

11



bad fit of the VaR-model in a particular time period. For the purposes of this study we concentrate
on testing for clustered VaR-violations noting that two-tailed testing for both clusters and cyclical
patterns in VaR-violationsis straightforward.

Empirically, clustered VaR violations most often occur in atime of financial crisis with high
volatility which follows an economically quiet time and vice versa. In the former case, an initially
suitable VaR model becomes inadequate in times of market turmoil and increasing volatility. As-
suming this, one could use our new i.i.d. test for detecting times of crises or volatility clusters.
Note that such atest will work aslong as the VaR model is not completely correctly specified. On
the other hand, it is also possible that the VaR model is suitable for both quiet and volatile times
leading to afailure of the test. Due to thisfact, it would be interesting to investigate such a kind of
test in more detail and useful to compare or combine an analysis based on the new i.i.d. test with
e.g. atest for constant variances as presented in\Wied et al| (2012). However, thisissueisnot in
the scope of the present paper.

As before, we waive a formal derivation of the distribution of our test statistic. Instead, we
obtain the critical values of the test statistic by means of a Monte Carlo simulation (thus inspiring
the abbreviation MCS;iq ). Thesimulationisstraightforward asonly nand p have to be adapted to
the specific situation. Note that the critical values need to be simulated separately for each value of
maswe are solely interested in the durations between the violations and not in the absol ute number
of it. We use the same continuously distributed random variable e as before to break ties. Again,
the choice of € ensuresthe MCS to yield avalid test. Moreover, the computational complexity of

the test isnegligible.

24 A New Test of Conditional Coverage

We now describe our new test of cc that combines the two new tests for the uc and the i.i.d.

property. Starting point is again the standard test of cc as proposed by (Christoffersen (1998) which

12



utilizes the test statistic

LR™ = —21og[L(p; 1, 12, ... In)/L(T1; 11, 1oy oy 1] = 42(2), (18)

and which is based on the first-order Markov aternative described above. In a related study,
Berkowitz et a. (2011) extend their Weibull test for the i.i.d. property and derive an alternative

test of cc. They postulate a Weibull distribution for the duration variable D with distribution
h(D; a,b) = a’bDP e @)’ (19)
with E[D] = 1/p. Then, the null hypothesis of their test of cc is given by
Hoec :b=21,a=p. (20)

Using orthonormal polynomials and the GMM test framework, (Candelon et al | (2011) propose

a competing test of the cc hypothesis. Their test statistic is given by

18 1 & 5
Joo(@) = | — ) M(d; — ) M(@d:p)| % Q). 21
©) [Wzl] ( p))(vm; ( p)] %) (21)

Again, M(d;; p) denotes a (g, 1) vector whose entries are the orthonormal polynomials M;(d;; p),
forj=1,...0q.

To the best of our knowledge, the literature provides no modification of the mentioned testsin
away that they allow for aweighted influence of the uc and i.i.d. componentsin the combined test
of cc. From the perspective of arisk manager, however, such afeature could be highly desirable as
more weight could be assigned to one of the components of the test of cc. Hence, we are interested

in atest of theform

13



where a is the weight of the test of uc in the combined cc test. The first component of our new cc

test is then given by

(e+ 2t l)/n-p

f(MCSy) = .

(MCSUC)/n - P _
p } - 23)

This term measures (in percent) the deviation between the expected and observed proportion of
violations. As the general sizes of MCS,. and MCS;iqm, are not equal, both quantities are not
comparable without a standardization. Moreover, the difference in size varies depending on the
setting (i.e., n and p). However, as both quantities will appear together in one sum, it is necessary
to be able to compare them suitably.

To alow for a one-sided testing within the uc component (which seems to be useful as the
one-sided test can be considered as a generalization of the Basel traffic light approach and is of
particular interest to risk-averse investors who are primarily interested in limiting downside risk),
the above term is multiplied by 1(sn i /nop) OF Lisn 1,/n<p), r€Spectively. Theintuition behind thisis
that the weight of the uc part should be zero if the observed quantity is on the opposite side of the
null hypothesis such that it is very unlikely that the alternativeis true.

The second component in the cc test in (22) is defined as

MCSjigm—F

9(MCSjigm) = ;

’ 1{MCSiid,me}’ (24)

wheref isan estimator of the expected value of the test statistic MCS;iq m under the null hypothesis
(®), i.e, for E(MCS;jigml/Ho) =: r (see below and the Appendix). The second component measures
the deviation (in percent) between the expected and observed sum of squared durations. Again,
we use random variables e to break ties. In line with the new uc and i.i.d. tests, we abstain from a
formal derivation of the distribution of our test statistic and obtain the critical values by means of
aMonte Carlo simulation for each combination of sample size n and weighting factor a.

Note that the estimator 7 is calculated in a prior step before calculating the actual test statis-

tics and deriving critical values (cf. the pseudocode in the Appendix). Thus, for MCS.nm, the
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arguments regarding the correctness of the MCS from the end of Section 2.2 are also applicable.

Note further that we consider relative differences within both f(MCS,;) and g(MCS;;qm) to be
able to suitably compare the quantities. This appears necessary given the fact that we consider a
weighted sum of them.

Asthe weighting factor a can be chosen arbitrarily, anatural question to ask is how a should be
chosen. On the one hand, small test samples (e.g., 250 days) and small values of p (e.g. p = 1%)
lead to a small expected number of VaR-violations. In these cases, a risk manager (or regulator)
might be more interested in backtesting the VaR-violation frequency rather than thei.i.d. property
of, for instance, only two or three violations. On the other hand, large test samples (e.g., 1,000
days) may include calm bull and volatile bear markets. A VaR-model which is not flexible enough
to adapt to these changes may lead to non-identically distributed VaR-violations while at the same
time yielding a correct uc. Therefore, risk managers could be inclined to select a lower level of a
to shift the sengitivity of the cc test to the test of thei.i.d. property. Note, as both components of
thetest are strictly positiveit isruled out that one criteria could compensate the failing of the other.
Therefore, the choice of a affects solely the sensitivity of the cc test to one of the components.
Nevertheless, the selection of the optimal weighting factor a is an interesting task. Regarded as
a mathematical optimization problem, one could basically find the optimal a which minimizes a
suitably weighted sum of the type-1 and type-2 error for agiven aternative. However, this mainly

technical issueis not in the scope of the present paper.

