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1 Introduction

Over the last two decades, Value-at-Risk (VaR) has become the de facto standard tool for

measuring and managing risk in the financial services industry. Defined as the p-quantile of a

relevant profit and loss (P/L) distribution where p is regularly set to 1% or 5%, it is now widely

used by commercial banks and insurers as well as firms outside the financial industry to assess the

risk exposure of single investments and portfolios.1 A simple reason for this importance of VaR for

the financial industry is given by the fact that under the 1996 Market Risk Amendment to the first

Basel Accord, banks were allowed to employ internal VaR-models to calculate capital charges for

their risky investments. Despite its popularity with practicioners, however, VaR has also received

criticism from academia due to its lack of subadditivity (and thus coherence, see Artzner et al.,

1999) in case of non-gaussian P/L distributions.2 Even more importantly, commentators have

blamed VaR in part for the severity of the recent financial crisis as the industry-wide use of VaR

capital constraints enabled externalities to spread in financial markets through the pricing of risk

(see Shin, 2010).3 Consequently, both regulators and financial risk managers have recently taken

an increased interest in model validation and backtests of VaR-forecasts.

Despite its importance for bank regulation, VaR-backtesting has received relatively little at-

tention in the financial econometrics literature compared to the numerous studies on the estima-

tion and forecasting of VaR. One of the first formal statistical backtests for VaR was proposed

by Kupiec (1995) who tests the sequence of VaR-violations for the correct number of violations

(i.e., unconditional coverage). Christoffersen (1998) and Christoffersen and Pelletier (2004) ex-

tend these first tests of unconditional coverage by additionally testing for the independence of the

sequence of VaR-violations yielding a combined test of conditional coverage. Recently, an inte-

grated framework for VaR-backtesting that includes the previously mentioned tests was proposed

1 Extensive discussions of the properties of VaR and its use in practice are given, e.g., by Dowd (1998), Jorion
(2006), and Alexander (2008).

2 Note, however, that evidence by Danı́elsson et al. (2005) points out the subadditivity of VaR for most practical
applications.

3 Similar arguments in favor of a destabilizing effect of bank regulation based on VaR on the economy are stated
by Leippold et al. (2006) and Basak and Shapiro (2001).



by Berkowitz et al. (2011). Further examples of the few backtests for VaR that are available to regu-

lators are due to Berkowitz (2001), Engle and Manganelli (2004), Haas (2005) and Candelon et al.

(2011), although the test of unconditional coverage continues to be the industry standard mostly

due to the fact that it is implicitly incorporated in the framework for backtesting internal models

proposed by the Basel Committee on Banking Supervision (BCBS) (1996).4

In this paper, we propose a new set of backtests for VaR-forecasts that significantly im-

prove upon existing formal VaR-backtests like, e.g., the benchmark models proposed by

Christoffersen and Pelletier (2004). We first restate the definitions of the unconditional coverage

property and propose a new test of the correct number of VaR-exceedances. Extending the current

state-of-the-art, our new test can be used for both one-sided and two-sided testing and is thus able

to test separately whether a VaR-model is too conservative or underestimates the actual risk expo-

sure. Second, we stress the importance of testing for both the property of independent as well as the

property of identically distributed VaR-exceedances and propose a simple approach for testing for

both properties. While it has been noted in previous studies that VaR-violations should ideally be

i.i.d., standard backtests focus solely on the independence of the violations.5 In this paper, we argue

that the property of identically distributed VaR-exceedances is of vital importance to regulators and

risk managers. In particular, we show that traditional VaR-backtests that center around first-order

autocorrelation in violation processes are often not able to detect misspecified VaR-models during

calm boom and highly volatile bust cycles. The new test of the i.i.d. property of VaR-violations

explicitly tests for the presence of clusters in VaR-violation processes. This new feature is highly

economically relevant as our test for violation clusters can identify VaR-models that yield inac-

curate risk forecasts when they are most undesirable: during economic busts and financial crises

when extreme losses on investments cluster due to a persistent increase in the volatility level. Fi-

nally, we also propose a weighted backtest of conditional coverage that simultaneously tests for a

correct number and the i.i.d. property of VaR-violations. Our proposed weighted backtest is in the

4 A review of backtesting procedures that have been proposed in the literature is given by Campbell (2007).
5 In fact, previous Markov- and duration-based tests of Christoffersen (1998), Christoffersen and Pelletier (2004)

and Candelon et al. (2011) only consider autocorrelation in VaR-violations as one possible reason why VaR-
violations could be clustered.
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spirit of the original backtest of conditional coverage by Christoffersen and Pelletier (2004), but

generalizes it by allowing the user to choose the weight with which the test of unconditional cov-

erage enters the joint test of conditional coverage.6 Our newly proposed set of backtests is simply

based on i.i.d. Bernoulli random variables making them very intuitive and easy to implement. By

construction, these tests automatically keep their level, even for very small sample sizes as they are

often found in VaR-backtesting.

We employ our proposed backtests in a simulation study using several sets of simulated data

that mimic real-life settings in which the simulated data violate the unconditional coverage, i.i.d.,

and conditional coverage properties to different degrees. The performance of the new tests is

compared to classical tests frequently used in theory and practice as well as to a recently proposed

powerful test. The results indicate that our tests significantly outperform the competing backtests

in several distinct settings.

The paper is structured in a similar fashion as the one of Berkowitz et al. (2011) and is orga-

nized as follows. Section 2 introduces the notation, defines the properties of VaR-violations, and

describes our new set of backtests. Section 3 evaluates the performance of the newly proposed

backtests as well as several benchmark procedures for backtesting VaR-forecasts in a simulation

study. Section 4 concludes the paper.

2 Methodology

In this section, we introduce the notation used throughout the paper, redefine the desirable

properties of VaR-violations that are frequently discussed in the literature and present our new

backtests.

6 The approach of weighting the test statistics could also be pursued using classical uc and ind tests instead of our
new uc and iid test. However, we believe this paper to be the first to explicitly point out the possibility to generate
new tests by means of weighting uc and iid tests.
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2.1 Notation and VaR-Violation Properties

Let {yt}nt=1 be a sample of a time series yt corresponding to daily observations of the returns on

an asset or a portfolio. We are interested in the accuracy of VaR-forecasts, i.e., an estimation of

confidence intervals. Following Dumitrescu et al. (2012), the ex-ante VaR VaRt|t−1(p) (condition-

ally on an information set Ft−1) is implicitly defined by Pr(yt < −VaRt|t−1(p)) = p, where p is the

VaR coverage probability. Note that we follow the actuarial convention of a positive sign for a loss.

In practice, the coverage probability p is typically chosen to be either 1% or 5% (see Christoffersen,

1998). This notation implies that information up to time t − 1 is used to obtain a forecast for time

t. Moreover, we define the ex-post indicator variable It(p) for a given VaR-forecast VaRt|t−1(p) as

It(p) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
0, if yt ≥ −VaRt|t−1(p);

1, if yt < −VaRt|t−1(p).

(1)

If this indicator variable is equal to 1, we will call it a VaR-violation.

To backtest a given sequence of VaR-violations, Christoffersen (1998) state three desirable

properties that the VaR-violation process should possess. First, the VaR-violations are said to have

unconditional coverage (uc thereafter) if the probability of a VaR-violation is equal to p, i.e.,

P[It(p) = 1] = E[It(p)] = p. (2)

Second, the independence (ind thereafter) property requires that the variable It(p) has to be inde-

pendent of It−k(p),∀k � 0. Finally, the uc and ind properties are combined via E[It(p)− p|Ωt−1] = 0

to the property of conditional coverage (cc thereafter). In detail, a sequence of VaR-forecasts is

defined to have correct cc if

{It(p)} i.i.d.∼ Bern(p),∀t. (3)

While we agree with the formulation of the cc property, we point out that the uc and the

ind properties as defined above suffer from some serious restrictions. The uc property requires a
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test whether the expected coverage is p for each day t individually. To be precise, the equation

P[It(p) = 1] = E[It(p)] = p holds only true if P[It(p) = 1] = p holds for all t. However, it is not

feasible to verify if this assumption holds true for all t individually by means of a statistical test of

uc. Moreover, it is quite likely that the sequence of VaR-violations is not stationary and that the

probability of having a VaR violation varies across different market phases even if 1
n

∑n
t=1 It equals

p for the total sequence. Evidence for this conjecture is found by Escanciano and Pei (2012).

Consequently, we redefine the uc property simply as

E

⎡⎢⎢⎢⎢⎢⎣1
n

n∑
t=1

It(p)

⎤⎥⎥⎥⎥⎥⎦ = p. (4)

With respect to the ind property, it is interesting to note that the current state-of-the-art backtests

in the financial econometrics literature do not focus on testing the property of VaR-violations

being identically distributed. In fact, the sequence {It(p)} could exhibit clusters of violations while

still possessing the property of independence as defined above. Besides, unexpected temporal

occurrences of clustered VaR-violations may have several potential reasons. On the one hand,

{It(p)} may not be identically distributed and E(It(p)) could vary over time. On the other hand,

It(p) may not be independent of It−k(p),∀k � 0. We therefore reformulate the ind property as the

i.i.d. property (i.i.d. thereafter). The hypothesis of i.i.d. VaR-violations holds true if

{It(p)} i.i.d.∼ Bern(p̃),∀t, (5)

where p̃ is an arbitrary probability. Note that the i.i.d. hypothesis does not deal with the relative

amount of VaR-violations. Hence, if appropriate, p̃ will be replaced by its empirical counterpart

p̄ (the estimated violation rate) within the respective test statistics later on. To be more precise,

p̃ is replaced by p̄ in equation (15) and indirectly also in (17), (22) and (24). In contrast to the

i.i.d. hypothesis, the relative amount of VaR-violations is additionally and simultaneously taken

into account within the cc property.

