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This paper introduces multivariate distribution regression (MDR), a semi-parametric approach

to estimate the joint distribution of outcomes conditional on covariates. The method allows

studying complex dependence structures and distributional treatment effects without making

strong, parametric assumptions. I show that the MDR coefficient process converges to a Gaus-

sian process and that the bootstrap is consistent for the asymptotic distribution of the esti-

mator. Methodologically, MDR contributes by offering the analysis of many functionals of the

multivariate CDF, including counterfactual distributions. Compared to existing models, the

contribution of MDR is its flexibility - it requires weak assumptions, is not affected by the curse

of dimensionality, and does not require setting tuning parameters. Simulation studies show that

MDR’s flexibility helps reduce potential biases at moderate costs of increased variances. Finally,

I analyze shifts in spousal labor supply in response to a health shock. I find that if low-income

individuals receive disability insurance benefits, their spouses respond by increasing their labor

supply. The opposite holds for high-income households, likely because they can afford to work

fewer hours and look after their partner.
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1 Introduction

Researchers often aim to estimate the effect of covariates on the joint distribution of

outcomes (see Patton, 2012, for an overview). Such situations arise in settings where

observables affect the dependence between outcomes. For instance, this is the case for

the division of labor supply within households. The rising correlation between spouses’

incomes depends on the allocation of housework and is an essential driver of inequality

(Hyslop, 2001; Schwartz, 2010). The allocation of labor, in turn, is a function of parent-

hood, bargaining power, and norms (e.g. Kleven et al., 2019; Kühhirt, 2011). Another

example is equity price dynamics in multiple markets. The co-movement of asset returns

depends on a list of factors such as the degree of financial integration, market cycles,

or country-specific characteristics (e.g. Christoffersen et al., 2012; Aloui et al., 2011). In

both cases, explicitly allowing the dependence structure to vary with the regressors may

provide additional insights that univariate approaches would miss. In this spirit, this

paper derives a flexible estimator of the multivariate cumulative distribution function

(CDF) conditional on a set of covariates.

Multivariate Distribution Regression (MDR) builds on the theory of univariate Distri-

bution Regression (DR) initially introduced by Williams and Grizzle (1972) and applied

to ordered outcomes by Jung (1996). Foresi and Peracchi (1995) were the first to establish

pointwise convergence at a finite number of thresholds. Building on these results, Cher-

nozhukov et al. (2013) proved that a functional central limit theorem holds for univariate

conditional CDFs estimated using DR. This paper departs from their setting and extends

univariate DR to the multivariate case. While the results in Chernozhukov et al. (2013)

are based on theorems for approximate Z-estimators, I make use of exact Z-estimators,

as quantile regression methods play no part in this analysis. In its simplest form and

analog to univariate DR, MDR reduces to the empirical multivariate CDF when using

only a constant as a regressor. Thus, MDR generalizes two well-studied estimators: (i)

the empirical multivariate CDF by including covariates and (ii) univariate DR by consid-

ering multiple outcomes. In contrast to univariate DR, MDR provides information on the

dependence structure, for instance, the correlation matrix. Considering the general case,

the theoretical contribution of this paper is threefold. I show (i) that the MDR coefficient

process converges to a mean-zero Gaussian process, (ii) that the corresponding variance

is consistently estimated by a bootstrap technique, and (iii) that functionals of the fitted

CDF are consistently estimated by the functional delta method. The last result is of

great relevance from a methodological point of view. Essentially, MDR is attractive as it

offers many novel possibilities to analyze the joint CDF without strongly restricting the

latter parametrically. In this regard, the main contribution of the present paper is its
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relevance for applied research, which is underlined by the examples in section 2 and 5.

At the model’s core, MDR estimates the joint CDF of multiple outcomes conditional

on covariates. Considering a bivariate case, denote the outcomes by Y1,i and Y2,i for

observation i. The joint CDF is the probability of Y1,i and Y2,i being smaller than some

specified values, say t1 and t2. Formally, this is FYi
(t) = P (Y1,i ≤ t1, Y2,i ≤ t2), where t is

the vector of thresholds. Equivalently, FYi
(t) is the expected value of the binary variable

E[1(Y1,i ≤ t1, Y2,i ≤ t2)]. Most applied research is interested in how regressors affect this

probability. A natural possibility to model E[1(Y1,i ≤ t1, Y2,i ≤ t2)|Xi] is to use a binary

regression such as a logistic or probit model. In the following, denote the value of the

conditional CDF at t1 and t2 by FYi|Xi
(t|Xi). Essentially, the MDR estimator models this

conditional expectation at many thresholds. The resulting coefficients on Xi, β(t), are

allowed to vary with t, which ensures a high degree of flexibility. This modeling approach

entails several attractive features. First, the estimator is trivial to implement. Second,

each individual regression is tractable and offers various forms of well-known results,

such as marginal effects. Third, the obtained fit of the CDF can be used to estimate

any feature of the joint distribution. Beyond many univariate statistics, this includes,

for instance, quantile functions (QF) at specific locations within the joint distribution,

measures of tail dependencies, or transition matrices. Finally, having obtained the full

conditional distribution, it is straightforward to compute counterfactual distributions

by (i) either integrating over a modified distribution of covariates or (ii) changing the

conditional distribution itself. This offers a large variety of potential functionals that can

be tailored to the specific case at hand.

I illustrate the model in an application to the division of labor supply within Swiss

households. More precisely, I estimate how household labor income changes after the

main earner newly receive Disability Insurance Benefits (DIB). Generally, receiving DIB

is associated with a lower labor supply (e.g. Autor et al., 2016). Due to fiscal debates

on who should be subsidized, this effect has drawn much attention in recent years.1

Motivated by the study of Autor et al. (2019), I expect that spouses expand their labor

supply and partly compensate for the loss of household income which the insurance might

not fully cover. MDR offers the possibility to analyze these shifts separately at all parts

of the bivariate distribution of labor earnings. I find that the spouses’ response crucially

depends on their partner’s income. If the shock hits low-income main earners, the spousal

labor supply increases to compensate for the financial loss of the household. In contrast,

spouses of high-income individuals reduce their labor supply. Likely, these individuals

1For instance, changing the rules on eligibility of DIB was a much-disputed topic in Britain (Walker
and Elgot, 2017). Recently, in relation to Covid-19, Canadian politicians disagreed over emergency DIB
(Canadian Press, 2020).
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take care of their partners and the household chores as they can afford to work fewer

hours (as suggested by Lee, 2020).