3 Simulation Study

To examine the performance of our newly proposed backtests in finite samples,
we peform a comprehensive simulation study in which we compare our new back-
tests to severa different benchmarks.  These include the classical tests proposed by
Christoffersen (1998) and |Christoffersen and Pelletier (2004) because these approaches are
still very frequently used in theory (e.g. by Welil3and Supper, [2013) and in practice (see
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Basel Committee on Banking Supervision (BCBS), 2011). In addition, we employ the tests re-
cently proposed by [Candelon et al. (2011) as a benchmark showing robust properties and a high
power. The relevance of the benchmark tests is emphasized by the fact that in recent studies these
procedures are applied in parallel (see, e.g.,/Asal et a., 2012 and |Brechmann and Czada, 2013).
Before starting with the uc tests, we want to point out that the time required to compute the
critical valuesis quite short for all applied tests. The average calculation timesfor p = 0.05 and

different values of n are presented in Table[ll
- Insert Table[ll about here -

With the exception of the Weibull tests, all average calculation times lie within a corridor of 0.07
to 4.4 seconds. Thelonger calculation time of the Weibull tests, which lies between 25.79 to 27.95
seconds, is due to the required maximum likelihood estimates of the parameters of the Weibull

distribution. However, none of the calculation times are critical for applications.

3.1 Testsof Unconditional Coverage

We analyze the performance of the different tests of uc by simulating 10, 000 sampl == and
using different parameter combinations for p, v, and n to analyze the size and power of the back-
testsin more detail. In constrast to obtaining violations from a parametric VaR model, we simulate

sequences of VaR-violations using the data generating process (DGP)
Il ~Bern(y-p), t=1,...,n. (25)

Here, y isacoverage parameter which allowsfor distinguishing between null hypothesisand alter-
natives. To determine the size of the tests, we set the coverage parameter y = 1.0. For the analysis

of the tests' power, we increase the violation probability and set y = 1.1, 1.25 and 1.50. Each

10 With this number of repetitions, the standard error of the simulated rejection probabilites is equal to
ﬁ +/P(1 - p), where p is the true rejection probability. That means, the standard error is of order ﬁ. A
similar result holds for the accuracy of the simulated critical values, see below.

1 We calculate but do not report results for the setting y < 1 and concentrate on the more practically relevant
scenario of a VaR-model underestimating risk.
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sequence I, of simulated VaR-violations is then backtested using the new upper-tail MCS: and
the two-tailed MCS; backtest as described in Section[2.2l To evaluate each test’s power, we com-
pute the fraction of simulationsin which thetest is rejected (hereafter referred to as rejection rate).
Critical values of the test statistics for different parameters p and n are computed using 10, 000
M C simulations. Complementing our new backtests, we also apply the LRP test of IChristoffersen
(1998) and the GMM,,. test of [Candelon et al. (2011) to the simulated violation sequences and
compare the results of the tests. The results of the simulation study on the performance of the tests

of uc are presented in Tablel[lIl
- Insert Table[I] about here -

Not surprisingly, due to the fact that the critical values for each of the tests are determined via
simulation, the rejection frequencies for the setting v = 1.0 are close to the nominal size of the
tests. With respect to the power of the uc tests, the results of the LR test, the GM My test, and the
two-tailed MCSL. test are very similar. Only in afew casesdo the results of the GMM,. test deviate
from the rejection rates of the LR®P test and the two-tailed MCS! test in a positive or negative
direction. However, all of the three analyzed two-tailed tests are outperformed by the one-sided
MCSL test in the vast majority of settings. Consequently, in addition to being of high practical
relevance to regulators, our new one-tailed test of uc offers an increased test power compared to

standard VaR-backtests from the literature.

3.2 Testsof thel.l.D. Property

As discussed in Section [2.1], a correctly specified VaR-model should yield i.i.d. violations.
In this part of the simulation study, we analyze the power of the new backtests of i.i.d. VaR-
violations using two data generating processes. First, we investigate the power of our new backtests
and competing benchmark tests using dependent violations. Second, we repeat this analysis for
non-identically distributed violation processes. In both settings, we perform the MCS;;q4 test and

compare its finite sample behavior to that of the LRT" test of |Christoffersen (1998), the LR’ng‘ test
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of IChristoffersen and Pelletier (2004) and the GM Miiq test of ICandelon et al. (2011) Because
clustering implies the occurance of at least two VaR-violations, the i.i.d. tests are not performed
on samples where this minimum number is not achieved. To be more precise, >(, It > 2 holds
true for each of the samples simulated by the procedures below, where |, denotes a simulated VaR-
violation sequence. Basically, each of the utilized tests are feasible under this condition. Only the
LR’ng‘ test statistic cannot be computed for some simulated samples containing two violations (for

more details seelCandelon et al., [2011). We classify these cases as not rejected.

3.21 Independent VaR-Violations

In the first setting, we generate sequences of dependent VaR-violations with the degree of
dependence inherent in the violation processes varying over time. For each A and each n, we draw

10, 000 simul ations of

Vi = 04z, Withop =1 (26)

and

ol=02,+(1-)Z,0<1<Lt> 1 (27)

Besides, z ~ N(0O, 1), Yt. Note, this proceeding requires no pre-phasisin order to calculate . The
distribution of y; is based on the well-known exponentially weighted moving average (EWMA)
type process. This approach allows for an easy regulation of the degree of dependence by deter-
mining A as the single decay factor. To be more precise, A controls the half-life interval of the
observation weights (i.e., the interval in which the weight of an observed o2 decreases to half its
original value) by 1og(0.5)/log(1). We apply the backtests to several different levels of A repre-
senting half-life intervals of 5, 40, and 80 days of data. This range of half-life intervals covers
typical volatility persistence of asset return series. Table[IT shows the haf-life intervals and the

12 Assuggested in Candelon et al. (2011) we set q = 3for p = 5% and g = 5for p = 1% throughout the simulation
study. Critical valuesfor the MCS;iq test are obtained as outlined in Section using 10, 000 MC simulations.

13 The EWMA approach can be used for VaR-forecasting purposes (RiskMetrics) whereas 1 is typically set to 0.94
for one-day and 0.97 for one-month forecasts (see IMinaand Xiag, 2001). This correspondsto half-lifeintervals
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corresponding A level used to compute the power of the backtests.
- Insert Table[lII] about here -

Dependent VaR-violations are ensured by setting a constant VaR for al i = 1,...,n. For each
decay factor A, the VaR is determined separately by the empirical p-quantile of 10, 000 random
values simulated by Equation (26). The simulated VaR-violations |; are computed as defined by
Equation (D).