In the following, we describe our new set of backtests that includes separate tests for all men-
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tioned properties of VaR-violation processes. Pseudocode for all new tests is provided in the

Appendix to this paper.

2.2 A New Test of Unconditional Coverage

At this point, we are interested in testing the null hypothesis E
[

1
n

∑n
t=1 It(p)

]
= p against the

alternative E
[

1
n

∑n
t=1 It(p)

]
� p. In fact, as we will see later, our new test statistic also allows us

to separately test against the alternatives E
[

1
n

∑n
t=1 It(p)

]
> p and E

[
1
n

∑n
t=1 It(p)

]
< p. The most

intuitive and commonly used test statistic for the test of uc is given by (see Christoffersen, 1998):

LRkup
uc = −2 log[L(p; I1, I2, ..., In)/L(p̄; I1, I2, ..., In)]

asy∼ χ2(1), (6)

where p̄ = n1
n1+n0

, n1 is the number of violations and n0 = n − n1. Moreover, we have

L(p; I1, I2, ..., In) = pn1 (1 − p)n0 (7)

and

L(p̄; I1, I2, ..., In) = p̄n1(1 − p̄)n0 . (8)

Candelon et al. (2011) recently introduced an alternative test for the uc hypothesis us-

ing orthonormal polynomials and the GMM test framework proposed by Bontemps (2006),

Bontemps and Meddahi (2005) and Bontemps and Meddahi (2012). Their test statistic is given

by

Juc = Jcc(1) =

⎛⎜⎜⎜⎜⎜⎝ 1√
m

m∑
i=1

M1(di; p)

⎞⎟⎟⎟⎟⎟⎠
2

asy∼ χ2(1), (9)

where M1 is an orthonormal polynomial associated with a geometric distribution with a success

probability p and di denotes the duration between two consecutive violations (see Candelon et al.,

2011, for more details).

However, both tests suffer from significant drawbacks. First, without modifications, it is not

possible to construct one-sided confidence intervals. Such an additional feature, on the other hand,
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would be of particular interest to bank regulators and risk-averse investors who are primarily inter-

ested in limiting downside risk. While it is trivial to check whether a rejection was due to a model

being too conservative or not conservative enough, none of the existing tests yields one-sided crit-

ical values. In this context, results from our simulation study illustrate that the power of one-sided

tests is significantly higher. The second drawback is concerned with the behaviour of the tests in

finite samples. As we deal with tail forecasts based on binary sequences, the number of violations

is comparatively small and discrete. Hence, ties between the sample test value and those obtained

from Monte Carlo simulation under the null hypothesis need to be broken. That means that we

have to ensure that the probability for two equal values of the test statistic for two different data

sets is zero. Christoffersen and Pelletier (2004) propose to use the Dufour (2006) Monte Carlo

testing technique to break ties between test values. As their approach, however, is computationally

demanding and unnecessarily complex, we propose a different tie breaking procedure.

We address the latter problem by exploiting an idea used, among others, by

Podolskij and Ziggel (2009) and propose to use the test statistic

MCS uc =

n∑
t=1

It(p) + ε, (10)

where ε is a continuously distributed random variable with small variance that serves to break ties

between test values.7 Critical values of the test statistic are computed via Monte Carlo simulations

(MCS) as is done for all other backtests throughout this paper. For fixed n and p, the distribution

of the test statistic is known. We then simulate a large number of realizations of the test statistic

under the respective null hypothesis and use the resulting quantile for testing the uc hypothesis.

Adding the random variable ε guarantees that the test exactly keeps its size if the number of Monte

Carlo simulations for obtaining the critical value tends to infinity.8 Note that without the addition

of the random variable ε, the test statistic would have a discrete distribution and not all possible

7 Podolskij and Ziggel (2009) employ the idea of adding a small random variable to a test statistic to construct a
new class of tests for jumps in semimartigale models.

8 The theoretical foundation of our approach is given by Dufour (2006) who considers a more general context and
solves this problem by introducing randomized ranks according to a uniform distribution.
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levels could be attained. Additionally, note that the choice of ε is not crucial for testing the uc

hypothesis. We noticed in robustness checks that the finite sample performances of the tests are

not substantially affected by changes in the distribution of ε as long as it remains continuous with a

small, non-zero variance. Consequently, it is intuitive to use normally distributed random variables

for ε. Nevertheless, one needs to assure that the test statistic for v − 1 violations is smaller then

the test statistic for v violations. Followingly, we set ε ∼ 0.001 · N(0, 1) in our simulation study.

Finally, it is instructive to see that our new approach allows for one-sided and two-sided testing for

every desired test level.

Critical values for all our tests are then computed via MCS instead of, e.g., making use of

explicit expressions of the exact or asymptotic distributions. Basically, all test statistics we consider

are given as the sum of a discrete random variable (determined by Bernoulli distributed random

variables) and a continuous random variable with known distribution that is independent from the

discrete random variable. Thus, on the one hand, the distributions of the test statistics are uniquely

determined for fixed n and p and additionally it is basically useful to consider MCS. On the other

hand, due to the continuous part, the test statistics are also continuously distributed. This follows

from the general fact that, for a discrete random variable X with support MX and a continuous

random variable Y such that X and Y are independent,

P(X + Y ≤ a) =
∑
x∈MX

P(x + Y ≤ a|X = x)P(X = x) =
∑
x∈MX

P(Y ≤ a − x)P(X = x).

Thus, the cumulative distribution function of X+Y can be written as a countable sum of continuous

functions so that it is continuous as well. Using a result from Dufour (2006), the empirical critical

values then yield a test that exactly keeps its size if the number of MCS tends to infinity.

Instead of using MCS, one could basically also derive the exact distribution functions of the

test statistics, although this would indubitably be a cumbersome task. It would also be possible

to derive asymptotic results if the test statistics are appropriately standardized and if one imposes

additional moment assumptions on the continuous random variable. For example, a suitably stan-
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dardized uc test statistic might be 1√
n

∑n
t=1(It(p) − p) + 1√

n
ε. However, we believe that, although of

some interest, such an asymptotic analysis is not necessary in our setting. In practice, n and p are

fixed and by an increasing number of Monte Carlo repetitions we can get arbitrarily exact critical

values of the test statistics in reasonable time. Since one typically deals with a low number of

VaR violations, one could moreover expect the asymptotic approximation to be highly inaccurate,

which is confirmed by several studies (see, e.g., Berkowitz et al., 2011).

Basically, the one-sided version of our new uc test can be regarded as a generalization of

the Basel traffic light approach as described in Campbell (2007). The Basel approach provides a

method which can be easily applied. Here, the 1% VaR violations in the last 250 days are counted.

The traffic light is green whenever the number of violations is less than 5, yellow whenever the

number lies between 5 and 9 and red otherwise. With the decision rule “Reject the null hypoth-

esis of a valid VaR model whenever the traffic light is red” the procedure can be interpreted as a

significance test. In fact, then the Basel test statistic is a special case (with n = 250, p = 0.01,

α < 0.001 and ε = 0) of our uc test statistic. Information concerning the size and power of the

Basel test can be found in Basel Committee on Banking Supervision (BCBS) (1996). However, an

application of this test is not possible as soon as the input parameters change. In contrast to that,

our new approach allows, e.g., to increase the sample size or to vary the significance level.

2.3 A New Test of I.I.D. VaR-Violations

As stated in Christoffersen (1998), testing solely for correct uc of a VaR-model neglects the

possibility that violations might cluster over time. Consequently, Christoffersen (1998) propose

a test of the violations being independent against an explicit first-order Markov alternative. The

resulting test statisic is given by:

LRmar
iid = −2 log[L(Π̃2; I1, I2, ..., In)/L(Π̃1; I1, I2, ..., In)]

asy∼ χ2(1). (11)
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Here, the likelihood functions are given by:

L(Π̃1; I1, I2, ..., In) =

(
1 − n01

n00 + n01

)n00
(

n01

n00 + n01

)n01
(
1 − n11

n10 + n11

)n10
(

n11

n10 + n11

)n11

(12)

and

L(Π̃2; I1, I2, ..., In) =

(
1 − n01 + n11

n00 + n10 + n01 + n11

)n00+n10
(

n01 + n11

n00 + n10 + n01 + n11

)n01+n11

, (13)

where Π̃1 and Π̃2 are two transition matrices (see Christoffersen, 1998 for details) and ni j is

the number of observations with value i followed by j. Note that this first-order Markov al-

ternative has only limited power against general forms of clustering. Moreover, as shown in

Christoffersen and Pelletier (2004), this test is not suited for several settings and has a poor be-

haviour in finite samples. The test can then be combined with the test of uc presented in the

previous subsection to yield a full test of cc. Despite the aforementioned shortcomings, however,

it is still one of the most frequently used backtests in practice (see Candelon et al., 2011).