In recent years, many studies have considered extensions to univariate DR as intro-

duced in Chernozhukov et al. (2013). For instance, this includes introducing two-way fixed

effects into DR models (Chernozhukov et al., 2020a) or estimating structural functions

in nonseparable triangular models (Chernozhukov et al., 2020b). Both studies highlight

the flexibility of the underlying framework, which is of great importance for applied re-

search as fixed effects and endogenous regressors are prevalent in many settings. Similar

extensions seem feasible in the context of MDR, yet, the present paper leaves this for

future research. Ćevid et al. (2020) have suggested a fully nonparametric approach to

multivariate DR using random forests. Like similar nonparametric methods discussed

below, this estimator might suffer from the curse of dimensionality. Most recently, Wang

et al. (2022) proposed to estimate bivariate distributions using a factorization approach

based on two univariate DRs. However, the authors impose that one outcome variable

(Z) is discrete and linearly shifts the other outcome (Y ). This is restrictive, as, for in-

stance, no interaction between the first outcome and the covariates is present. Thus,

it is by construction impossible that Y and Z are positively correlated for some X and

negatively for others. Further, note that the conditioning outcome variable needs to have

the same effect if switched from 0 to 1 as from 2 to 3. Similar restrictions are not present

with MDR. The comparison between the approaches below shows that these restrictions

might be crucial.

As an alternative to MDR, researchers may consider quantile regression (QR) as a tool

to model the conditional distribution of an outcome. Since the seminal paper by Koenker

and Bassett (1978), QR has developed into a standard method to analyze heterogeneity.

Several authors extended the principles to the multivariate case. However, this is a non-

trivial exercise due to the lack of canonical ordering in higher dimensions. In search of

a unified approach, Zuo and Serfling (2000) introduced desirable properties of statistical

depth functions. Recently, Chernozhukov et al. (2017) extended the QR framework to

the multivariate setting and provided results on multivariate quantiles. Compared to

QR, DR naturally generalizes to multivariate tasks and neatly handles mixed or discrete

outcomes (Chernozhukov et al., 2019). For instance, wages or labor market participation

are typically non-continuously distributed. Thus, researchers may favor DR in such

applications.

More broadly, the derived estimator fits in a literature concerned with the convergence

of empirical processes. Dudley (1966) has been the first to derive a theory on multivari-

ate empirical distributions, and numerous authors extended this result to more involved
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settings (e.g. Delattre and Roquain, 2016). In principle, parametric and nonparametric

approaches might be suitable for estimating a multivariate CDF. For instance, Gijbels et

al. (2011) proposed nonparametric estimates of a copula model. However, as the number

of regressors increases, these models become infeasible in practice because they suffer

from the curse of dimensionality (Fermanian and Lopez, 2018). Similarly, the nonpara-

metric approach of Bouzebda and Nemouchi (2019) using U-processes is likely to suffer

from the same drawback. One might resolve the issue by imposing a structural form of

the distribution. In this spirit, recent studies aiming to model conditional CDFs tackled

the issue using copula models (Fermanian and Lopez, 2018; Portier and Segers, 2018). In

general, copulas are attractive in this setting due to the possibility to separately specify

the marginals and the dependence structure, the copula itself, ensuring a high degree of

flexibility (e.g. Patton, 2012). For instance, Klein et al. (2019) proposed a setting where

the estimation of the conditional CDF is replaced by the estimation of a monotonically

increasing transformation function. This simplifies the estimation and the derived infer-

ence theory. Still, the choice of the transformation function remains specific to the case

at hand. Compared to these competitors, MDR is set in between the nonparametric and

parametric methods. Although the assumption on the link function, the analog to the

transformation function of Klein et al. (2019), is parametric, the regressors can flexibly

affect the CDF throughout the distribution. Thus, using MDR, it is feasible to account

for many confounders and reduce the risk of dimensionality issues. Further, the practical

advantages of MDR are twofold. First, the conditional, multivariate CDF implies all

copula-type parameters of the distribution, while the opposite does not hold. For an

overview of potential parameters of interest, see Callaway et al. (2021). Second, the risk

of misspecification is lower compared to copula models as the assumption on the copula

is crucial and may be too restrictive (Zimmer, 2012; Ho et al., 2015). In a simplistic

simulation setting, I show that MDR performs equally well as copula models, even in

cases with only one regressor.

The remainder of this paper is structured as follows. Section 2 introduces the model

and presents several examples illustrating the advantages of MDR and counterfactual

CDFs. Section 3 derives the asymptotic theory of the estimator and establishes further

relevant results. A simulation example is set up in section 4. Section 5 presents the

application, and section 6 concludes.

2 Model

This section introduces the approach of MDR by first presenting how the multivariate

CDF is modeled and then focusing on desired functionals of the CDF, primarily counter-



Multivariate Distribution Regression 6

factual distributions. To illustrate the wide range of potential applications, I present sev-

eral use cases of MDR in the second half of this section. In the following, let FYi|Xi
(t|Xi)

be the multivariate CDF of the d-dimensional response vector Yi = (Y1,i, .., Yd,i), where

t ∈ T = Rd is a vector of thresholds, Xi is a set of K regressors and i = 1, ..., N indexes

the observations. Throughout, the multivariate CDF is modeled by the assumption of a

parametric link function Λ and a coefficient vector β(t), i.e.

FYi|Xi
(t|Xi) = Λ(X ′iβ(t)). (1)

Typically, Λ is either a complementary log-log, logistic, or probit function. At a given

vector of thresholds, this model is no different from running a standard binary regression

of 1(Yi ≤ t) on the regressors Xi. To see this, note that by definition, a conditional CDF

can be written as FYi|Xi
(t|Xi) = P (Yi ≤ t|Xi) = E[1(Yi ≤ t)|Xi]. Consequentially, at

each t, one obtains a set of estimated coefficients β̂(t). In a nutshell, MDR is concerned

with the uniform convergence of all these estimates, i.e., the limiting process of the

estimated coefficients. Intuitively, one can think of estimating the model in equation (1)

at infinitely many thresholds and treating the obtained coefficients as a function of t.

The core of this modeling approach is the link function Λ. In the case of univariate

DR, it can be shown that using a complementary log-log link function, the model nests the

duration model by Cox (1972). An analog location-shift representation is not available

in the case of MDR, yet, the approach entails other attractive features. For instance,

we can derive the following relation by imposing a logistic link function and assuming

independence of Y1,i and Y2,i.

FY1,i,Y2,i|Xi
(t|Xi) = Λ(X ′iβ(t))

= Λ(X ′iβ1(t1))Λ(X
′
iβ2(t2)),

where β1(t1) and β2(t2) are the coefficient vectors of both uni-

variate DRs. In this particular case, it holds that X ′iβ(t) =

− ln [exp(−X ′iβ1(t1)) + exp(−X ′iβ2(t2)) + exp(−X ′i(β1(t1) + β2(t2))], i.e. β(t) has a

representation based on univariate DR coefficients only. A similar result is available for

the complementary log-log link function.