Table[[V] shows the results of the power study concerning the independence property of VaR-
violations. We apply each test to 18 different combinations of coverage probability p, decay factor
A and sample size n. Together with the three significance levels of 1%, 5%, and 10%, we thus

obtain 54 different settingsin our simulation study.
- Insert Table[[V] about here -

Intotal, the MCS;;4 test outperformsthe remaining testsin 29 out of the 54 test settings. Compared
to the other test methods, this test possesses a high statistical power in settings in which the half-
life interval is relatively large. Furthermore, the superiority of the MCS;iq test increases with
the significance level. The GMM test shows the best statistical power in 13 out of the 54 test
settings. For significance level and coverage probability 1%, its power is almost aways superior.
The LR test yields the best statistical power in 12 out of 54 settings, this is especially true for
small samples as well as for a half-life interval of five days. This result should be interpreted
somewhat cautiously due to the fact that the vast majority of the top results are concentrated at
the very short half-life interval of five days. It is to be expected that the LRTY" test performs well
in such circumstances, because short decay intervals lead to frequent occurrences of successive
VaR-violations. Consequently, the power of this test deteriorates as the decay interval increases.

Besides, the LRT:' test performs surprisingly well for some settings with n = 252. However,

of 11 and 23 days. Furthermore, Berkowitz et al. (2011) estimated variance persistences for actual desk-level
daily P/Lsfrom several businesslinesfrom alarge international bank. The determined values are 0.9140, 0.9230,
0.9882 and 0.9941 which correspond to half-lifeintervals of 8, 9, 58, and 117 days.
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in these cases the power decreases if n increases indicating asymptotic disturbances. A similar
phenomenon was observed in Berkowitz et al| (2011). For none of the 54 different settings does
the LR test lead to the best statistical power of all analyzed test methods. Furthermore, for
p = 5% and a half-life interval larger than 5 days, the test yields a statistical power below its
nominal size and shows the undesired behavior of decreasing rejection rates as the sample size

increases.

3.2.2 ldentically Distributed VaR-Violations

The data generating process for the second part of the simulation study is given by:

i.i.d. .
~ Bern(p-26),1<t<¥;

ii.d. _

<~ Bern(p+6),5 <t<5;

It = (28)

" Bern(p-6), 1 <t < I,

"¢ Bern(p + 26), Iot<n

Here, we choose 6 = Op to analyze the size of atest and § = 0.1p, 0.3p, and 0.5p for the power
study. This setting leads to variations in the probability of obtaining a VaR-violation between the
four equal-sized subsamples. Consequently, the violations will occur unequally distributed. Note
that the probability variations are determined in away which ensuresE (31, I1) = n- p. The setup
of this part of the simulation study covers a realistic scenario in which a VaR-model does not, or
not fully, incorporate changes from calm market phasesto highly volatile bear markets or financial
crises and vice versa. This in turn leads to clustered VaR-violations regardless of the question
whether the data might show signs of autocorrelation.

Alternatively, non-stationary VaR-violations could be identified by splitting a sampleinto sev-
eral subsamples and applying the test for uc to each subsample. However, this approach suffers
from two main drawbacks. First, for small subsamples the power of uc testsisrelatively low (see

Tablel). Second, it remains unclear at which points real data samples have to be split into two or
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more subsamples.

Table[V] shows the results of the power study concerning the property of identically distributed
VaR-violations. We apply each test to 18 different combinations of coverage probability p, prob-
ability variation factor ¢, and sample size n. Furthermore, we compute rejection rates for signifi-

cance levels of 1%, 5%, and 10% which leadsto atotal of 54 different test settings.
- Insert Table[V] about here -

In total, the MCS;iy test possesses a high statistical power regarding non-identically distributed
VaR-violationsand itstest results are comparabl e to or better than the performance of the remaining
three approaches for 45 out of the 54 settings. Particularly for significance levels of 5% and 10%,
it outperforms the competing tests in almost all cases, irrespective of the degree of probability
variation or sample size. The GMM test yields rejection rates which are equal or better than the
results of the competing modelsfor 13 of the 54 simulation settings. The test particularly achieves
its top results for a significance level of 1%. The LRT¥ test is able to match the results of the
competing tests in only four cases which are restricted to settingsin which p = 1% and 6 = 0.1p.
The results of the LR test falls short of the performance of the remaining tests in aimost all
settings. Finally, it is striking that the power of the LRI test and the LR}?’S‘ test significantly

exceed the nominal size only for large shiftsin the VaR-violation probability, i.e. § = 0.5p.

3.3 Conditional Coverage

Table[/Tillustrates the behavior of the MCS test considering different levels of the weighting

parameter a.
- Insert Table[V1 about here -

For reasons of space we present results only for a single parameter combination within the setting
with non-i.i.d. distributed VaR-violation sequences. The exact parameter combinationisn = 1000,

6 = 0.3pand y = 1.25. Depending on the VaR probability p and the significance level the test
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yields the highest rejection rates for values of a between 0.6 and 0.8. Thisis consistent with our
expectation that the maximum of the statistical power is achieved when 0 < a < 1, i.e., when the
cc test addresses both the uc aswell asthei.i.d. property of the violations. Thisresult is confirmed
by further simulati ons. In the following, we only present the resultsfor a = 0.5.