In a subsequent work, Christoffersen and Pelletier (2004) introduce more flexible tests which

are based on durations between the violations. The intuition behind these tests is that the clustering

of violations will induce an excessive number of relatively short and long no-hit durations. Under

the null hypothesis, the no-hit durations D should then be exponentially distributed with

fexp(D; p) = pe−pD, (14)

where D is the no-hit duration. In their work, Christoffersen and Pelletier (2004) employ the

Weibull and the gamma distribution to test for an exponential distribution of the no-hit durations.

Nevertheless, we will only consider the Weibull test in our simulation study as it yields consid-

erably better results than the gamma test (see Haas, 2005). In addition to the mentioned tests,

the literature on VaR-backtesting also includes the standard Ljung-Box test, the CAViaR test of

Engle and Manganelli (2004), the regression based dynamic quantile test by Tokpavi and Hurlin
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(2007) and spectral density tests. However, the level of most of these tests is poor for finite sam-

ples and therefore critical values need to be calculated based on the Dufour Monte Carlo testing

technique (see Berkowitz et al., 2011).

Recently, Candelon et al. (2011) introduced a new test for the i.i.d. hypothesis. As described

above, this test is based on orthonormal polynomials and the GMM test framework. The test

statistic is given by

Jiid(q) =

⎛⎜⎜⎜⎜⎜⎝ 1√
m

m∑
i=1

M(di; p̄)

⎞⎟⎟⎟⎟⎟⎠
T ⎛⎜⎜⎜⎜⎜⎝ 1√

m

m∑
i=1

M(di; p̄)

⎞⎟⎟⎟⎟⎟⎠ asy∼ χ2(q), (15)

where M(di; p̄) denotes a (q, 1) vector whose components are the orthonormal polynomials

Mj(di; p̄), for j = 1, ..., q, evaluated for the estimated violation rate p̄.

To introduce our new test statistic, we first define the set of points in time on which a VaR-

violation occurs via

V = {t|It = 1} = (t1, ..., tm). (16)

The test statistic for our new i.i.d. hypothesis is then given by

MCS iid,m = t2
1 + (n − tm)2 +

m∑
i=2

(ti − ti−1)
2 + ε. (17)

This sum essentially consists of the squared durations between two violations. Basically, the

idea behind this test statistic follows the principle of the Run-Test proposed by Wald and Wolfowitz

(1940). To be precise, the sum of the squared durations between two violations is minimal if

the violations are exactly equally spread across the whole sample period. If the violations are

clustered and occur heaped, this sum increases. Just like in the Run-Test, both systematic and

heaped occurences of violations could be undesirable in a risk management setting. For example,

the process of VaR-violations could exhibit an undesirable cyclical or seasonal behaviour that is

detected by our new test of the i.i.d. property as the test statistic tends to its minimum.9 At the same

time, too large values of MCS iid,m could indicate a clustering of violations indicating a significantly

9 This feature is of particular interest, e.g., in commodity and weather risk management.
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bad fit of the VaR-model in a particular time period. For the purposes of this study we concentrate

on testing for clustered VaR-violations noting that two-tailed testing for both clusters and cyclical

patterns in VaR-violations is straightforward.

Empirically, clustered VaR violations most often occur in a time of financial crisis with high

volatility which follows an economically quiet time and vice versa. In the former case, an initially

suitable VaR model becomes inadequate in times of market turmoil and increasing volatility. As-

suming this, one could use our new i.i.d. test for detecting times of crises or volatility clusters.

Note that such a test will work as long as the VaR model is not completely correctly specified. On

the other hand, it is also possible that the VaR model is suitable for both quiet and volatile times

leading to a failure of the test. Due to this fact, it would be interesting to investigate such a kind of

test in more detail and useful to compare or combine an analysis based on the new i.i.d. test with

e.g. a test for constant variances as presented in Wied et al. (2012). However, this issue is not in

the scope of the present paper.

As before, we waive a formal derivation of the distribution of our test statistic. Instead, we

obtain the critical values of the test statistic by means of a Monte Carlo simulation (thus inspiring

the abbreviation MCS iid,m). The simulation is straightforward as only n and p have to be adapted to

the specific situation. Note that the critical values need to be simulated separately for each value of

m as we are solely interested in the durations between the violations and not in the absolute number

of it. We use the same continuously distributed random variable ε as before to break ties. Again,

the choice of ε ensures the MCS to yield a valid test. Moreover, the computational complexity of

the test is negligible.

2.4 A New Test of Conditional Coverage

We now describe our new test of cc that combines the two new tests for the uc and the i.i.d.

property. Starting point is again the standard test of cc as proposed by Christoffersen (1998) which
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utilizes the test statistic

LRmar
cc = −2 log[L(p; I1, I2, ..., In)/L(Π̃1; I1, I2, ..., In)]

asy∼ χ2(2), (18)

and which is based on the first-order Markov alternative described above. In a related study,

Berkowitz et al. (2011) extend their Weibull test for the i.i.d. property and derive an alternative

test of cc. They postulate a Weibull distribution for the duration variable D with distribution

h(D; a, b) = abbDb−1e−(aD)b , (19)

with E[D] = 1/p. Then, the null hypothesis of their test of cc is given by

H0,cc : b = 1, a = p. (20)

Using orthonormal polynomials and the GMM test framework, Candelon et al. (2011) propose

a competing test of the cc hypothesis. Their test statistic is given by

Jcc(q) =

⎛⎜⎜⎜⎜⎜⎝ 1√
m

m∑
i=1

M(di; p)

⎞⎟⎟⎟⎟⎟⎠
T ⎛⎜⎜⎜⎜⎜⎝ 1√

m

m∑
i=1

M(di; p)

⎞⎟⎟⎟⎟⎟⎠ asy∼ χ2(q). (21)

Again, M(di; p) denotes a (q, 1) vector whose entries are the orthonormal polynomials M j(di; p),

for j = 1, ..., q.

To the best of our knowledge, the literature provides no modification of the mentioned tests in

a way that they allow for a weighted influence of the uc and i.i.d. components in the combined test

of cc. From the perspective of a risk manager, however, such a feature could be highly desirable as

more weight could be assigned to one of the components of the test of cc. Hence, we are interested

in a test of the form

MCS cc,m = a · f (MCS uc) + (1 − a) · g(MCS iid,m), 0 ≤ a ≤ 1, (22)
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where a is the weight of the test of uc in the combined cc test. The first component of our new cc

test is then given by

f (MCS uc) =
∣∣∣∣∣(MCS uc)/n − p

p

∣∣∣∣∣ =
∣∣∣∣∣∣
(ε +

∑n
t=1 It)/n − p

p

∣∣∣∣∣∣ . (23)

This term measures (in percent) the deviation between the expected and observed proportion of

violations. As the general sizes of MCS uc and MCS iid,m are not equal, both quantities are not

comparable without a standardization. Moreover, the difference in size varies depending on the

setting (i.e., n and p). However, as both quantities will appear together in one sum, it is necessary

to be able to compare them suitably.

To allow for a one-sided testing within the uc component (which seems to be useful as the

one-sided test can be considered as a generalization of the Basel traffic light approach and is of

particular interest to risk-averse investors who are primarily interested in limiting downside risk),

the above term is multiplied by 1{∑n
t=1 It/n≥p} or 1{∑n

t=1 It/n≤p}, respectively. The intuition behind this is

that the weight of the uc part should be zero if the observed quantity is on the opposite side of the

null hypothesis such that it is very unlikely that the alternative is true.

The second component in the cc test in (22) is defined as

g(MCS iid,m) =
MCS iid,m − r̂

r̂
· 1{MCS iid,m≥r̂}, (24)

where r̂ is an estimator of the expected value of the test statistic MCS iid,m under the null hypothesis

(5), i.e., for E(MCS iid,m|H0) =: r (see below and the Appendix). The second component measures

the deviation (in percent) between the expected and observed sum of squared durations. Again,

we use random variables ε to break ties. In line with the new uc and i.i.d. tests, we abstain from a

formal derivation of the distribution of our test statistic and obtain the critical values by means of

a Monte Carlo simulation for each combination of sample size n and weighting factor a.

Note that the estimator r̂ is calculated in a prior step before calculating the actual test statis-

tics and deriving critical values (cf. the pseudocode in the Appendix). Thus, for MCS cc,m, the

14



arguments regarding the correctness of the MCS from the end of Section 2.2 are also applicable.

Note further that we consider relative differences within both f (MCS uc) and g(MCS iid,m) to be

able to suitably compare the quantities. This appears necessary given the fact that we consider a

weighted sum of them.

As the weighting factor a can be chosen arbitrarily, a natural question to ask is how a should be

chosen. On the one hand, small test samples (e.g., 250 days) and small values of p (e.g. p = 1%)

lead to a small expected number of VaR-violations. In these cases, a risk manager (or regulator)

might be more interested in backtesting the VaR-violation frequency rather than the i.i.d. property

of, for instance, only two or three violations. On the other hand, large test samples (e.g., 1,000

days) may include calm bull and volatile bear markets. A VaR-model which is not flexible enough

to adapt to these changes may lead to non-identically distributed VaR-violations while at the same

time yielding a correct uc. Therefore, risk managers could be inclined to select a lower level of a

to shift the sensitivity of the cc test to the test of the i.i.d. property. Note, as both components of

the test are strictly positive it is ruled out that one criteria could compensate the failing of the other.

Therefore, the choice of a affects solely the sensitivity of the cc test to one of the components.

Nevertheless, the selection of the optimal weighting factor a is an interesting task. Regarded as

a mathematical optimization problem, one could basically find the optimal a which minimizes a

suitably weighted sum of the type-1 and type-2 error for a given alternative. However, this mainly

technical issue is not in the scope of the present paper.