The underlying implications of this modeling approach, including the assumptions

on Λ, are discussed in detail in section 3.1. While the estimated coefficient vector is

interesting on its own, in many cases, the focus will lie on the implied distribution. In

particular, it is feasible to obtain the average value of the multivariate CDF by integrating
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over the observed covariate distribution FXi
(X). Formally, this is equivalent to

FY ⟨·|·⟩(t) =

∫
Xi

FYi|Xi
(t|X)dFXi

(X), (2)

where the subscript ⟨·|·⟩ denotes that neither the conditional distribution FYi|Xi
(t|X) nor

the covariate distribution FXi
(X) has been changed. Note that the resulting distribution

no longer depends on Xi. Building on equation (2), one could integrate over a modified

covariate distribution to obtain a counterfactual CDF (see section 3.3 for all types of

counterfactual distributions). To illustrate the value of this artificial distribution, suppose

we are interested in the effect of a binary treatmentDi that is part ofXi. A natural choice

of two counterfactuals would be the CDF in the presence or absence of Di, i.e. Di = 0

or Di = 1. Intuitively, this answers ”How would the CDF look like if the effect of Di

treated everyone (no one)?”. Denoting the covariate distribution with all values of Di set

to d ∈ {0, 1} by FXi,Di=d
(X), the counterfactual CDFs and the resulting, distributional

treatment effects can be written as

FY ⟨·|D=d⟩(t) =

∫
Xi,Di=d

FYi|Xi
(t|X)dFXi,Di=d

(X) and (3)

∆(t) = g(FY ⟨·|D=1⟩(t))− g(FY ⟨·|D=0⟩(t)), (4)

where the choice g(·) depends on the research question. Below, I propose to consider the

CDF of one outcome at specific locations of the joint distribution. Other choices of g(·)
include tail dependence measures, transition, or variance-covariance matrices. Naturally,

∆(t) implies univariate, distributional effects and aggregate effects too, for instance, the

means and variances of Yi. Note that the comparison of the two CDFs has a causal

interpretation when a standard conditional independence assumption (CIA) is imposed,

i.e., that the treatment is randomly assigned once conditioned on the covariates.2 To fix

ideas and highlight the added value of MDR, I present several examples in the following.

First, I demonstrate the flexibility of MDR imposing a known outcome distribution.

Second, I compare MDR to competitive copula approaches using real-world data on

stock returns. Finally, I sketch two additional examples in applied research where MDR

could benefit.

Example 1 : Clayton Copula Suppose the outcome distribution is generated by a

Clayton copula and marginals, which follow standard normal distributions. Formally,

2For a detailed discussion on when counterfactuals do have causal interpretation, see Chernozhukov
et al. (2013, section 2.3).
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this is

FY1,i,Y2,i|Xi
(y1, y2|x) = C

(
FY1,i|Xi

(y1|x), FY2,i|Xi
(y2|x)

)
=
(
Φ(y1|x)−θ + Φ(y2|x)−θ − 1

)− 1
θ , (5)

where Φ(·) is the standard normal distribution, Xi ∼ N(0, 5) and, for simplicity, θ = 3 is

assumed to be independent of Xi. Further, assume that Yj,i = β0,j+β1,jXi+ϵj for j = 1, 2

where both ϵj follow a standard normal distribution and ensure that joint distribution

of Y1,i and Y2,i follows (5). This particular case is tractable as it implies a known link

function and is simple enough to demonstrate the generality of the MDR estimator.

Next, I consider how well MDR is able to estimate the underlying joint distribution.

For this purpose, I employ a maximum likelihood procedure where θ is estimated in

the first step based on the least squares residuals from Y1,i and Y2,i on Xi, respectively.

In a second step, β0,1, β1,1, β0,2 and β1,2 are estimated based on the likelihood function

given θ. Panel (a) of Figure 1 displays the value of the CDF at two sets of thresholds

conditional on Xi. We observe that across all values of Xi, the MDR estimator matches

the underlying distribution from (5) closely. This implies that the correctly specified

MDR estimator nests the Clayton copula in (5) as a special case. To see this, note that

all four coefficients were assumed to be constant across the distribution. However, the

MDR estimator allows for the coefficients to depend on y1 and y2, i.e., the location of

the distribution. This is visualized in panel (b) of Figure 1 where all estimated values

of β1,1 are displayed. The estimates narrowly float around the true value of .1, which

is represented by the transparent layer. At each gridpoint, the MDR estimator would

allow for a different β1,1. Thus, all estimates together form a basis to test whether the

parameters are, in fact, constant. In this regard, MDR nests the distribution under (5)

with constant parameters as a strict special case. Note that while section A.3 sketches

testing possibilities, developing a test on the multivariate grid is beyond the scope of the

present paper.

Example 2 : SP500 & FTSE100 The interdependence of stock prices in multiple

markets has long been recognized (e.g. Christoffersen et al., 2012; Aloui et al., 2011;

Chavas, 2020). In short, positive correlations arise across countries and markets. These

correlations depend on numerous factors, such as market cycles, the type of goods, and

the economy’s stage of development. The stylized example below aims at two goals: (i)

estimating the mutual risk of losses and (ii) demonstrating the MDR’s flexibility. The

former can be conceptualized by the tail dependence implied by the joint distribution of

negative returns. Taking two well-studied indices, the SP500 and the FTSE100, denote
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Figure 1: Correctly specified MDR

Notes: This figure is based on 5000 observations drawn from (5) with Y1,i = 1 + .1Xi + ϵ1, Y2,i =
−.5− .2Xi + ϵ2 and θ = 3. For panel (b), a grid of 10× 10 (quantile values from .05 to .95) was used.

the tail dependence by

χ̄ =
2 ln (Pr(nrUS > Q95,US)

ln (Pr(nrUS > Q95,US, nrUK > Q95,UK))
− 1

=
2 ln (.05)

ln (1 + FUS,UK(Q95,US, Q95,UK)− FUS,UK(∞, Q95,UK)− FUS,UK(Q95,US,∞))
− 1,

(6)

where nrUS and nrUS indicate the negative returns, Q95,US and Q95,UK are their 95th

quantiles and FUS,UK(us, uk) represents their joint distribution. Note that the tail de-

pendence on the 95% level introduced in equation (6) is a direct function of the joint,

i.e., χ̄ = g(FUS,UK(us, uk)). It is straightforward to allow the CDF in (6) to depend on

covariates. Using a single regressor, log changes in the FRED economic uncertainty index

∆unc, we can model the tail dependence as a function of the covariate. Specifically, we

generate a counterfactual distribution for each percentile of ∆unc according to equation

(3). We expect substantial increases in uncertainty to lead to (i) higher losses and (ii)

an increased tail dependence, as global uncertainty is likely to affect the markets jointly.

Having filtered all indices using an ARMA(1,1) each, I run five different models: The

MDR, a non-parametric copula model, two parametric models imposing a Gumbel and

Joe copula, respectively, and the factorization estimator by Wang et al. (2022). For the

latter, note that we must discretize one return series; 25 values were chosen. The copula
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estimators are introduced in Derumigny and Fermanian (2017). Two issues might affect

the fit quality in the present case: (i) potential misspecification because of the paramet-

ric restrictions and (ii) the underlying bias-variance trade-off. In particular, the copula

models benefit from a reduced variance due to their distributional assumption. However,

the MDR estimator can reduce the bias due to its flexibility. The simulation study in

section 4 supports these claims.

Figure 2: SP500 & FTSE100
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Notes: Panel (a) plots the uncertainty index with three major crisis highlighted: The 2001 recession,
the 2008 financial crisis and the 2020 covid pandemic. In panel (b), the tail dependence is modelled as
a function of changes in the uncertainty index. For the non-parametric copula model, a bandwidth of .5
was chosen. For the factorization estimator by Wang et al. (2022), 7 gridpoints between .95 and 1 were
used. Confidence bands are omitted to improve readability.