We continue with a comparison of the size and the power of the cc test MCS; to the LR
test of IChristoffersen (1998), the LR test of |(Christoffersen and Pelletier (2004) and the GM M.
test of ICandelon et al) (2011). For this purpose, we combine each of the two settings described in
Section[3.2 with increased probabilities of a VaR-violation outlined in Section [3.1l Note that we
use the two-tailed uc component. For the determination of critical valueswe perform the procedure
as explained in Section[2.4lusing 10, 000 MC simulations. In line with the settings above, for each
combination of v, 6, volatility half-life, and n we repeat the simulation of VaR-violation sequences
10, 000 times. We present the results of the simulation study concerning an increased probability
of a VaR-violation combined with non-independent occurrence of violations (setting 1) in Table

VTII, and combined with non-identically distributed violations (setting 2) in Table [VTI1L 3
- Insert TablesVTI and V1] about here -

Regarding both settings, the MCS,, test yields the best rejection rates for the vast mgjority of test
settings. To be precise, the MCS test shows similar or better results compared to the competing
testsin 77 out of 90 parameter combinationsfor setting 1 and 70 out of 90 parameter combinations
for setting 2. With respect to setting 1, the LR test and the GMM¢, test achieve or exceed the
rejection rates of the MCS, test in some cases in which the nominal VaR-level is set to 1%. This
is especialy true for the LR test for small samples and significance level 10%. Nevertheless, as
described above, the power often decreases if n increases indicating asymptotic disturbances. The
LR test does not achieve top rejection rates for any of the parameter combinations. Regarding

setting 2, and parameter combinations for which the VaR-violation probability variation parameter

14 To save space, we do not present these additional simulations. The complete results are available from the authors
upon request.

To save space, we do not present the rejection rates of all parameter combinations. The complete results are
available from the authors upon request.
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issettos = 0.1p, the LR} test shows some superior results. In many cases, the rejection rates of
the GM M, test show evidence of agood performance, but only in very few cases doesit yield top
results. For none of the reported parameter combinations does the LR test lead to results above

the rejection rates of the remaining tests.

4 Conclusion

Comparatively little attention has been paid in the literature to the development of proper tools
for backtesting VaR-forecasts. This paper provides three main contributions to the issue of back-
testing the performance of VaR-models. First, we extend the discussion of the desirable properties
of violations originating from a correct VaR-model and restate the uc property of a VaR-violation
process. Furthermore, we stress the need to require the VaR-violations to be identically distributed
to adequately backtest models across different market phases.

Second, we propose a new set of backtests that test VaR-violation processes for uc, thei.i.d.
property as well as cc. Compared to existing standard approaches, these backtests contain new
desirable features like one-tailed testing for uc and atest for cc that allowsfor different weightings
of the uc and i.i.d. parts. The new backtesting procedures are based on i.i.d. Bernoulli random
variables obtained by Monte Carlo simulation techniques and are very intuitive.

Third, we perform a simulation study using generated VaR-violation samples that specifically
violate the uc, i.i.d., and cc property to different controllable degrees. Compared to existing clas-
sical and state-of-the-art backtests, the new backtests outperform these benchmarksin several dis-
tinct settings.

As a natural extension of our work, one could think of multivariate versions of our newly
proposed backtests which would need to take into account possible correlations in VaR-violations
across assets and time. Asthisissue lies beyond the scope of the present work, we will address it

in our future research.
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Tables

Table I: Comparison of the Backtests' Calculation Times

The table presents average calculation times (in seconds) for the different backtests used in the paper for p = 0.05,
10, 000 simulations and different values of n based on 10 repetitions. All calculations are performed with Matlab2012a

on a standard notebook. Note, the results of MCS;iy are taken over to MCS... Hence, the upper bound for a direct
calculation of MCS is the sum of both single times.

uc-Tests i.i.d.-Tests cc-Tests
n LREP  GMMy  MCSye LR™  LRY  GMMijg MCSig LR LRY¥ GMMc MCSe
252 0.08 1.48 0.07 061 2579 3.70 1.54 068 26.26 1.99 158
1,000 0.20 184 0.20 092 2648 3.89 1.85 101 2713 231 184
2,500 0.45 257 0.45 152 27.93 4.40 2.28 166 27.95 265 229

27



Table I1: Unconditional Coverage - Size and Power of Tests

The table presents rejection rates obtained by applying unconditional coverage tests to 10,000 samples of Bernoulli
simulated VaR-violation sequences. The VaR level p for panel A and B is set to 5% and 1%, respectively. Results are
presented for various sets of sample sizes n and y-factors which multiplies the probability of a VaR-violation by 1,
1.1, 1.25and 1.5. Theresults for y = 1 correspond to the evaluation of the size of thetest. LR E‘ép and GMM, refers
to the unconditional coverage tests of IKupiec (1995) and|Candelon et al. (2011). MCS!, and MCS. refer to the new
two-tailed and upper-tail Monte Carlo simulation based tests. Top results are highlighted in bold type.

Significance level: 1% Significance level: 5% Significance level: 10%
y n LRY  GMMy  Mcsl, — Mcsd LRY  GMM,  Mcsl, — Mcsy LRY  GMMy  Mcsl,  Mcsd
Panel A: 5% VaR
252 0010 0010 0.009 0.009 0.049 0.049 0.049 0.049 0100 0.099 0100 0100
1 1,000 0010 0010 0012 0012 0.054 0.050 0055 0053 0.106 0.099 0.105 0102
2,500 0.009 0.009 0010 0012 0.048 0048 0.050 0.051 0.106 0.101 0102 0102
252 0015 0.005 0015 0.024 0.062 0.059 0064 0102 0111 0128 0124 0178
11 1,000 0033 0.020 0034 0.059 0105 0.099 0118 0.180 0195 0190 0191 0289
2,500 0.083 0.055 0.082 0126 0201 0186 0204 0.306 0336 0.296 0310 0445
252 0.047 0011 0.045 0072 0137 0120 0146 0223 0.203 0223 0230 0338
1.25 1,000 0197 0142 0195 0281 0386 0385 0.408 0530 0540 0535 0530 0.667
2,500 0571 0515 0.569 0.661 0.769 0.762 0.779 0.859 0873 0853 0859 0922
252 0196 0061 0192 0.269 0377 0.349 0396 0518 0481 0510 0519 0651
15 1,000 0.761 0.700 0.769 0840 0.894 0898 0.907 0948 0951 0.950 0948 0975
2,500 0.996 0993 0.996 0.998 0.999 1.000 0.999 0.999 1.000 1.000 0.999 1.000
Panel B: 1% VaR
252 0010 0012 0.009 0010 0051 0.050 0.049 0.050 0101 0103 0100 0104
1 1,000 0014 0.009 0012 0011 0048 0.050 0053 0051 0105 0102 0103 0107
2,500 0.010 0.008 0010 0011 0054 0.047 0.052 0.051 0.106 0.099 0100 0.100
252 0013 0017 0014 0016 0.049 0074 0057 0.066 0.089 0138 0.109 0127
11 1,000 0014 0.006 0013 0023 0.061 0058 0.065 0.089 0.097 0117 0120 0.166
2,500 0016 0012 0018 0.036 0072 0078 0083 0130 0147 0151 0146 0221
252 0026 0.029 0.020 0.029 0058 0.108 0076 0111 0.095 0187 0134 0192
1.25 1,000 0.032 0.003 0.039 0.063 0112 0119 0131 0198 0164 0.207 0207 0310
2,500 0.082 0.050 0.087 0134 0220 0219 0232 0342 033 0335 0344 0476
252 0.059 0.060 0.045 0.069 0.094 0181 0131 0192 0134 0281 0.206 0305
15 1,000 0132 0.020 0159 0220 0304 0297 0341 0.447 0377 0435 0448 0580
2,500 0374 0296 0.404 0.506 0617 0613 0641 0.747 0.739 0.737 0.747 0848