3 Simulation Study

To examine the performance of our newly proposed backtests in finite samples,

we perform a comprehensive simulation study in which we compare our new back-

tests to several different benchmarks. These include the classical tests proposed by

Christoffersen (1998) and Christoffersen and Pelletier (2004) because these approaches are

still very frequently used in theory (e.g. by Weiß and Supper, 2013) and in practice (see
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Basel Committee on Banking Supervision (BCBS), 2011). In addition, we employ the tests re-

cently proposed by Candelon et al. (2011) as a benchmark showing robust properties and a high

power. The relevance of the benchmark tests is emphasized by the fact that in recent studies these

procedures are applied in parallel (see, e.g., Asai et al., 2012 and Brechmann and Czado, 2013).

Before starting with the uc tests, we want to point out that the time required to compute the

critical values is quite short for all applied tests. The average calculation times for p = 0.05 and

different values of n are presented in Table I.

- Insert Table I about here -

With the exception of the Weibull tests, all average calculation times lie within a corridor of 0.07

to 4.4 seconds. The longer calculation time of the Weibull tests, which lies between 25.79 to 27.95

seconds, is due to the required maximum likelihood estimates of the parameters of the Weibull

distribution. However, none of the calculation times are critical for applications.

3.1 Tests of Unconditional Coverage

We analyze the performance of the different tests of uc by simulating 10, 000 samples10 and

using different parameter combinations for p, γ, and n to analyze the size and power of the back-

tests in more detail. In constrast to obtaining violations from a parametric VaR model, we simulate

sequences of VaR-violations using the data generating process (DGP)

It ∼ Bern(γ · p), t = 1, ..., n. (25)

Here, γ is a coverage parameter which allows for distinguishing between null hypothesis and alter-

natives. To determine the size of the tests, we set the coverage parameter γ = 1.0. For the analysis

of the tests’ power, we increase the violation probability and set γ = 1.1, 1.25 and 1.50.11 Each

10 With this number of repetitions, the standard error of the simulated rejection probabilites is equal to
1

100

√
p(1 − p), where p is the true rejection probability. That means, the standard error is of order 1

100 . A
similar result holds for the accuracy of the simulated critical values, see below.

11 We calculate but do not report results for the setting γ < 1 and concentrate on the more practically relevant
scenario of a VaR-model underestimating risk.
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sequence It of simulated VaR-violations is then backtested using the new upper-tail MCS ut
uc and

the two-tailed MCS tt
uc backtest as described in Section 2.2. To evaluate each test’s power, we com-

pute the fraction of simulations in which the test is rejected (hereafter referred to as rejection rate).

Critical values of the test statistics for different parameters p and n are computed using 10, 000

MC simulations. Complementing our new backtests, we also apply the LRkup
uc test of Christoffersen

(1998) and the GMMuc test of Candelon et al. (2011) to the simulated violation sequences and

compare the results of the tests. The results of the simulation study on the performance of the tests

of uc are presented in Table II.

- Insert Table II about here -

Not surprisingly, due to the fact that the critical values for each of the tests are determined via

simulation, the rejection frequencies for the setting γ = 1.0 are close to the nominal size of the

tests. With respect to the power of the uc tests, the results of the LRkup
uc test, the GMMuc test, and the

two-tailed MCS tt
uc test are very similar. Only in a few cases do the results of the GMMuc test deviate

from the rejection rates of the LRkup
uc test and the two-tailed MCS tt

uc test in a positive or negative

direction. However, all of the three analyzed two-tailed tests are outperformed by the one-sided

MCS ut
uc test in the vast majority of settings. Consequently, in addition to being of high practical

relevance to regulators, our new one-tailed test of uc offers an increased test power compared to

standard VaR-backtests from the literature.

3.2 Tests of the I.I.D. Property

As discussed in Section 2.1, a correctly specified VaR-model should yield i.i.d. violations.

In this part of the simulation study, we analyze the power of the new backtests of i.i.d. VaR-

violations using two data generating processes. First, we investigate the power of our new backtests

and competing benchmark tests using dependent violations. Second, we repeat this analysis for

non-identically distributed violation processes. In both settings, we perform the MCS iid test and

compare its finite sample behavior to that of the LRmar
iid test of Christoffersen (1998), the LRwei

iid test
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of Christoffersen and Pelletier (2004) and the GMMiid test of Candelon et al. (2011).12 Because

clustering implies the occurance of at least two VaR-violations, the i.i.d. tests are not performed

on samples where this minimum number is not achieved. To be more precise,
∑n

t=1 It ≥ 2 holds

true for each of the samples simulated by the procedures below, where It denotes a simulated VaR-

violation sequence. Basically, each of the utilized tests are feasible under this condition. Only the

LRwei
iid test statistic cannot be computed for some simulated samples containing two violations (for

more details see Candelon et al., 2011). We classify these cases as not rejected.

3.2.1 Independent VaR-Violations

In the first setting, we generate sequences of dependent VaR-violations with the degree of

dependence inherent in the violation processes varying over time. For each λ and each n, we draw

10, 000 simulations of

yt = σtzt, with σ1 = 1 (26)

and

σ2
t = λσ

2
t−1 + (1 − λ)z2

t−1, 0 ≤ λ ≤ 1, t > 1. (27)

Besides, zt ∼ N(0, 1),∀t. Note, this proceeding requires no pre-phasis in order to calculate σ. The

distribution of yt is based on the well-known exponentially weighted moving average (EWMA)

type process. This approach allows for an easy regulation of the degree of dependence by deter-

mining λ as the single decay factor. To be more precise, λ controls the half-life interval of the

observation weights (i.e., the interval in which the weight of an observed σ2 decreases to half its

original value) by log(0.5)/log(λ). We apply the backtests to several different levels of λ repre-

senting half-life intervals of 5, 40, and 80 days of data. This range of half-life intervals covers

typical volatility persistence of asset return series.13 Table III shows the half-life intervals and the

12 As suggested in Candelon et al. (2011) we set q = 3 for p = 5% and q = 5 for p = 1% throughout the simulation
study. Critical values for the MCS iid test are obtained as outlined in Section 2.3 using 10, 000 MC simulations.

13 The EWMA approach can be used for VaR-forecasting purposes (RiskMetrics) whereas λ is typically set to 0.94
for one-day and 0.97 for one-month forecasts (see Mina and Xiao, 2001). This corresponds to half-life intervals
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corresponding λ level used to compute the power of the backtests.

- Insert Table III about here -

Dependent VaR-violations are ensured by setting a constant VaR for all i = 1, . . . , n. For each

decay factor λ, the VaR is determined separately by the empirical p-quantile of 10, 000 random

values simulated by Equation (26). The simulated VaR-violations It are computed as defined by

Equation (1).

Table IV shows the results of the power study concerning the independence property of VaR-

violations. We apply each test to 18 different combinations of coverage probability p, decay factor

λ and sample size n. Together with the three significance levels of 1%, 5%, and 10%, we thus

obtain 54 different settings in our simulation study.

- Insert Table IV about here -

In total, the MCS iid test outperforms the remaining tests in 29 out of the 54 test settings. Compared

to the other test methods, this test possesses a high statistical power in settings in which the half-

life interval is relatively large. Furthermore, the superiority of the MCS iid test increases with

the significance level. The GMM test shows the best statistical power in 13 out of the 54 test

settings. For significance level and coverage probability 1%, its power is almost always superior.

The LRmar
iid test yields the best statistical power in 12 out of 54 settings, this is especially true for

small samples as well as for a half-life interval of five days. This result should be interpreted

somewhat cautiously due to the fact that the vast majority of the top results are concentrated at

the very short half-life interval of five days. It is to be expected that the LRmar
iid test performs well

in such circumstances, because short decay intervals lead to frequent occurrences of successive

VaR-violations. Consequently, the power of this test deteriorates as the decay interval increases.

Besides, the LRmar
iid test performs surprisingly well for some settings with n = 252. However,

of 11 and 23 days. Furthermore, Berkowitz et al. (2011) estimated variance persistences for actual desk-level
daily P/Ls from several business lines from a large international bank. The determined values are 0.9140, 0.9230,
0.9882 and 0.9941 which correspond to half-life intervals of 8, 9, 58, and 117 days.
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in these cases the power decreases if n increases indicating asymptotic disturbances. A similar

phenomenon was observed in Berkowitz et al. (2011). For none of the 54 different settings does

the LRwei
iid test lead to the best statistical power of all analyzed test methods. Furthermore, for

p = 5% and a half-life interval larger than 5 days, the test yields a statistical power below its

nominal size and shows the undesired behavior of decreasing rejection rates as the sample size

increases.

3.2.2 Identically Distributed VaR-Violations

The data generating process for the second part of the simulation study is given by:

It =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

i.i.d.∼ Bern(p − 2δ), 1 ≤ t ≤ n
4 ;

i.i.d.∼ Bern(p + δ), n
4 < t ≤ n

2 ;

i.i.d.∼ Bern(p − δ), n
2 < t ≤ 3n

4 ;

i.i.d.∼ Bern(p + 2δ), 3n
4 < t ≤ n.