The results in Figure 2 are based on daily data from January 2000 to December 2022.

From panel (b), we find that in moderate times the tail dependence is close to 0.4, which

implies a very weak relation of the indices. On the other hand, when the uncertainty is

high, we observe a substantial tail dependence, considerably higher than estimated previ-

ously (Poon et al., 2004). This is in line with our expectations stated above. Comparing

the results across models, we note that all estimates follow a similar pattern. The para-

metric copula models are less sensitive to extreme values of uncertainty. To some extent,

this is because of their comparably stronger assumptions; partly, this could be due to

misspecification (Zimmer, 2012). The non-parametric copula and the MDR entail more

flexibility; both pick up a more variable pattern. However, the chosen bandwidth for the
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former restricts this flexibility. Finally, note that the estimates for the model by Wang et

al. (2022) depend on two practical issues: The grid’s thinness and the data’s discreteness

can introduce a bias. The latter becomes apparent as the unconditional distribution does

not imply the average tail dependence. Also, the fact that the second outcome might

only shift the first linearly at one gridpoint restricts the dependence structure. This does

not seem to matter in the present case but can be seen in more complicated settings, as

in section 5. In contrast to example 1, these employed models are generally not nested.

Therefore, we cannot directly test the validity of the parametric assumptions. However,

the MDR is most likely to provide an accurate estimate as it is the most flexible ap-

proach, thus reducing the risk of a bias. In summary, MDR is attractive because it does

not require a stand on comparably strong parametric assumptions or tuning parameters

and does not suffer from the curse of dimensionality.

Example 3 : Bivariate Labor Supply Family labor supply has gained much attention

due to its relevance for intra-family and aggregate inequality (Eika et al., 2019; Hyslop,

2001; Schwartz, 2010). Consider two spouses who both participate in the labor market.

Let Y1,i and Y2,i denote the labor income of the wives and husbands, respectively. Notably,

labor income depends on several factors such as gender, age, education, parenthood, ori-

gin, or industry (see, e.g. Blau and Winkler, 2018, for an overview). Thus, one should

include these characteristics in a model of Y1,i and Y2,i to avoid misspecification - a task

for which MDR is well suited. Within this set of regressors, let us reconsider the effect

of a binary variable Di. For instance, tax reform, winning the lottery, unemployment, or

a health shock may serve as treatment variables. Cesarini et al. (2017) find that winning

the lottery modestly reduces the labor supply for winners. The reduction is smaller for

spouses, which is inconsistent with unitary household models. Using MDR, modeling the

multivariate labor supply response could reveal that the impacts depend on the initial

earnings of both partners. Thus, while the average effects are small, individuals at the

bottom of the distribution may experience considerable changes. To see this, let us con-

sider the effect on Y1,i at specific levels of Y2,i, i.e. Qj(Y2,i) ≤ Y2,i < Qk(Y2,i) whereQk(Y2,i)

denotes the kth quantile of Y2,i. Accordingly, we can obtain FY1⟨·|Qj(Y2,i)≤Y2,i<Qk(Y2,i),D⟩(t)

by setting

g(FY ⟨·|j,k;D⟩(t)) =
FY ⟨·|D⟩(Y1, Qk(Y2))(t)− FY ⟨·|D⟩(Y1, Qj(Y2))(t)

FY ⟨·|D⟩(∞, Qk(Y2))(t)− FY ⟨·|D⟩(∞, Qj(Y2))(t)
. (7)

The definition of the treatment effect directly follows from (4), and the effect on Y2,i can

be looked at analogously. In the context of tax reforms, it might be interesting to see how

households would react to a change from joint to individual taxation for married couples.
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3 Considering 17 European countries and the US, Bick and Fuchs-Schündeln (2017)

show that married women would increase their hours worked by 10% if they were taxed

individually. Drawing on these implications, the MDR estimator could answer whether

the potential increase in female labor supply differs across the spouses’ distribution of

earnings. Other applications could focus on the effect of a health shock (Fadlon and

Nielsen, 2021), extending unemployment benefits (Nekoei and Weber, 2017), job loss

(Halla et al., 2020), worktime regulations (Goux et al., 2014), or retirement benefits

(Manoli and Weber, 2016).

Example 4 : Intergenerational Mobility Many studies find that children’s economic

status depends on their parent’s characteristics. How strongly the latter determine the

children’s education, earnings, and success is usually described as intergenerational mo-

bility. Neighbourhoods (Chetty and Hendren, 2018a,b), migration (Ward, 2020), college

allocation (Chetty et al., 2020), and education (Lavy et al., 2022) are among the many

factors affecting mobility. In the context of MDR, one could model the childrens’ and

parents’ variables of interest simultaneously. Typically, this literature conceptualizes

mobility by looking at transition matrices or upward mobility, i.e., the childrens’ proba-

bility of attaining a higher value of the outcome than their parents. As shown on page

9 in Callaway et al. (2021) both are a function of the marginal distributions which, in

turn, are implied by the joint distribution. Thus, the choice of g(·) naturally follows

from the equations in Callaway et al. (2021). Making use of counterfactual distributions

analog to equation (3), we could model transition matrices for individuals from poor

(rich) neighborhoods, bad (good) colleges, or for different countries of origin. In this

regard, the presented framework may deepen existing findings by detecting new sources

of heterogeneity.

3 Asymptotic Theory

3.1 Assumptions

This section introduces and discusses the assumptions on the underlying data and the

model.

Assumption 1 : Data The data Yi, Xi is i.i.d.

Assumption 2 : Model The multivariate CDF is modeled by a parametric link function

Λ, i.e.

3This is discussed in Switzerland, where married couples pay up to 10% more in taxes than their
single counterparts (Peters, 2014). Due to this inequality, there have been numerous attempts to reform
the tax system (e.g. Schöchli, 2019). However, the political parties have not reached an agreement (CH
Media, 2020).
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FYi|Xi
(t|Xi) = Λ(X ′iβ(t)), (8)

where β(t) is a K×1 function-valued coefficient vector and Xi is a K×1 matrix of regres-

sors. The link function Λ is assumed to be either a linear, probit, logistic, complementary

log-log or cauchit function. Let β0(t) denote the true parameters.

Assumption 1 is standard for DR models. Note that Assumption 1 can be relaxed as

consistency and convergence of Z-estimators are more general (e.g. Kosorok, 2008, p.