TableI1l: Haf-Life Interval and A-Level

The half-life interval is computed by 109(0.5)/log(2) and refers to the time interval over which the weight of an
observation decrease to one-half its original value. The corresponding A refers to the decay factor of the EWMA type
process of computing o.

Half-Life Interval 5 40 80
A 0.8706 0.9828 0.9914
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Table1V: 1.1.D. VaR-Violations - Setting 1: Independence - Power of Tests

The table presents rejection rates obtained by applying tests for i.i.d. VaR-violations to 10,000 samples of non-
independent VVaR-viol ation sequences simulated by Equation ([26). The VaR level p for panel A and B is set to 5% and
1%, respectively. Results are presented for various sets of sample sizes n and half-life intervals which serve as a proxy
for the degree of dependence. LR, LF{“V,?1 and GMMi;iq refers to the independence tests of |Christoffersen (1998),
Christoffersen and Pelletier (2004) and ICandelon et all (2011). MCS;iq refers to the new Monte Carlo simulation
based test. Top results are highlighted in bold type.

Half-Life Significance level: 1% Significance level: 5% Significance level: 10%

Interval n LRH?’ Lﬁ’i"g GMMi;ig MCSjig Lﬁ?da’ Ll:ﬁ’;’de GMMiig MCSjig Lﬁ?da’ Ll:ﬁ’;’de GMMiig MCSjig
Panel A: 5% VaR

252 0.067 0.005 0.108 0.072 0.146 0.033 0.213 0.220 0.195 0.075 0.270 0.339

5 1,000 0.126 0.047 0.308 0.264 0.217 0.160 0.591 0.552 0.308 0.260 0.689 0.695

2,500 0.308 0.170 0.614 0.611 0.515 0.396 0.905 0.858 0.631 0.535 0.948 0.933

252 0.022 0.005 0.052 0.042 0.077 0.031 0.115 0.128 0.117 0.069 0.162 0.210

40 1,000 0.018 0.003 0.095 0.099 0.052 0.024 0.219 0.251 0.103 0.051 0.293 0.363

2,500 0.017 0.002 0.128 0.180 0.073 0.010 0.324 0.397 0.132 0.025 0.424 0.531

252 0.022 0009 0.032 0.036 0.072 0.041 0.089 0.117 0.107 0.086 0.130 0.200

80 1,000 0.016 0.003 0.113 0.119 0.047 0.026 0.224 0.263 0.093 0.057 0.297 0.371

2,500 0.015 0.003 0.108 0.150 0.065 0.013 0.267 0.323 0.118 0.028 0.350 0.436
Panel B: 1% VaR

252 0.055 0.004 0.068 0.048 0.181 0.035 0.136 0.141 0.237 0.095 0.186 0.226

5 1,000 0.114 0.038 0.099 0.055 0.230 0.137 0.211 0.182 0.346 0.224 0.285 0.296

2,500 0.193 0.179 0.149 0.083 0.384 0.362 0.363 0.255 0.482 0.475 0.470 0.393

252 0.020 0.004 0.079 0.065 0.199 0.027 0.142 0.155 0.266 0.063 0.193 0.238

40 1,000 0.031 0.026 0.089 0.068 0.083 0.077 0.154 0.176 0.181 0.136 0.216 0.265

2,500 0.031 0.050 0.097 0.088 0.119 0.126 0.223 0.238 0.180 0.195 0.308 0.348

252 0.014 0.004 0.064 0.037 0.302 0.025 0.131 0.127 0.374 0.054 0.181 0.204

80 1,000 0.030 0.031 0.096 0.083 0.083 0.085 0.157 0.181 0.171 0.135 0.211 0.262

2,500 0.033 0.054 0.097 0.102 0.116 0.118 0.194 0.220 0.175 0.177 0.265 0315
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TableV:1.1.D. VaR-Violations - Setting 2: Identical Distribution - Size and Power of Tests

The table presents rejection rates obtained by applying tests for i.i.d. VaR-violations to 10,000 samples of non-
identically distributed VaR-violation sequences simulated by Equation (28). The VaR level p for panel A and B is set
to 5% and 1%, respectively. Results are presented for various sets of sample sizes n and probability variation factors
d. Results for § = Op correspond to the evaluation of the size of the test. LRI, LR@’EV,“?i and GMM;iq refers to the
independence tests of [Christoffersen (1998), (Christoffersen and Pelletier (2004) and [Candelon et al. (2011). MCSiiq
refersto the new simulation based i.i.d. test. Top results are highlighted in bold type.