(28)

Here, we choose δ = 0p to analyze the size of a test and δ = 0.1p, 0.3p, and 0.5p for the power

study. This setting leads to variations in the probability of obtaining a VaR-violation between the

four equal-sized subsamples. Consequently, the violations will occur unequally distributed. Note

that the probability variations are determined in a way which ensures E
(∑n

t=1 It
)
= n · p. The setup

of this part of the simulation study covers a realistic scenario in which a VaR-model does not, or

not fully, incorporate changes from calm market phases to highly volatile bear markets or financial

crises and vice versa. This in turn leads to clustered VaR-violations regardless of the question

whether the data might show signs of autocorrelation.

Alternatively, non-stationary VaR-violations could be identified by splitting a sample into sev-

eral subsamples and applying the test for uc to each subsample. However, this approach suffers

from two main drawbacks. First, for small subsamples the power of uc tests is relatively low (see

Table II). Second, it remains unclear at which points real data samples have to be split into two or
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more subsamples.

Table V shows the results of the power study concerning the property of identically distributed

VaR-violations. We apply each test to 18 different combinations of coverage probability p, prob-

ability variation factor δ, and sample size n. Furthermore, we compute rejection rates for signifi-

cance levels of 1%, 5%, and 10% which leads to a total of 54 different test settings.

- Insert Table V about here -

In total, the MCS iid test possesses a high statistical power regarding non-identically distributed

VaR-violations and its test results are comparable to or better than the performance of the remaining

three approaches for 45 out of the 54 settings. Particularly for significance levels of 5% and 10%,

it outperforms the competing tests in almost all cases, irrespective of the degree of probability

variation or sample size. The GMM test yields rejection rates which are equal or better than the

results of the competing models for 13 of the 54 simulation settings. The test particularly achieves

its top results for a significance level of 1%. The LRmar
iid test is able to match the results of the

competing tests in only four cases which are restricted to settings in which p = 1% and δ = 0.1p.

The results of the LRwei
iid test falls short of the performance of the remaining tests in almost all

settings. Finally, it is striking that the power of the LRmar
iid test and the LRwei

iid test significantly

exceed the nominal size only for large shifts in the VaR-violation probability, i.e. δ = 0.5p.

3.3 Conditional Coverage

Table VI illustrates the behavior of the MCS cc test considering different levels of the weighting

parameter a.

- Insert Table VI about here -

For reasons of space we present results only for a single parameter combination within the setting

with non-i.i.d. distributed VaR-violation sequences. The exact parameter combination is n = 1000,

δ = 0.3p and γ = 1.25. Depending on the VaR probability p and the significance level the test
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yields the highest rejection rates for values of a between 0.6 and 0.8. This is consistent with our

expectation that the maximum of the statistical power is achieved when 0 < a < 1, i.e., when the

cc test addresses both the uc as well as the i.i.d. property of the violations. This result is confirmed

by further simulations.14 In the following, we only present the results for a = 0.5.

We continue with a comparison of the size and the power of the cc test MCS cc to the LRmar
cc

test of Christoffersen (1998), the LRwei
cc test of Christoffersen and Pelletier (2004) and the GMMcc

test of Candelon et al. (2011). For this purpose, we combine each of the two settings described in

Section 3.2 with increased probabilities of a VaR-violation outlined in Section 3.1. Note that we

use the two-tailed uc component. For the determination of critical values we perform the procedure

as explained in Section 2.4 using 10, 000 MC simulations. In line with the settings above, for each

combination of γ, δ, volatility half-life, and n we repeat the simulation of VaR-violation sequences

10, 000 times. We present the results of the simulation study concerning an increased probability

of a VaR-violation combined with non-independent occurrence of violations (setting 1) in Table

VII, and combined with non-identically distributed violations (setting 2) in Table VIII. 15

- Insert Tables VII and VIII about here -

Regarding both settings, the MCS cc test yields the best rejection rates for the vast majority of test

settings. To be precise, the MCS cc test shows similar or better results compared to the competing

tests in 77 out of 90 parameter combinations for setting 1 and 70 out of 90 parameter combinations

for setting 2. With respect to setting 1, the LRmar
cc test and the GMMcc test achieve or exceed the

rejection rates of the MCS cc test in some cases in which the nominal VaR-level is set to 1%. This

is especially true for the LRmar
cc test for small samples and significance level 10%. Nevertheless, as

described above, the power often decreases if n increases indicating asymptotic disturbances. The

LRwei
cc test does not achieve top rejection rates for any of the parameter combinations. Regarding

setting 2, and parameter combinations for which the VaR-violation probability variation parameter

14 To save space, we do not present these additional simulations. The complete results are available from the authors
upon request.

15 To save space, we do not present the rejection rates of all parameter combinations. The complete results are
available from the authors upon request.

22



is set to δ = 0.1p, the LRmar
uc test shows some superior results. In many cases, the rejection rates of

the GMMcc test show evidence of a good performance, but only in very few cases does it yield top

results. For none of the reported parameter combinations does the LRwei
cc test lead to results above

the rejection rates of the remaining tests.

4 Conclusion

Comparatively little attention has been paid in the literature to the development of proper tools

for backtesting VaR-forecasts. This paper provides three main contributions to the issue of back-

testing the performance of VaR-models. First, we extend the discussion of the desirable properties

of violations originating from a correct VaR-model and restate the uc property of a VaR-violation

process. Furthermore, we stress the need to require the VaR-violations to be identically distributed

to adequately backtest models across different market phases.

Second, we propose a new set of backtests that test VaR-violation processes for uc, the i.i.d.

property as well as cc. Compared to existing standard approaches, these backtests contain new

desirable features like one-tailed testing for uc and a test for cc that allows for different weightings

of the uc and i.i.d. parts. The new backtesting procedures are based on i.i.d. Bernoulli random

variables obtained by Monte Carlo simulation techniques and are very intuitive.

Third, we perform a simulation study using generated VaR-violation samples that specifically

violate the uc, i.i.d., and cc property to different controllable degrees. Compared to existing clas-

sical and state-of-the-art backtests, the new backtests outperform these benchmarks in several dis-

tinct settings.

As a natural extension of our work, one could think of multivariate versions of our newly

proposed backtests which would need to take into account possible correlations in VaR-violations

across assets and time. As this issue lies beyond the scope of the present work, we will address it

in our future research.
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Tables

Table I: Comparison of the Backtests’ Calculation Times

The table presents average calculation times (in seconds) for the different backtests used in the paper for p = 0.05,
10, 000 simulations and different values of n based on 10 repetitions. All calculations are performed with Matlab2012a
on a standard notebook. Note, the results of MCS iid are taken over to MCS cc. Hence, the upper bound for a direct
calculation of MCS cc is the sum of both single times.

uc-Tests i.i.d.-Tests cc-Tests
n LRkup

uc GMMuc MCS uc LRmar
iid LRwei

iid GMMiid MCS iid LRmar
cc LRwei

cc GMMcc MCS cc

252 0.08 1.48 0.07 0.61 25.79 3.70 1.54 0.68 26.26 1.99 1.58
1,000 0.20 1.84 0.20 0.92 26.48 3.89 1.85 1.01 27.13 2.31 1.84
2,500 0.45 2.57 0.45 1.52 27.93 4.40 2.28 1.66 27.95 2.65 2.29
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Table II: Unconditional Coverage - Size and Power of Tests

The table presents rejection rates obtained by applying unconditional coverage tests to 10,000 samples of Bernoulli
simulated VaR-violation sequences. The VaR level p for panel A and B is set to 5% and 1%, respectively. Results are
presented for various sets of sample sizes n and γ-factors which multiplies the probability of a VaR-violation by 1,
1.1, 1.25 and 1.5. The results for γ = 1 correspond to the evaluation of the size of the test. LR kup

uc and GMMuc refers
to the unconditional coverage tests of Kupiec (1995) and Candelon et al. (2011). MCS tt

uc and MCS ut
uc refer to the new

two-tailed and upper-tail Monte Carlo simulation based tests. Top results are highlighted in bold type.

Significance level: 1% Significance level: 5% Significance level: 10%

γ n LRkup
uc GMMuc MCS tt

uc MCS ut
uc LRkup

uc GMMuc MCS tt
uc MCS ut

uc LRkup
uc GMMuc MCS tt

uc MCS ut
uc

Panel A: 5% VaR

252 0.010 0.010 0.009 0.009 0.049 0.049 0.049 0.049 0.100 0.099 0.100 0.100
1 1,000 0.010 0.010 0.012 0.012 0.054 0.050 0.055 0.053 0.106 0.099 0.105 0.102

2,500 0.009 0.009 0.010 0.012 0.048 0.048 0.050 0.051 0.106 0.101 0.102 0.102

252 0.015 0.005 0.015 0.024 0.062 0.059 0.064 0.102 0.111 0.128 0.124 0.178
1.1 1,000 0.033 0.020 0.034 0.059 0.105 0.099 0.118 0.180 0.195 0.190 0.191 0.289

2,500 0.083 0.055 0.082 0.126 0.201 0.186 0.204 0.306 0.336 0.296 0.310 0.445

252 0.047 0.011 0.045 0.072 0.137 0.120 0.146 0.223 0.203 0.223 0.230 0.338
1.25 1,000 0.197 0.142 0.195 0.281 0.386 0.385 0.408 0.530 0.540 0.535 0.530 0.667

2,500 0.571 0.515 0.569 0.661 0.769 0.762 0.779 0.859 0.873 0.853 0.859 0.922

252 0.196 0.061 0.192 0.269 0.377 0.349 0.396 0.518 0.481 0.510 0.519 0.651
1.5 1,000 0.761 0.700 0.769 0.840 0.894 0.898 0.907 0.948 0.951 0.950 0.948 0.975