246). The model introduced in assumption 2 is semi-parametric in the sense that it

requires a parametric link function while allowing the coefficients to vary flexibly with

the thresholds. The choice of the link function should be viewed in the light of two

arguments. First, in the absence of covariates, the link function does not affect the results

and the model generalizes to the non-parametric estimate of the empirical distribution

function. Second, if Xi is rich enough, the CDF is approximated arbitrarily well and the

parametric form of the link function is irrelevant too.4

Additional remarks should be made with respect to assumption 2. First, the estimator

for β0(t) defined in equation (8) is a Z-estimator and can be interpreted as a pseudo

maximum likelihood estimator (MLE) because it provides the best approximation of the

CDF given a specific link function. Second, the model in equation (8) may be misspecified,

yet consistent results can still be obtained under mild regularity conditions (see Theorem

2 in Wald, 1949; White, 1982) as the estimator sets in a pseudo-MLE framework. Third,

the model allows for the inclusion of a wide range of functionals of Xi, which ensure that

the CDF is approximated well. Finally, the distribution function in equation (8) does not

need to be continuous as the model also captures mixed or discrete outcome variables.5

Yet, what is needed to obtain uniform results for the MDR estimator below is that

the map t 7→ FYi|Xi
(t|Xi) is uniformly continuous as stated in the following assumption

3. Essentially, this assumption ensures that the distance between the grid points on t

is indefinitely small, thus establishing a continuum on t. Note that this assumption is

analog to condition D (b) in Chernozhukov et al. (2013) and does not require the outcome

variables to be continuous as the approximation of the CDF is made pointwise for each

4Following the argument in Chernozhukov et al. (2013, p. 2217), let Pk(X) consist of
the first p components of a basis in L2(X , Pk). Assume that Λ−1

[
FYi|Xi

(t|X)
]

∈ L2(X , Pk)

and λ(z) = ∂Λ(z)
∂z is bounded above by λ̄. Define the squared misspecification error δp =

E
[
Λ−1(FYi|Xi

(t|X))− Pk(X)′β(t)
]
E
[
Λ−1(FYi|Xi

(t|X))− Pk(X)′β(t)
]′
. Then, it can be shown that

δp → 0 as p grows. Thus, E
[
FYi|Xi

(t|X)− Λ(Pk(X)′β(t))
]
E
[
FYi|Xi

(t|X)− Λ(Pk(X)′β(t))
]′ ≤ λ̄δp → 0

by weak concavity of Λ.
5To see this, suppose that the true CDF FYi|Xi

(t|Xi) is discrete or mixed. As the approximation
is made pointwise at the thresholds t, discrete or mixed outcomes can easily be handled by the binary
regressions. In this case, estimating the model in equation (8) reveals several times the same coefficient
vector. This is equivalent to estimating the model at a finite number of thresholds. Thus, the coefficient
vector is consistently estimated and jointly normally distributed with known variance.
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t.

Assumption 3 : Grid Let h(f, f̃) = [
∫
(f − f̃)2dFXi

]1/2 be a metric on F , where F
is a class of measurable functions including the CDF from assumption 2 as well as the

indicators of all the rectangles in RdK . As a result, F is totally bounded under h. Assume

that the map t 7→ FYi|Xi
(t|Xi) is uniformly continuous with respect to the metric h.

The objective function is defined as an approximate zero of a function Ψ(β, t) between two

normed spaces. More precisely, Ψ(β, t) : Θ×M 7→ Θ where M is an open set containing

T and Θ = RdK is the parameter space which contains β with dK being the dimension

of the regressor matrix. I define the corresponding norms to be Euclidean norm || · || and
the infinity norm || · ||∞. By Assumption 1 and since the binary regressions are based on

MLE, Ψ(β, t) = Pψβ,t, where P is the probability measure and ψβ,t is equivalent to the

derivative of the log likelihood, that is

ψβ,t = (Λ [X ′iβ(t)]− yi(t))

(
λ [X ′iβ(t)]Xi

Λ [X ′iβ(t)] (1− Λ [X ′iβ(t)])

)
, (9)

where λ(·) denotes the derivative of Λ(·) and yi(t) = 1(Y1,i ≤ t1, ..., Yd,i ≤ td). Accord-

ingly, let Ψn(β, t) = Pnψβ,t be the sample estimator, where Pn is the empirical measure.

Thus, the MDR estimator β̂n is the solution to the estimating equations Ψn(β, t) = 0, i.e.

satisfying ||Ψn(β̂n, t)||∞
p−→ 0. The subsequent assumption is concerned with the proper-

ties of Ψ(β, t) itself. Then, assumption 5 introduces the requirements for the bootstrap

to be a valid tool to do inference.

Assumption 4 : Identifiability At the true values β0 ∈ Θ, Ψ(β0, t) = 0. Further,

assume that both, Ψ(β0, t) and Ψ(β, t) : M×Θ 7→ Θ are one-to-one maps.

Assumption 5 : Bootstrap Let β̂n be the MDR estimator and β̂◦n be a minimizer of

supt∈T |Ψ◦n(β, t)| where Ψ◦n(β, t) = P◦nψβ,t, and P◦nf = n−1
∑n

i=1
ξi
ξ̄
f(Xi) denotes the non-

parametric or multiplier bootstrap where ξ̄ = n−1
∑n

i=1 ξi. Assume that ξ1, ..., ξn are

i.i.d positive weights with 0 < µ = Eξ1 < ∞. In the case of the multiplier bootstrap,

additionally assume that 0 < τ = var(ξ1) <∞ and ||ξ1||2,1 <∞.

Assumption 4 requires the objective function to be zero only at the true values β0(t).

Thus, assumption 4 ensures that the true parameters are identified. Note that the con-

dition on the maps being one-to-one is stronger than what is needed (Kosorok, 2008, p.

244), however, the assumption simplifies the proofs. In most cases, assumption 4 is seen

as a technical requirement which is likely to be met.

With respect to assumption 5, two comments should be made. First, theoretically,

the only requirement is that the bootstrapped estimator is an approximate zero of the
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bootstrapped estimating equation. This allows for numerous forms of bootstraps. The

multiplier bootstrap and non-parametric bootstrap with multinomial weights are shown

to provide valid results as they capture two important cases in practice. Second, as Ψ(·)
can be shown to be strong Glivenko-Cantelli, other designs such as the exchangeable

bootstrap would be applicable too.

Before addressing uniform convergence of MDR, note that pointwise convergence is

established from standard asymptotic arguments in the framework of maximum likeihood

estimation. As mentioned above, the model in equation (8) is estimated as single regres-

sions at every entry of t. For a given t, yi(t) is regressed on Xi, for instance using a probit

model. Thus, at a finite number of t, MLE ensures that β0(t) is consistently estimated.

Further, the estimator of β0(t) is
√
n-consistent and asymptotically normally distributed

with a known expression for the variance which only depends on the chosen link function.

Finally, note that a finite number of MDR estimators at a finite number of thresholds are

jointly normally distributed. Yet, in contrast to Foresi and Peracchi (1995) and following

Chernozhukov et al. (2013), the asymptotic theory of this paper aims at establishing the

convergence of the continuum of these binary regressions.

Note that no additional assumptions are needed to establish the consistent estimation

of counterfactual distributions. Assumptions 1 to 4 are sufficient for the application of

the functional delta method on βn(t). Similarly, other functionals of the multivariate

CDF such as averages, quantile functions or variance-covariance matrices will be consis-

tently estimated. Corollary 1 in the following section establishes the applicability of the

functional delta method, section 3.3 then builds on this result and formally introduces

the counterfactual framework.