Significance level: 1% Significance level: 5% Significance level: 10%
§ n LF\’!Td‘ar LF?ivng GMMiig MCS;jiq LF\’!Td‘ar LF?ivng GMM;ig MCS;jiq LF\’!Td‘ar LF?ivng GMMiig MCS;jiq
Panel A: 5% VaR
252 0.010 0.010 0.011 0.010 0.048 0.053 0.049 0.053 0.095 0.104 0.101 0.101
Op 1,000 0.009 0.010 0.010 0.008 0.046 0.046 0.046 0.050 0.097 0.096 0.097 0.097
2,500 0.010 0.009 0.009 0.010 0.051 0.049 0.049 0.051 0.101 0.102 0.101 0.101
252 0.011 0.009 0.014 0.009 0.052 0.048 0.058 0.060 0.101 0.094 0.105 0.111
0.1p 1,000 0.011 0.006 0.019 0.018 0.048 0.032 0.066 0.074 0.099 0.073 0.116 0.136
2,500 0.009 0.008 0.021 0.023 0.049 0.037 0.078 0.093 0.100 0.072 0.131 0.170
252 0.015 0.004 0.037 0.030 0.061 0.023 0.105 0.130 0.112 0.053 0.156 0.227
0.3p 1,000 0.016 0.003 0.212 0.241 0.054 0.024 0.386 0.456 0.106 0.058 0471 0.579
2,500 0.022 0.008 0.450 0.549 0.085 0.038 0.697 0.771 0.148 0.075 0.783 0.856
252 0.041 0.002 0.158 0.113 0.104 0.028 0.317 0.378 0.148 0.074 0.400 0.552
0.5p 1,000 0.057 0.436 1.000 1.000 0.124 0.794 1.000 1.000 0.201 0.910 1.000 1.000
2,500 0.138 1.000 1.000 1.000 0.311 1.000 1.000 1.000 0.425 1.000 1.000 1.000
Panel B: 1% VaR
252 0.010 0.007 0.010 0.012 0.056 0.042 0.052 0.050 0.108 0.089 0.102 0.103
Op 1,000 0.010 0.010 0.009 0.011 0.048 0.046 0.049 0.051 0.100 0.096 0.102 0.101
2,500 0.009 0.010 0.012 0.011 0.049 0.047 0.050 0.053 0.099 0.098 0.099 0.105
252 0.011 0.008 0.009 0.009 0.054 0.042 0.049 0.050 0.104 0.087 0.099 0.098
0.1p 1,000 0.011 0.011 0.012 0.012 0.053 0.049 0.054 0.056 0.102 0.099 0.107 0.113
2,500 0.013 0.008 0.012 0.013 0.055 0.042 0.056 0.064 0.104 0.088 0.111 0.121
252 0.013 0.006 0.014 0.015 0.057 0.033 0.054 0.060 0.105 0.073 0.102 0.115
0.3p 1,000 0.015 0.005 0.022 0.020 0.064 0.034 0.076 0.091 0.123 0.078 0.132 0.173
2,500 0.017 0.011 0.077 0.090 0.070 0.058 0.193 0.242 0.125 0.119 0.278 0.360
252 0.018 0.001 0.022 0.024 0.069 0.011 0.066 0.081 0.114 0.039 0.108 0.131
0.5p 1,000 0.025 0.007 0.079 0.053 0.087 0.051 0.197 0.225 0.157 0.113 0.277 0.377
2,500 0.027 0.167 0.597 0.694 0.099 0.437 0.822 0.926 0.172 0.602 0.893 0.975
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Table VI: Conditional Coverage - Power of the MCS,. Test under Different Level of a

The table presents rejection rates obtained by applying the MCS . test to 10,000 samples of non-i.i.d. distributed
VaR-violation sequences and contains rejection rates for sequences simulated by Equation ([28) with an increased
violation probability. The exact parameter combinationisn = 1,000, y = 1.25and § = 0.3p. Thetop result for each
combination of a, VaR level, and significance level is highlighted in bold type.

5% VaR 1% VaR
Significance level: Significance level:
a 1% 5% 10% 1% 5% 10%
0 0.105 0.264 0.393 0.014 0.074 0.151

0.1 0.108 0.290 0.433 0.013 0.081 0.164
0.2 0.124 0.336 0479 0.015 0.093 0.183
0.3 0.146 0.383 0.548 0.019 0.008 0.192
04 0.188 0.453 0.604 0.023 0.121 0.221
05 0232 0509 0.636 0.036 0.140 0.234
0.6 0294 0542 0.657 0.053 0.153 0.236
0.7 0299 0519 0.631 0.059 0.158 0.233
0.8 0285 0.505 0.617 0.067 0.163 0.238
0.9 0256 0.463 0.570 0.064 0.161 0.236
1 0.239 0.441 0.553 0.064 0.159 0.234
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Table VII: Conditional Coverage - Setting 1: Independence - Power of Tests

The table presents rejection rates obtained by applying cc tests to 10,000 samples of non-independent VaR-violation
sequences simulated by Equation (26) with an increased violation probability. The VaR level p for panel A and B is
set to 5% and 1%, respectively. Results are presented for various sets of sample sizes n, y-factors which increase the
probability of aVaR-violation, and decay intervals which serve as a proxy for the degree of dependence. LR ™, LR
and GMMc. refers to the cc tests of |Christoffersen (1998), (Christoffersen and Pelletier (2004) and |Candelon et al.
(2011). MCS. refersto the new simulation based test. Top results are highlighted in bold type.