2,500 0.996 0.993 0.996 0.998 0.999 1.000 0.999 0.999 1.000 1.000 0.999 1.000

Panel B: 1% VaR

252 0.010 0.012 0.009 0.010 0.051 0.050 0.049 0.050 0.101 0.103 0.100 0.104
1 1,000 0.014 0.009 0.012 0.011 0.048 0.050 0.053 0.051 0.105 0.102 0.103 0.107

2,500 0.010 0.008 0.010 0.011 0.054 0.047 0.052 0.051 0.106 0.099 0.100 0.100

252 0.013 0.017 0.014 0.016 0.049 0.074 0.057 0.066 0.089 0.138 0.109 0.127
1.1 1,000 0.014 0.006 0.013 0.023 0.061 0.058 0.065 0.089 0.097 0.117 0.120 0.166

2,500 0.016 0.012 0.018 0.036 0.072 0.078 0.083 0.130 0.147 0.151 0.146 0.221

252 0.026 0.029 0.020 0.029 0.058 0.108 0.076 0.111 0.095 0.187 0.134 0.192
1.25 1,000 0.032 0.003 0.039 0.063 0.112 0.119 0.131 0.198 0.164 0.207 0.207 0.310

2,500 0.082 0.050 0.087 0.134 0.220 0.219 0.232 0.342 0.334 0.335 0.344 0.476

252 0.059 0.060 0.045 0.069 0.094 0.181 0.131 0.192 0.134 0.281 0.206 0.305
1.5 1,000 0.132 0.020 0.159 0.220 0.304 0.297 0.341 0.447 0.377 0.435 0.448 0.580

2,500 0.374 0.296 0.404 0.506 0.617 0.613 0.641 0.747 0.739 0.737 0.747 0.848

Table III: Half-Life Interval and λ-Level

The half-life interval is computed by log(0.5)/log(λ) and refers to the time interval over which the weight of an
observation decrease to one-half its original value. The corresponding λ refers to the decay factor of the EWMA type
process of computing σt.

Half-Life Interval 5 40 80
λ 0.8706 0.9828 0.9914
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Table IV: I.I.D. VaR-Violations - Setting 1: Independence - Power of Tests

The table presents rejection rates obtained by applying tests for i.i.d. VaR-violations to 10,000 samples of non-
independent VaR-violation sequences simulated by Equation ( 26). The VaR level p for panel A and B is set to 5% and
1%, respectively. Results are presented for various sets of sample sizes n and half-life intervals which serve as a proxy
for the degree of dependence. LRmar

iid , LRwei
iid and GMMiid refers to the independence tests of Christoffersen (1998),

Christoffersen and Pelletier (2004) and Candelon et al. (2011). MCS iid refers to the new Monte Carlo simulation
based test. Top results are highlighted in bold type.

Half-Life Significance level: 1% Significance level: 5% Significance level: 10%
Interval n LRmar

iid LRwei
iid GMMiid MCS iid LRmar

iid LRwei
iid GMMiid MCS iid LRmar

iid LRwei
iid GMMiid MCS iid

Panel A: 5% VaR

252 0.067 0.005 0.108 0.072 0.146 0.033 0.213 0.220 0.195 0.075 0.270 0.339
5 1,000 0.126 0.047 0.308 0.264 0.217 0.160 0.591 0.552 0.308 0.260 0.689 0.695

2,500 0.308 0.170 0.614 0.611 0.515 0.396 0.905 0.858 0.631 0.535 0.948 0.933

252 0.022 0.005 0.052 0.042 0.077 0.031 0.115 0.128 0.117 0.069 0.162 0.210
40 1,000 0.018 0.003 0.095 0.099 0.052 0.024 0.219 0.251 0.103 0.051 0.293 0.363

2,500 0.017 0.002 0.128 0.180 0.073 0.010 0.324 0.397 0.132 0.025 0.424 0.531

252 0.022 0009 0.032 0.036 0.072 0.041 0.089 0.117 0.107 0.086 0.130 0.200
80 1,000 0.016 0.003 0.113 0.119 0.047 0.026 0.224 0.263 0.093 0.057 0.297 0.371

2,500 0.015 0.003 0.108 0.150 0.065 0.013 0.267 0.323 0.118 0.028 0.350 0.436

Panel B: 1% VaR

252 0.055 0.004 0.068 0.048 0.181 0.035 0.136 0.141 0.237 0.095 0.186 0.226
5 1,000 0.114 0.038 0.099 0.055 0.230 0.137 0.211 0.182 0.346 0.224 0.285 0.296

2,500 0.193 0.179 0.149 0.083 0.384 0.362 0.363 0.255 0.482 0.475 0.470 0.393

252 0.020 0.004 0.079 0.065 0.199 0.027 0.142 0.155 0.266 0.063 0.193 0.238
40 1,000 0.031 0.026 0.089 0.068 0.083 0.077 0.154 0.176 0.181 0.136 0.216 0.265

2,500 0.031 0.050 0.097 0.088 0.119 0.126 0.223 0.238 0.180 0.195 0.308 0.348

252 0.014 0.004 0.064 0.037 0.302 0.025 0.131 0.127 0.374 0.054 0.181 0.204
80 1,000 0.030 0.031 0.096 0.083 0.083 0.085 0.157 0.181 0.171 0.135 0.211 0.262

2,500 0.033 0.054 0.097 0.102 0.116 0.118 0.194 0.220 0.175 0.177 0.265 0.315
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Table V: I.I.D. VaR-Violations - Setting 2: Identical Distribution - Size and Power of Tests

The table presents rejection rates obtained by applying tests for i.i.d. VaR-violations to 10,000 samples of non-
identically distributed VaR-violation sequences simulated by Equation ( 28). The VaR level p for panel A and B is set
to 5% and 1%, respectively. Results are presented for various sets of sample sizes n and probability variation factors
δ. Results for δ = 0p correspond to the evaluation of the size of the test. LR mar

iid , LRwei
iid and GMMiid refers to the

independence tests of Christoffersen (1998), Christoffersen and Pelletier (2004) and Candelon et al. (2011). MCS iid

refers to the new simulation based i.i.d. test. Top results are highlighted in bold type.

Significance level: 1% Significance level: 5% Significance level: 10%
δ n LRmar

iid LRwei
iid GMMiid MCS iid LRmar

iid LRwei
iid GMMiid MCS iid LRmar

iid LRwei
iid GMMiid MCS iid

Panel A: 5% VaR

252 0.010 0.010 0.011 0.010 0.048 0.053 0.049 0.053 0.095 0.104 0.101 0.101
0p 1,000 0.009 0.010 0.010 0.008 0.046 0.046 0.046 0.050 0.097 0.096 0.097 0.097

2,500 0.010 0.009 0.009 0.010 0.051 0.049 0.049 0.051 0.101 0.102 0.101 0.101

252 0.011 0.009 0.014 0.009 0.052 0.048 0.058 0.060 0.101 0.094 0.105 0.111
0.1p 1,000 0.011 0.006 0.019 0.018 0.048 0.032 0.066 0.074 0.099 0.073 0.116 0.136

2,500 0.009 0.008 0.021 0.023 0.049 0.037 0.078 0.093 0.100 0.072 0.131 0.170

252 0.015 0.004 0.037 0.030 0.061 0.023 0.105 0.130 0.112 0.053 0.156 0.227
0.3p 1,000 0.016 0.003 0.212 0.241 0.054 0.024 0.386 0.456 0.106 0.058 0.471 0.579

2,500 0.022 0.008 0.450 0.549 0.085 0.038 0.697 0.771 0.148 0.075 0.783 0.856

252 0.041 0.002 0.158 0.113 0.104 0.028 0.317 0.378 0.148 0.074 0.400 0.552
0.5p 1,000 0.057 0.436 1.000 1.000 0.124 0.794 1.000 1.000 0.201 0.910 1.000 1.000

2,500 0.138 1.000 1.000 1.000 0.311 1.000 1.000 1.000 0.425 1.000 1.000 1.000

Panel B: 1% VaR

252 0.010 0.007 0.010 0.012 0.056 0.042 0.052 0.050 0.108 0.089 0.102 0.103
0p 1,000 0.010 0.010 0.009 0.011 0.048 0.046 0.049 0.051 0.100 0.096 0.102 0.101

2,500 0.009 0.010 0.012 0.011 0.049 0.047 0.050 0.053 0.099 0.098 0.099 0.105

252 0.011 0.008 0.009 0.009 0.054 0.042 0.049 0.050 0.104 0.087 0.099 0.098
0.1p 1,000 0.011 0.011 0.012 0.012 0.053 0.049 0.054 0.056 0.102 0.099 0.107 0.113

2,500 0.013 0.008 0.012 0.013 0.055 0.042 0.056 0.064 0.104 0.088 0.111 0.121

252 0.013 0.006 0.014 0.015 0.057 0.033 0.054 0.060 0.105 0.073 0.102 0.115
0.3p 1,000 0.015 0.005 0.022 0.020 0.064 0.034 0.076 0.091 0.123 0.078 0.132 0.173

2,500 0.017 0.011 0.077 0.090 0.070 0.058 0.193 0.242 0.125 0.119 0.278 0.360

252 0.018 0.001 0.022 0.024 0.069 0.011 0.066 0.081 0.114 0.039 0.108 0.131
0.5p 1,000 0.025 0.007 0.079 0.053 0.087 0.051 0.197 0.225 0.157 0.113 0.277 0.377

2,500 0.027 0.167 0.597 0.694 0.099 0.437 0.822 0.926 0.172 0.602 0.893 0.975
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Table VI: Conditional Coverage - Power of the MCS cc Test under Different Level of a

The table presents rejection rates obtained by applying the MCS cc test to 10,000 samples of non-i.i.d. distributed
VaR-violation sequences and contains rejection rates for sequences simulated by Equation ( 28) with an increased
violation probability. The exact parameter combination is n = 1, 000, γ = 1.25 and δ = 0.3p. The top result for each
combination of a, VaR level, and significance level is highlighted in bold type.