3.2 Results

Based on the assumptions in the previous section, this section presents the main theoret-

ical results. First, Theorem 1 establishes consistency, convergence, asymptotic normality

and equicontinuity of the MDR estimator. Thereafter, Theorem 2 is concerned with the

validity of the bootstrap. Having established the validity of the MDR estimator, Corol-

lary 1 states that functionals of the estimator are consistently estimated. In particular,

this includes counterfactual distributions in the spirit of Chernozhukov et al. (2013). The

corresponding proofs can be found in Appendix A.

Theorem 1 : Asymptotic Distribution Let Assumptions 1 to 4 hold. Then, the MDR

estimator β̂n(t) of β0(t) in equation (8) satisfies
√
n(β̂n(t)−β0(t))⇝ Ψ̇−1β0,t

Z, Ψ̇−1β0,t
is the

inverse of the Fréchet derivative at β0(t), Z ∈ ℓ∞(T ) is the tight, mean zero Gaussian

limiting distribution of
√
n(Ψn −Ψ)(β0, t).
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Theorem 1 states the main result of the theoretical analysis by establishing the asymptotic

behaviour of the MDR estimator. Remarkably, the proof of Theorem 1 includes an

argument showing that {ψβ,t : ||β(t)− β0(t)|| < δ, t ∈ T } is a Donsker class. This allows

for the application of a wide range of theoretical results (e.g. see Kosorok, 2008, Chapter

8.4). Further, note that the proof of Theorem 1 provides sufficient conditions for Ψ̇−1β0,t
to

be smooth and invertible at β0(t) such that the asymptotic distribution is well defined.

In particular, β 7→ Ψ(β, t) is shown to be Fréchet-differentiable which implies Hadamard

differentiability.

Corollary 1 : Applicability of the Fuctional Delta Method Consider the MDR

estimator of β0(t) defined in equation (8). Recall, that Ψ(β, t) : Θ 7→ L where Θ = RdK

and the norms of Θ 7→ L are || · || and || · ||L, respectively. As a result of Theorem 1,
√
n(β̂n(t)−β0(t))⇝ Ψ̇−1β0,t

Z with Z ∈ ℓ∞(T ) being the tight process. Let ϕ : Θϕ ⊂ Θ 7→ L.
By Theorem 2.8 in Kosorok (2008), for any ϕ which is Hadamard-differentiable, it holds

that
√
n(ϕ(β̂n(t)) − ϕ(β0(t))) ⇝ ϕ̇β0(t)(Ψ̇

−1
β0,t
Z). By Theorem 2.9 in Kosorok (2008), the

bootstrap applies to ϕ(β̂n(t)).

Corollary 1 establishes that functionals of the estimated CDF are consistently estimated

as long as they are Hadamard-differentiable. Further, the bootstrap is applicable to

these functionals too. Note that if ϕ is chosen to be Ψ, it directly follows that ϕ satisfies

the requirements of Corollary 1. This implication will be useful for the consistency

of counterfactual distributions. Whilst it is possible to draw inference based on the

asymptotic variance derived in Theorem 1, the following result establishes the validity of

the bootstrap. For the practitioner, this may be valuable tool as bootstrap techniques

are flexibly implemented. Theorem 2 establishes the validity of the multiplier and the

multinomial bootstrap.

Theorem 2: Validity of the Bootstrap Let Assumptions 1 to 5 hold. Denote the non-

parametric or multiplier bootstrapped estimator of β̂n by β̂◦n. Then, the MDR estimator

β̂n(t) of β0(t) in equation (8) satisfies
√
n(β̂◦n − β̂n) ⇝ k0Z, where Z ∈ ℓ∞(T ) is the

tight, mean zero Gaussian limiting distribution of
√
n(Ψn − Ψ)(β0, t), k0 = 1 for the

multinomial bootstrap, k0 = τ
µ
in the case of the multiplier bootstrap and where xii are

i.i.d. weights with µ = Eξ1 and τ = var(ξ1).

Based on the result in theorem 2, I provide an algorithm to obtain valid confidence bands

for the CDF. Algorithm 1 below is closely related to algorithm 1 in Chernozhukov et al.

(2019) and outlines how confidence bands can be obtained in applied settings.

Algorithm 1 : Confidence Bands for joint CDF

1. Draw many bootstrap samples of the data indexed by j = 1, ..., B. Use either the

multinomial or multiplier bootstrap as outlined in theorem 2.
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2. For each draw, obtain an estimate of the joint CDF F̂ j
Yi|Xi

(t|Xi).

3. For each t ∈ T , compute the robust standard errors by

ŝ(t) = (Q̂(.75, t)− Q̂(.25, t))/(Φ−1(.75)− Φ−1(.25)),

where Q̂(α, t) is the empirical α-quantile of the bootstrap sample of the CDF

F̂ j
Yi|Xi

(t|Xi) at t. Φ−1 denotes the inverse of the standard normal distribution.

4. Define the critical value to be

c(p) = p-quantile of
{
max
t∈T

|F̂ j
Yi|Xi

(t|Xi)− F̂Yi|Xi
(t|Xi)|/ŝ(t)

}
,

where F̂Yi|Xi
(t|Xi) denotes the point estimate of the CDF at t.

5. Construct the confidence bands for the CDF as

[L′(t), U ′(t)] =
[
F̂Yi|Xi

(t|Xi)± c(p)ŝ(t)
]
.

To draw uniform inference on functionals of the estimated CDF, I propose to use an

analogue procedure as outlined in algorithm 3 in Chernozhukov et al. (2013). Finally,

section A.3 in Appendix A introduces how one can test directly whether the coefficients

are constant across the univariate distributions.

3.3 Counterfactual Distributions

This section formalizes the framework outlined in section 2 and builds on the previously

derived results. In general, counterfactual distributions provide a flexible and tractable

tool to analyze how regressors affect the joint distributions of the outcomes. While it

is feasible to draw conclusions based on the estimated coefficients in (8), they depend

on the link function, which complicates the interpretation. Instead, counterfactual dis-

tributions directly connect to potential changes in the multivariate CDF. As outlined

in Chernozhukov et al. (2013, section 2.2), there are three types of counterfactuals: (i)

one can either modify the covariate distribution, (ii) the conditional distribution, or

(iii) both. This is done by using the conditional distribution of subgroup I, FYI |XI
(t|X)

which is modelled by (8), and integrating it over the covariate distribution of subgroup J ,

FXJ
(X). Thus, FY ⟨I|J⟩(t) represents the conditional distribution of subgroup I assuming
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they would have the characteristics of subgroup J . Formally, this is

FY ⟨I|J⟩(t) =

∫
XJ

FYI |XI
(t|X)dFXJ

(X). (10)

Crucially, it has to hold that XJ ⊆ XI , i.e., the support of covariates for subgroup J

includes the support of covariates for subgroup I. First, consider modifications of the

covariate distribution. In the simplest case, one may abstract from different subgroups

and only be interested in a unit change of a specific covariate. In this context, the

assumption on the common support can be dropped because the conditional CDF in (10)

is integrated over all observation. The case of a binary treatment outlined in section 2

falls into this category too.