Decay Significance level: 1% Significance level: 5% Significancelevel: 10%
Interval ¥ n LR LRY  GMMc  MCScc LR LRY¥  GMMc  MCScc LR LR  GMMc  MCSc
Panel A: 5% VaR
252 0.052 0.028 0.044 0.093 0.103 0.088 0.212 0.237 0.193 0.154 0.318 0.344
10 11 1,000 0.074 0.047 0.107 0.251 0.166 0.142 0.435 0.493 0.231 0.218 0.571 0.613
2,500 0.152 0.095 0.360 0.565 0.290 0.226 0.767 0.783 0.377 0.331 0.857 0.860
252 0.204 0.109 0.060 0.235 0.302 0.222 0.364 0.457 0.433 0.307 0.488 0.555
10 15 1,000 0.591 0.524 0.387 0.704 0.747 0.693 0.825 0.878 0.804 0.770 0.893 0.929
2,500 0.946 0.909 0.932 0.985 0.979 0.961 0.994 0.998 0.988 0.980 0.997 0.999
252 0.142 0.119 0.094 0.166 0.201 0.212 0.280 0.308 0.289 0.290 0.385 0.404
40 125 1,000 0.200 0.174 0.098 0.267 0.329 0.292 0.399 0.490 0.399 0.367 0.525 0.604
2,500 0.397 0.301 0.289 0.552 0.571 0.460 0.669 0.765 0.643 0.552 0.775 0.838
252 0.223 0.224 0.256 0.220 0.310 0.374 0.458 0.406 0.416 0.466 0.546 0.535
80 11 1,000 0.129 0.124 0.149 0.217 0.215 0.207 0.357 0.394 0.275 0.277 0.456 0.502
2,500 0.126 0.092 0.142 0.250 0.219 0.163 0.376 0.454 0.278 0.223 0.483 0.557
252 0.278 0.249 0.218 0.292 0.336 0.348 0.423 0.449 0.413 0.417 0.513 0.542
80 15 1,000 0.491 0.477 0.313 0.564 0.625 0.614 0.676 0.764 0.685 0.681 0.770 0.837
2,500 0.908 0.874 0.807 0.927 0.957 0.937 0.966 0.981 0.970 0.960 0.982 0.991
Panel B: 1% VaR
252 0.038 0.017 0.093 0.094 0.140 0.066 0.198 0.191 0.335 0.128 0.273 0.266
10 11 1,000 0.044 0.037 0.023 0.088 0.158 0.129 0.194 0.227 0.242 0.210 0.303 0313
2,500 0.057 0.120 0.042 0.125 0.194 0.271 0.304 0.304 0.326 0.383 0.457 0.426
252 0.072 0.031 0.154 0.162 0.216 0.109 0.291 0.297 0.455 0.186 0.377 0.380
10 15 1,000 0.167 0.113 0.034 0.229 0.367 0.244 0.314 0.426 0.467 0.340 0.441 0.528
2,500 0.350 0.418 0.116 0.424 0.606 0.600 0.575 0.672 0.728 0.694 0.712 0.771
252 0.129 0.085 0.183 0.183 0.227 0.158 0.273 0.271 0.387 0.213 0.336 0.335
40 125 1,000 0.091 0.072 0.041 0.146 0.212 0.146 0.209 0.271 0.285 0.213 0.311 0.356
2,500 0.111 0.126 0.044 0.190 0.273 0.248 0.273 0.377 0.380 0.341 0.397 0.491
252 0.243 0.192 0.296 0.296 0.342 0.273 0.373 0.374 0.470 0.329 0.424 0.427
80 11 1,000 0.109 0.103 0.085 0.135 0.198 0.190 0.242 0.236 0.278 0.263 0.330 0.321
2,500 0.077 0.098 0.068 0.138 0.182 0.183 0.222 0.266 0.260 0.257 0.320 0.364
252 0.263 0.209 0.302 0.316 0.355 0.289 0.385 0.388 0.480 0.344 0.442 0.441
80 15 1,000 0.195 0.151 0.095 0.222 0.318 0.243 0.285 0.352 0.384 0.304 0.378 0.440
2,500 0.313 0.288 0.102 0.331 0.515 0.432 0.407 0.560 0.621 0.528 0.538 0.658
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Table VIII: Conditional Coverage - Setting 2: Identical Distribution - Size and Power of Tests

The table presents rejection rates obtained by applying cc tests to 10,000 samples of non-identically distributed VaR-
violation sequences simulated by Equation (28) with an increased violation probability. The VaR level p for panel A
and B is set to 5% and 1%, respectively. Results are presented for various sets of sample sizes n and y-factors which
increase the probability of a VaR-violation, and probability variation factors §. The results for § = Op correspond
to the evaluation of the size of the test. LR™, LR* and GMM refers to the cc tests of IChristoffersen (199€),
Christoffersen and Pelletier (2004) and|Candelon et al) (2011). MCS;iq refers to the new simulation based test. Top
results are highlighted in bold type.

Significance level: 1%

Significance level: 5%

Significancelevel: 10%

5 y n LRI (RA GMMg  MCScec LRI [RA GMMg  MCScc LRI [RA GMMg ~ MCSgc
Panel A: 5% VaR
252 0010 0010 0.009 0.011 0049  0.049 0.051 0.051 0093 0099 0.103 0.100
op 1 1,000 0011  0.009 0.010 0.011 0052  0.046 0.053 0.052 0104  0.100 0.105 0.098
2,500 0010  0.009 0.009 0.012 0052 0049 0.049 0.054 0101 0097 0.100 0.102
252 0016  0.008 0.004 0.011 0061 0044 0.046 0.065 0115  0.086 0.0% 0.124
0.1p 11 1,000 0020 0016 0.006 0.021 0082 0068 0.058 0.103 0138 0129 0123 0.186
2,500 0036 0034 0.011 0.048 0129 0107 0.106 0.174 0198  0.181 0.209 0.281
252 0147 0073 0.008 0.103 0280 0193 0.220 0.330 0431 029 0372 0.442
0.1p 15 1,000 0609 0563 0.151 0.464 0802  0.775 0733 0.801 0868 0855 0.864 0.902
2,500 0979 0974 0.853 0958 09% 0993 0.994 0.997 0997 0998 0998 0.999
252 0038 0010 0.003 0.043 0100 0048 0.095 0.166 0193 009 0.187 0.258
03p 125 1,000 0112 0.066 0.051 0.237 0273  0.188 0.348 0.492 0373 0285 0508 0.634
2,500 0374 0236 0.306 0.667 0617 0456 0.765 0873 0710 0593 0.864 0.929
252 0017 0002 0.014 0.088 0045 0023 0177 0.260 0105  0.060 0.298 0.382
05p 11 1,000 0039  0.180 0.778 0.892 0105 0414 0.947 0.963 0161 0561 0.967 0.981
2,500 0117 0775 0.999 1.000 0259 0911 1.000 1.000 0347 0953 1.000 1.000
252 0137 0044 0.022 0.206 0256  0.148 0.320 0.469 0418  0.240 0478 0.589
05p 15 1,000 0621 0541 0.491 0.849 0805  0.772 0918 0.961 0871  0.856 0.965 0.983
2,500 0984 0973 0.991 1.000 09% 0993 1.000 1.000 0999 0998 1.000 1.000
Panel B: 1% VaR
252 0009 0008 0.010 0.009 0046 0041 0.048 0.051 0175 0083 0.101 0.102
op 1 1,000 0012 0011 0.009 0.010 0048 0053 0.048 0.050 0091 0102 0.0%8 0.100
2,500 0010 0009 0.011 0.010 0047 0046 0.051 0.050 0093 0097 0.103 0.104
252 0012 0007 0.014 0.016 0056  0.043 0.064 0.066 0211 0090 0122 0.124
0.1p 11 1,000 0015 0008 0.006 0.012 0062 0041 0.038 0.066 0110 0086 0.09 0.128
2,500 0013 0011 0.005 0.015 0069  0.050 0.041 0.078 0142 0102 0.099 0.145
252 0029 0014 0.053 0.053 0124 0074 0.152 0.158 0385  0.140 0.247 0.247
0.1p 15 1,000 0095 0037 0.002 0.084 0283 0129 0.120 0.259 0387 0221 0.241 0.408
2,500 0251 0222 0.006 0170 0563 0445 0.269 0.506 0708 0576 0457 0.646
252 0013 0007 0.027 0.026 0073  0.048 0.098 0.097 0269 0095 0171 0.168
03p 125 1,000 0028 0008 0.002 0.039 0115  0.047 0.062 0.146 0185  0.09 0.141 0.238
2,500 0046 0033 0.006 0.093 0188  0.122 0.129 0.285 0312 0203 0.253 0413
252 0007 0003 0.022 0.019 0054 0022 0.082 0.077 0212 0055 0.141 0.133
05p 11 1,000 0010  0.006 0.008 0.060 0062  0.037 0.119 0.183 0117 0088 0219 0.272
2,500 0010 0082 0.109 0439 0077 0238 0551 0.700 0162  0.365 0715 0.807
252 0025 0009 0.055 0.059 0125 0051 0.162 0.170 0380 0105 0.256 0.262
05p 15 1,000 0091 0033 0.006 0.150 0293 0118 0.199 0.366 0395 0201 0.339 0.493
2,500 0263  0.258 0.046 0.458 0569 0474 0500 0735 0719 0605 0.674 0.829
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Appendix: Pseudocode