5% VaR 1% VaR

Significance level: Significance level:
a 1% 5% 10% 1% 5% 10%

0 0.105 0.264 0.393 0.014 0.074 0.151
0.1 0.108 0.290 0.433 0.013 0.081 0.164
0.2 0.124 0.336 0.479 0.015 0.093 0.183
0.3 0.146 0.383 0.548 0.019 0.098 0.192
0.4 0.188 0.453 0.604 0.023 0.121 0.221
0.5 0.232 0.509 0.636 0.036 0.140 0.234
0.6 0.294 0.542 0.657 0.053 0.153 0.236
0.7 0.299 0.519 0.631 0.059 0.158 0.233
0.8 0.285 0.505 0.617 0.067 0.163 0.238
0.9 0.256 0.463 0.570 0.064 0.161 0.236
1 0.239 0.441 0.553 0.064 0.159 0.234
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Table VII: Conditional Coverage - Setting 1: Independence - Power of Tests

The table presents rejection rates obtained by applying cc tests to 10,000 samples of non-independent VaR-violation
sequences simulated by Equation (26) with an increased violation probability. The VaR level p for panel A and B is
set to 5% and 1%, respectively. Results are presented for various sets of sample sizes n, γ-factors which increase the
probability of a VaR-violation, and decay intervals which serve as a proxy for the degree of dependence. LR mar

cc , LRwei
cc

and GMMcc refers to the cc tests of Christoffersen (1998), Christoffersen and Pelletier (2004) and Candelon et al.
(2011). MCS cc refers to the new simulation based test. Top results are highlighted in bold type.

Decay Significance level: 1% Significance level: 5% Significance level: 10%
Interval γ n LRmar

cc LRwei
cc GMMcc MCS cc LRmar

cc LRwei
cc GMMcc MCS cc LRmar

cc LRwei
cc GMMcc MCS cc

Panel A: 5% VaR

252 0.052 0.028 0.044 0.093 0.103 0.088 0.212 0.237 0.193 0.154 0.318 0.344
10 1.1 1,000 0.074 0.047 0.107 0.251 0.166 0.142 0.435 0.493 0.231 0.218 0.571 0.613

2,500 0.152 0.095 0.360 0.565 0.290 0.226 0.767 0.783 0.377 0.331 0.857 0.860

252 0.204 0.109 0.060 0.235 0.302 0.222 0.364 0.457 0.433 0.307 0.488 0.555
10 1.5 1,000 0.591 0.524 0.387 0.704 0.747 0.693 0.825 0.878 0.804 0.770 0.893 0.929

2,500 0.946 0.909 0.932 0.985 0.979 0.961 0.994 0.998 0.988 0.980 0.997 0.999

252 0.142 0.119 0.094 0.166 0.201 0.212 0.280 0.308 0.289 0.290 0.385 0.404
40 1.25 1,000 0.200 0.174 0.098 0.267 0.329 0.292 0.399 0.490 0.399 0.367 0.525 0.604

2,500 0.397 0.301 0.289 0.552 0.571 0.460 0.669 0.765 0.643 0.552 0.775 0.838

252 0.223 0.224 0.256 0.220 0.310 0.374 0.458 0.406 0.416 0.466 0.546 0.535
80 1.1 1,000 0.129 0.124 0.149 0.217 0.215 0.207 0.357 0.394 0.275 0.277 0.456 0.502

2,500 0.126 0.092 0.142 0.250 0.219 0.163 0.376 0.454 0.278 0.223 0.483 0.557

252 0.278 0.249 0.218 0.292 0.336 0.348 0.423 0.449 0.413 0.417 0.513 0.542
80 1.5 1,000 0.491 0.477 0.313 0.564 0.625 0.614 0.676 0.764 0.685 0.681 0.770 0.837

2,500 0.908 0.874 0.807 0.927 0.957 0.937 0.966 0.981 0.970 0.960 0.982 0.991

Panel B: 1% VaR

252 0.038 0.017 0.093 0.094 0.140 0.066 0.198 0.191 0.335 0.128 0.273 0.266
10 1.1 1,000 0.044 0.037 0.023 0.088 0.158 0.129 0.194 0.227 0.242 0.210 0.303 0.313

2,500 0.057 0.120 0.042 0.125 0.194 0.271 0.304 0.304 0.326 0.383 0.457 0.426

252 0.072 0.031 0.154 0.162 0.216 0.109 0.291 0.297 0.455 0.186 0.377 0.380
10 1.5 1,000 0.167 0.113 0.034 0.229 0.367 0.244 0.314 0.426 0.467 0.340 0.441 0.528

2,500 0.350 0.418 0.116 0.424 0.606 0.600 0.575 0.672 0.728 0.694 0.712 0.771

252 0.129 0.085 0.183 0.183 0.227 0.158 0.273 0.271 0.387 0.213 0.336 0.335
40 1.25 1,000 0.091 0.072 0.041 0.146 0.212 0.146 0.209 0.271 0.285 0.213 0.311 0.356

2,500 0.111 0.126 0.044 0.190 0.273 0.248 0.273 0.377 0.380 0.341 0.397 0.491

252 0.243 0.192 0.296 0.296 0.342 0.273 0.373 0.374 0.470 0.329 0.424 0.427
80 1.1 1,000 0.109 0.103 0.085 0.135 0.198 0.190 0.242 0.236 0.278 0.263 0.330 0.321

2,500 0.077 0.098 0.068 0.138 0.182 0.183 0.222 0.266 0.260 0.257 0.320 0.364

252 0.263 0.209 0.302 0.316 0.355 0.289 0.385 0.388 0.480 0.344 0.442 0.441
80 1.5 1,000 0.195 0.151 0.095 0.222 0.318 0.243 0.285 0.352 0.384 0.304 0.378 0.440

2,500 0.313 0.288 0.102 0.331 0.515 0.432 0.407 0.560 0.621 0.528 0.538 0.658
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Table VIII: Conditional Coverage - Setting 2: Identical Distribution - Size and Power of Tests

The table presents rejection rates obtained by applying cc tests to 10,000 samples of non-identically distributed VaR-
violation sequences simulated by Equation (28) with an increased violation probability. The VaR level p for panel A
and B is set to 5% and 1%, respectively. Results are presented for various sets of sample sizes n and γ-factors which
increase the probability of a VaR-violation, and probability variation factors δ. The results for δ = 0p correspond
to the evaluation of the size of the test. LRmar

cc , LRwei
cc and GMMcc refers to the cc tests of Christoffersen (1998),

Christoffersen and Pelletier (2004) and Candelon et al. (2011). MCS iid refers to the new simulation based test. Top
results are highlighted in bold type.

Significance level: 1% Significance level: 5% Significance level: 10%
δ γ n LRmar

cc LRwei
cc GMMcc MCS cc LRmar

cc LRwei
cc GMMcc MCS cc LRmar

cc LRwei
cc GMMcc MCS cc

Panel A: 5% VaR

252 0.010 0.010 0.009 0.011 0.049 0.049 0.051 0.051 0.093 0.099 0.103 0.100
0p 1 1,000 0.011 0.009 0.010 0.011 0.052 0.046 0.053 0.052 0.104 0.100 0.105 0.098

2,500 0.010 0.009 0.009 0.012 0.052 0.049 0.049 0.054 0.101 0.097 0.100 0.102

252 0.016 0.008 0.004 0.011 0.061 0.044 0.046 0.065 0.115 0.086 0.096 0.124
0.1p 1.1 1,000 0.020 0.016 0.006 0.021 0.082 0.068 0.058 0.103 0.138 0.129 0.123 0.186

2,500 0.036 0.034 0.011 0.048 0.129 0.107 0.106 0.174 0.198 0.181 0.209 0.281

252 0.147 0.073 0.008 0.103 0.280 0.193 0.220 0.330 0.431 0.296 0.372 0.442
0.1p 1.5 1,000 0.609 0.563 0.151 0.464 0.802 0.775 0.733 0.801 0.868 0.855 0.864 0.902

2,500 0.979 0.974 0.853 0.958 0.996 0.993 0.994 0.997 0.997 0.998 0.998 0.999

252 0.038 0.010 0.003 0.043 0.100 0.048 0.095 0.166 0.193 0.096 0.187 0.258
0.3p 1.25 1,000 0.112 0.066 0.051 0.237 0.273 0.188 0.348 0.492 0.373 0.285 0.508 0.634

2,500 0.374 0.236 0.306 0.667 0.617 0.456 0.765 0.873 0.710 0.593 0.864 0.929

252 0.017 0.002 0.014 0.088 0.045 0.023 0.177 0.260 0.105 0.060 0.298 0.382
0.5p 1.1 1,000 0.039 0.180 0.778 0.892 0.105 0.414 0.947 0.963 0.161 0.561 0.967 0.981