Next, consider changing the conditional distribution, i.e., the second type of counter-

factuals. In practice, one takes the estimated coefficients for subgroup I and the covariate

distribution of subgroup J and plug them into the model derived in equation (8). Intu-

itively, this answers, ”How would the CDF of subgroup J look like if the regressors had

the same effects as for subgroup J?” In each of these cases, the counterfactual CDF is a

functional of β̂n(t). More precisely, the estimator of FY ⟨I|J⟩(t), F̂Y ⟨I|J⟩(t), can be written as∫
XJ

Λ
[
X ′iβ̂n,I(t)

]
dFXJ

(X). If Λ [·] is is Hadamard-differentiable, then
∫
XJ

Λ [·] dFXJ
(X)

satisfies the requirements of Corollary 1. Further, Hadamard-differentiability of the link

functions in assumption 2 is shown to hold in the Proof of Theorem 1.6 Thus, counter-

factual distributions are consistently estimated by the sample analog of equation (10),

and the bootstrap is a valid tool to conduct inference. Similarly, note that for univariate

quantile functions or conditional ones, as in equation (7), the monotone rearrangement

estimator by Chernozhukov et al. (2010) is applicable.

4 Simulation Studies

The simulation studies presented in this section serve two purposes. In the first step,

fixing the regression coefficients upfront, the MDR estimator is shown to converge to the

true values and follow the expected Gaussian process. Then, to highlight the flexibility

of MDR, I compare the estimator’s performance to conditional copula models. This ex-

ercise aims to demonstrate an underlying bias-variance tradeoff: Due to their parametric

assumptions, the copula models benefit from lower variances when approximating the

conditional distribution. Yet, in the presence of more evolved distributions, the MDR

estimator accurately accounts for non-linear effects resulting in a lower bias. For both

6Note that the proof of Theorem 1 includes showing that the listed link functions are Fréchet-
differentiable which is an even stronger statement than Hadamard-differentiability.
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purposes, it suffices to draw data from simplistic bivariate distributions. Throughout, all

distributions will depend only on one uniformly distributed regressor. Further, all sim-

ulations are based on three sample sizes n = {400, 1600, 6400} with 10′000 Monte Carlo

experiments each. Finally, note that the results are obtained using the CondCopulas

(Derumigny, 2020) package in R.

4.1 Coefficient Process

First, I consider the finite sample properties of the estimated regression coefficient process.

The coefficients of the constant β1,s1 have been chosen such that both outcome variables,

Y1,s1 and Y2,s1 , take on values between 0 and 1. The uniformly distributed regressor

Xs1 affects the outcomes through a regression coefficient βX,s1 ∈ (−2, 2). The exact

specifics of the data generating process are visualized in figure 5 in Appendix B. For

n = 1600, figure 3 presents the estimated and true coefficients of βX,s1 at the 25th,

50th and 75th percentile of Y1,s1 and Y2,s1 respectively, resulting in nine locations of the

joint distribution. From figure 3 we observe the following: (i) all estimates are centered

around the true values irrespective of the location, and (ii) the distribution of estimates

seems to follow a Gaussian distribution. Further, note that the variance of the estimates

varies across the considered nine locations of the distribution by construction of the DGP

(can be seen in figure 5), not due to a varying precision of the estimator. Table III in

Appendix B contains the according mean squared errors, standard deviations and biases

and supports that the MDR estimator is consistent. Finally, the same table suggests that

the estimator converges at the expected rate of
√
n.7

7Table IV in Appendix B contains the analogue results for the estimated coefficients of the constant.
All insights remain unchanged.
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Figure 3: Simulation 1, Estimated Coefficients β̂X,s1
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Notes: This figure presents the estimated coefficients β̂X,s1 over 10’000 Monte carlo replications at 9
locations in the distribution. The sample size for each draw is 1600.

4.2 Bias-Variance Tradeoff

In the next step, I compare the performance of the MDR estimator to conditional copula

models. In the following, I consider the parametric and non-parametric copula model

specifications in Derumigny and Fermanian (2017) which are implemented in the R pack-
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age CondCopulas (Derumigny, 2020).8 In the present case, it suffices to draw data

from a mean-zero normal distribution where only the standard deviation and the cor-

relation depend on the uniformly distributed regressor. In all cases, the correlation

ρY1,s2,Y2,s2 = sin(4π ·X). Further, the standard deviations are assumed to be either both

(i) 1, (ii) (X − a)2 or (iii) (X − b)4, where a and b are chosen such that Y1,s2 and Y2,s2

have, on average, a standard deviation of 1.

The estimated models require different sorts of assumptions. While for the MDR

estimator only a link function has to be chosen, both copula approaches require choosing

a bandwidth and either an assumption on the parametric form of the copula or the kernel.

For the benchmark case presented in table I, I consider the ”correctly” specified copula

models assuming a normal parametric copula and a Gaussian kernel in the non-parametric

case. Further, I use a bandwidth of .15 for all models. Table V in Appendix B performs

various robustness checks regarding the choice of the link function, the parametric form

of the copula, and the kernel. The copula models seem to depend more strongly on

the respective assumptions, yet, the main insights remain unchanged. For the MDR

estimator, I use a grid of 25×25 thresholds, the nonparametric copula estimator employs

a grid of 25× 25 pseudo observations and both copula models predict the CDF based on

a grid of 25× 25 values.

In contrast to the MDR estimator, the copula models do not provide a regression

coefficient process. Thus, the performances are evaluated directly at the estimated CDF

using an integrated mean square error (IMSE) criterion which is defined as

IMSE =
1

C

C∑
j

1

N

N∑
i

(F̂Y1,s2,Y2,s2|X(t|X)i,j − FY1,s2,Y2,s2|X(t|X)j)
2, (11)

where C is the number of cells which is used to estimate the CDF, N is the number of

observations in a cell j, F̂Y1,s2,Y2,s2|X(t|X)i,j is estimated CDF of Y1,s2 and Y2,s2 for one

observation at threshold t givenX in cell j and FY1,s2,Y2,s2|X(t|X)j is the average true value

of the corresponding CDF in cell j. Assuming that the true value is constant in each cell,

the IMSE can be decomposed in a variance and bias term for each cell. Then, I will take

the average over all cells to compare the performances. Note that implicitly, the IMSE

in equation (11) weights all 25 × 25 = 625 cells equally, resulting in a comprehensive

performance measure. As the IMSE in equation (11) corresponds to an average over

many cells, the convergence rate is no longer
√

(n). Finally, note that once we consider

more data points, the standard deviation might increase as it is measured relative to the

8The nonparametric estimator is defined on page 158 above equation (4) whereas the parametric

estimator θ̂ is specified on page 163. Further, note that the latter is not parametric in the strict sense
as the estimation involves kernel smoothing.
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cells’ average.