A.1 Test of Unconditional Coverage

(i) Generate the violation sequence resulting from the observed returns and the corresponding
VaR forecasts by

1, ify < VaR_1(p);
li(p) =
0, €else.

(it) Draw | + 1 random variables by
€~N(0,1)-0001, j=1,..,1+1

(iii) Calculate the test statistic for the observed violation sequence by

n
MCSy. = 6.1 + Z ..

i=1
(iv) Simulate violation sequences by drawing I-times n random variables with distribution
li(p) ~Bern(p), i=1,...n, j=1,..,1.

(v) Calculate the test statistic for each simulated violation sequence by

n
MCSUCJ =€+ Z |Ai’j, j = 1,...,|.

i=1

(vi) Sort the resulting values of the simulated statistic MCS,.; in descending order.

(vii) Compute the quantiles for the desired significance level and compare the test statistic for the

observed violation sequence to the resulting critical values.



A.2 Test of thel.l.D. Property

(i) Generate the violation sequence resulting from the observed returns and the corresponding
VaR forecasts by

1 ify < VaRm_l(p);
li(p) =
0, else.

(if) Calculate the sum of observed VaR violations by
n
m= Z l;.
i=1
(iii) Identify the time indexes where an observed VaR violation occurred by
V ={illi =1} = (g, ..., ty).
(iv) Draw | + 1 random variables by
€ ~N(0,1)-0001 j=1,...,1+1
(v) Calculate the test statistic for the observed violation sequence by
m
MCSjigm = t§ + (N — tm)* + Z(ts —ts1)” + €41
s=2
(vi) Simulate violation sequences by drawing |-times n random variables with distribution
[Li(p) ~Bern(p), i=1,...n, j=1,..1,

under the conditionthat Y1, i =m, V j.
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(vii) For each simulated violation sequence, identify the set of time indexes of the violations by
Vi = {tllij = 1 = (ta, o tim).
(viii) Calculate the test statistic for the simulated violation sequences by
m
MCSiam; = B + (= tim? + > (tis— tis1)? + €.
s=2

(ix) Sort the resulting values of the simulated statistic MCSiid,m j in descending order.

(x) Compute the quantile for the desired significance level and compare the test statistic for the

observed violation sequence to the resulting critical value.

36



A.3 Test of Conditional Coverage

(i) Simulate violation sequences by drawing I-times n random variables with distribution
I.i(p) ~Bern(p), i=1,...,n, j=1,..,1,

under the conditionthat Y1, i > 1, V j.

(if) For each ssimulated violation sequence, identify the set of time indexes of the violations by

(iii) Draw | + 1 random variables by
€ ~N(,1)-0001, j=1,..,1+1
(iv) Calculate the violation frequency of each of the ssmulated sequences
n ~
mj = Z |i,j-
i=1

(v) Definem = (fiy, ..., M) and set My, = max(2, min(m)) and My, = max(m) for the lower and

upper bound of possible VaR violation frequencies.

(vi) For each k = Myin, Muins1s - - - » Mhax, SSIMulate violation sequences by drawing |*-times n ran-

dom variables with distribution
[ij(k/m) ~ Bern(k/n), i = 1,..,n, j=1,..,I,

under the conditionthat Y1, 1 j(k/n) = k, V j.
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(vii) For k and each simulated violation sequence, identify the set of time indexes of the violations
by
Vik = {Einiiin = 1 = €1 ..o Ti)-
(viii) For each k, calculate ry, an estimator for E(MCS;iqk/Ho), by
1 I* k
g = I_* . Z sz,l + (n — fj,k)z + Z(fj’s — fj,s_l)z .
s=2

j=1

(ix) Caculate the test statistic for each violation sequence ssmulated in step (i) by

MCSeckj = af (MCSyj) + (1 - @g(MCSiigx ), 0< a< 1,

where hoe
f(MCSy)) = o+ 2t l)/m-p :
p
and ) .
9(MCSiigj) = %kk]_rk Linesiaryonds K= ) lie

i=1

(x) Sort the resulting values of the simulated statistic MCS.  in descending order.

(xi) Compute the quantile for the desired significance level.

(xii) Generate the violation sequence resulting from the observed returns and the corresponding

VaR forecasts by
1, ify < VaR_1(p);

li(p) =
0, ese

38



(xiii) Calculate the sum of observed VaR violations by
n
m= Z li.
i=1
(xiv) ldentify the set of time indexes where an observed VaR violation occurred by
V= {tll; = 1} = (tg, ..., tm).

(xv) If m ¢ [Myin, Myinet, - - - » Mhax], determine r, by repeating steps (vi) to (viii) where k is
replaced by m.

(xvi) Calculate the test statistic for the observed violation sequence by

MCSCC’m =af(MCSy) + (1 - a)g(MCS“d’m), O<acx<l,

where
f(MCs,,) = |Gt 2 /N =Pl
P
and
g(MCSiigm) = MCSigm = fm LMCSigm2rnl-

'm

(xvii) Compare thetest statistic for the observed violation sequence to the critical value.
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