2,500 0.117 0.775 0.999 1.000 0.259 0.911 1.000 1.000 0.347 0.953 1.000 1.000

252 0.137 0.044 0.022 0.206 0.256 0.148 0.320 0.469 0.418 0.240 0.478 0.589
0.5p 1.5 1,000 0.621 0.541 0.491 0.849 0.805 0.772 0.918 0.961 0.871 0.856 0.965 0.983

2,500 0.984 0.973 0.991 1.000 0.996 0.993 1.000 1.000 0.999 0.998 1.000 1.000

Panel B: 1% VaR

252 0.009 0.008 0.010 0.009 0.046 0.041 0.048 0.051 0.175 0.083 0.101 0.102
0p 1 1,000 0.012 0.011 0.009 0.010 0.048 0.053 0.048 0.050 0.091 0.102 0.098 0.100

2,500 0.010 0.009 0.011 0.010 0.047 0.046 0.051 0.050 0.093 0.097 0.103 0.104

252 0.012 0.007 0.014 0.016 0.056 0.043 0.064 0.066 0.211 0.090 0.122 0.124
0.1p 1.1 1,000 0.015 0.008 0.006 0.012 0.062 0.041 0.038 0.066 0.110 0.086 0.090 0.128

2,500 0.013 0.011 0.005 0.015 0.069 0.050 0.041 0.078 0.142 0.102 0.099 0.145

252 0.029 0.014 0.053 0.053 0.124 0.074 0.152 0.158 0.385 0.140 0.247 0.247
0.1p 1.5 1,000 0.095 0.037 0.002 0.084 0.283 0.129 0.120 0.259 0.387 0.221 0.241 0.408

2,500 0.251 0.222 0.006 0.170 0.563 0.445 0.269 0.506 0.708 0.576 0.457 0.646

252 0.013 0.007 0.027 0.026 0.073 0.048 0.098 0.097 0.269 0.095 0.171 0.168
0.3p 1.25 1,000 0.028 0.008 0.002 0.039 0.115 0.047 0.062 0.146 0.185 0.096 0.141 0.238

2,500 0.046 0.033 0.006 0.093 0.188 0.122 0.129 0.285 0.312 0.203 0.253 0.413

252 0.007 0.003 0.022 0.019 0.054 0.022 0.082 0.077 0.212 0.055 0.141 0.133
0.5p 1.1 1,000 0.010 0.006 0.008 0.060 0.062 0.037 0.119 0.183 0.117 0.088 0.219 0.272

2,500 0.010 0.082 0.109 0.439 0.077 0.238 0.551 0.700 0.162 0.365 0.715 0.807

252 0.025 0.009 0.055 0.059 0.125 0.051 0.162 0.170 0.380 0.105 0.256 0.262
0.5p 1.5 1,000 0.091 0.033 0.006 0.150 0.293 0.118 0.199 0.366 0.395 0.201 0.339 0.493

2,500 0.263 0.258 0.046 0.458 0.569 0.474 0.500 0.735 0.719 0.605 0.674 0.829
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Appendix: Pseudocode

A.1 Test of Unconditional Coverage

(i) Generate the violation sequence resulting from the observed returns and the corresponding

VaR forecasts by

Ii(p) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
1, if yi < VaRi|i−1(p);

0, else.

(ii) Draw l + 1 random variables by

ε j ∼ N(0, 1) · 0.001, j = 1, ..., l + 1.

(iii) Calculate the test statistic for the observed violation sequence by

MCS uc = εl+1 +

n∑
i=1

Ii.

(iv) Simulate violation sequences by drawing l-times n random variables with distribution

Î j,i(p) ∼ Bern(p), i = 1, ..., n, j = 1, ..., l.

(v) Calculate the test statistic for each simulated violation sequence by

ˆMCS uc, j = ε j +

n∑
i=1

Îi, j, j = 1, ..., l.

(vi) Sort the resulting values of the simulated statistic ˆMCS uc, j in descending order.

(vii) Compute the quantiles for the desired significance level and compare the test statistic for the

observed violation sequence to the resulting critical values.
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A.2 Test of the I.I.D. Property

(i) Generate the violation sequence resulting from the observed returns and the corresponding

VaR forecasts by

Ii(p) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
1, if yi < VaRi|i−1(p);

0, else.

(ii) Calculate the sum of observed VaR violations by

m =
n∑

i=1

Ii.

(iii) Identify the time indexes where an observed VaR violation occurred by

V = {i|Ii = 1} = (t1, ..., tm).

(iv) Draw l + 1 random variables by

ε j ∼ N(0, 1) · 0.001, j = 1, ..., l + 1.

(v) Calculate the test statistic for the observed violation sequence by

MCS iid,m = t2
1 + (n − tm)2 +

m∑
s=2

(ts − ts−1)
2 + εl+1.

(vi) Simulate violation sequences by drawing l-times n random variables with distribution

Îi, j(p) ∼ Bern(p), i = 1, ..., n, j = 1, ..., l,

under the condition that
∑n

i=1 Îi, j = m, ∀ j.

35



(vii) For each simulated violation sequence, identify the set of time indexes of the violations by

V̂ j = {t j|Îi, j = 1} = (t j,1, ..., t j,m).

(viii) Calculate the test statistic for the simulated violation sequences by

ˆMCS iid,m, j = t2
j,1 + (n − t j,m)2 +

m∑
s=2

(t j,s − t j,s−1)
2 + ε j.

(ix) Sort the resulting values of the simulated statistic ˆMCS iid,m, j in descending order.

(x) Compute the quantile for the desired significance level and compare the test statistic for the

observed violation sequence to the resulting critical value.
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A.3 Test of Conditional Coverage

(i) Simulate violation sequences by drawing l-times n random variables with distribution

Îi, j(p) ∼ Bern(p), i = 1, ..., n, j = 1, ..., l,

under the condition that
∑n

i=1 Îi, j > 1, ∀ j.

(ii) For each simulated violation sequence, identify the set of time indexes of the violations by

V̂ j = {t̂ j|Î j,i = 1} = (t̂ j,1, ..., t̂ j,m).

(iii) Draw l + 1 random variables by

ε j ∼ N(0, 1) · 0.001, j = 1, ..., l + 1.

(iv) Calculate the violation frequency of each of the simulated sequences

m̂ j =

n∑
i=1

Îi, j.

(v) Define m̂ = (m̂1, ..., m̂l) and set m̂min = max(2,min(m̂)) and m̂max = max(m̂) for the lower and

upper bound of possible VaR violation frequencies.

(vi) For each k = m̂min, m̂min+1, . . . , m̂max, simulate violation sequences by drawing l∗-times n ran-

dom variables with distribution

Ĩi, j(k/n) ∼ Bern(k/n), i = 1, ..., n, j = 1, ..., l∗,

under the condition that
∑n

i=1 Ĩi, j(k/n) = k, ∀ j.
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(vii) For k and each simulated violation sequence, identify the set of time indexes of the violations

by

Ṽ j,k = {t̃ j,k|Ĩi, j,k = 1} = (t̃ j,1, ..., t̃ j,k).

(viii) For each k, calculate rk, an estimator for E(MCS iid,k|H0), by

rk =
1
l∗
·

l∗∑
j=1

⎛⎜⎜⎜⎜⎜⎝t̃2
j,1 + (n − t̃ j,k)

2 +

k∑
s=2

(t̃ j,s − t̃ j,s−1)
2

⎞⎟⎟⎟⎟⎟⎠ .

(ix) Calculate the test statistic for each violation sequence simulated in step (i) by

ˆMCS cc,k, j = a f ( ˆMCS uc, j) + (1 − a)g( ˆMCS iid,k, j), 0 ≤ a ≤ 1,

where

f ( ˆMCS uc, j) =

∣∣∣∣∣∣∣∣
(
ε j +

∑n
i=1 Îi

)
/n − p

p

∣∣∣∣∣∣∣∣ ,

and

g( ˆMCS iid,k, j) =
ˆMCS iid,k, j − rk

rk
· 1{ ˆMCS iid,k, j≥rk}, k =

n∑
i=1

Îi, j.

(x) Sort the resulting values of the simulated statistic ˆMCS cc,k, j in descending order.

(xi) Compute the quantile for the desired significance level.

(xii) Generate the violation sequence resulting from the observed returns and the corresponding

VaR forecasts by

Ii(p) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
1, if yi < VaRi|i−1(p);

0, else.
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(xiii) Calculate the sum of observed VaR violations by

m =
n∑

i=1

Ii.

(xiv) Identify the set of time indexes where an observed VaR violation occurred by

V = {t|Ii = 1} = (t1, ..., tm).

(xv) If m � [m̂min, m̂min+1, . . . , m̂max], determine rm by repeating steps (vi) to (viii) where k is

replaced by m.

(xvi) Calculate the test statistic for the observed violation sequence by

MCS cc,m = a f (MCS uc) + (1 − a)g(MCS iid,m), 0 ≤ a ≤ 1,

where

f (MCS uc) =

∣∣∣∣∣∣
(εl+1 +

∑n
i=1 Ii)/n − p

p

∣∣∣∣∣∣ ,
and

g(MCS iid,m) =
MCS iid,m − rm

rm
· 1{MCS iid,m≥rm}.

(xvii) Compare the test statistic for the observed violation sequence to the critical value.
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