Table I: Simulation 2, Integrated MSE, SD and Bias of F̂Y1,s2,Y1,s2(t)

DGP 1 DGP 2 DGP 3

n Model. MSE SD Bias MSE SD Bias MSE SD Bias

400 MDR 0.0065 0.0165 0.0789 0.0080 0.0341 0.0826 0.0103 0.0394 0.0936
NC 0.0045 0.0147 0.0657 0.0104 0.0153 0.1009 0.0166 0.0150 0.1281
PC 0.0027 0.0211 0.0471 0.0086 0.0230 0.0897 0.0146 0.0224 0.1189

1600 MDR 0.0037 0.0252 0.0552 0.0063 0.0525 0.0598 0.0089 0.0572 0.0752
NC 0.0027 0.0234 0.0460 0.0070 0.0226 0.0803 0.0131 0.0206 0.1126
PC 0.0023 0.0373 0.0302 0.0065 0.0371 0.0717 0.0122 0.0331 0.1055

6400 MDR 0.0024 0.0300 0.0381 0.0055 0.0634 0.0391 0.0078 0.0665 0.0583
NC 0.0018 0.0284 0.0320 0.0047 0.0269 0.0629 0.0106 0.0247 0.1002
PC 0.0025 0.0454 0.0219 0.0052 0.0435 0.0579 0.0107 0.0392 0.0957

Notes: This table lists the average MSE, SD and Bias of F̂Y1,s2,Y2,s2
(t) for simulation 2. Three models

have been estimated: The Multivariate distribution regression (MDR), a non-parametric copula model
(NC) and a parametric copula model (PC). The estimated CDF is evaluated at a grid of 25× 25 points
defined by the quantile values of Y1,s2 and Y1,s2. The DGPs vary according to the assumend standard
deviation. All DGPs impose a mean-zero normal distribution with ρY1,s2,Y2,s2

= sin(4π·X). Further, DGP
1 assumes no heterogeneity (σY1,s2

= σY2,s2
= 1) where DGP 2 and 3 impose σY1,s2

= σY2,s2
= (X−.378)2

and σY1,s2
= σY2,s2

= (X − .273)4, respectively. The results were obtained using 10’000 Monte Carlo
replications.

The results of the second simulation study are presented in table I. Considering DGP

1, the considered estimators seem to provide fairly similar results. In small samples, the

MDR estimator performs slightly worse, likely because the effect of X on the distribution

is overestimated. Moving on to DGP 2, the underlying bias-variance trade-off becomes

obvious. Compared to the parametric copula estimator, MDR reduces the bias by 16.5

% at a cost of a 30% increase of the standard deviation (n = 1600). As the bias makes

up for a larger share of the MSE in the case of the parametric copula estimator, both

estimators provide an almost identical performance overall (MSE of 0.0063 (MDR) and

0.0065 (PC), respectively). When the complexity of the DGP is increased further, the

trade-off becomes even more apparent. In particular, considering the same estimators

with n = 1600, the MDR increases the standard deviation by 72% but reduces the bias

by 29%. As the bias is roughly three times the size of the standard deviation, this

results in a reduction in the MSE of 27%, a considerable improvement. Note that the

chosen DGPs are still simplistic, considering stronger non-linearities would cause the

MDR estimator to overperform even by a larger margin. Finally, note that the extent of

the reduction varies across DGPs and sample sizes, but the underlying trade-off remains

the same.
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5 Application to Household Labor Supply

The division of labor within households has been studied for a long time (e.g. Shelton

and John, 1996; Bianchi et al., 2000; Fuwa, 2004) and relates to intra-household decision

making (e.g. Ashraf, 2009). The traditionally asymmetric distribution of labor supply

may depend on childbirth (Kleven et al., 2019), tax incentives (Borella et al., 2019),

norms (Evertsson, 2014), education, bargaining power (Moeeni, 2019) as well as many

other factors. In the following, I consider the labor supply adjustments of spouses in

response to their partner’s newly receiving DIB. Many previous studies find that receiving

DI payments reduces the labor earnings for the handicapped (Autor et al., 2016; Marie

and Castello, 2012; Leisibach et al., 2018). In the same spirit, losing DI eligibility and

the corresponding payments increase household earnings (Deshpande, 2016). In contrast,

Autor et al. (2019) find no reduction in earnings for the disabled but a significant increase

in spousal labor supply. Likely, the latter response intends to secure the economic stability

of the household as family labor supply may act as insurance to persistent wage shocks

(Blundell et al., 2016). Note that the response might depend on the complementarity

of leisure time and the substitutability of childcare (Blundell et al., 2018). Lee (2020)

finds substantially lower labor supply responses, mainly because spouses spend many

hours caring for their disabled partners. For three reasons, MDR is a well-suited tool to

analyze the bivariate distribution of spouses’ earnings. First, labor earnings are known

to positively correlate across households which is essential as for independent variables,

univariate approaches suffice. Second, MDR can deal with the potential mass point

at zero, which frequently occurs in labor income data. Finally and most importantly,

receiving DIB is likely to heterogeneously affect households as low-income individuals

may have fewer funds to deal with the shock. The literature suggests that spouses

respond to their partners receiving DIB. In particular, I will examine whether the response

depends on the income of the newly disabled partner. Intuitively, spouses of low-income

individuals may need to increase the labor supply more strongly as the household has

relatively fewer funds.

5.1 Data and Identification

Subsequently, I will rely on annual tax data from nine Cantons in Switzerland from 2011

to 2015. The records are provided by the Federal Social Insurance Office and are linked to

social security data containing information on DI rents.9 When filing taxes, households

must provide information on the principal and their partner. In the following, I will refer

9https://www.bsv.admin.ch/bsv/en/home/publications-and-services/forschung/forschungsbereiche/
WiSiER.html
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to these as main earner and second earner, respectively. I restrict the sample only to

include main earners that (i) started receiving DIB somewhere between 2011 and 2015, (ii)

are married, (iii) are between 25 and 65 years old, (iv) live in a household where at least

one person is working and do not divorce or die between 2011 and 2015. This leaves 30,604

observations in the estimation sample, with about half of these being treated. I define

the latter to be the disability degree once a main earner newly receives DIB (no more

payments imply being untreated). To account for potential confounders, I include a rich

set of regressors: a linear and quadratic term for the age of the main earner, the gender

of the main earner and whether the main earner holds Swiss citizenship, the number of

children in the household, healthcare and drug costs, costs for already existing handicaps,

the net wealth of the household as well as region and time fixed effects. Table VI and

figure 6 in Appendix C present descriptive statistics of the data and a histogram of the

household’s labor earnings, respectively. From figure 6 it is apparent that a substantial

share of main and second earners gain no income, which implies a mixed distribution.

For the results presented hereafter to have a causal interpretation, unobservables need

to be uncorrelated to the degree of disability. Essentially, this would require a CIA to hold

at each threshold. While disability is non-random in general, four arguments support this

claim in the present case. First, the control group captures all individuals that are not yet

treated but will once be. Thus, I account for unobservables that affect the likelihood of

being treated. Second, the model contains many potential confounders, i.e., age, gender,

health costs, and children. As receiving DIB is correlated with these socio-demographic

factors, including these variables is crucial for identifying the treatment effect. In a similar

setting, French and Song (2014) find that the difference between ordinary least square

and instrumental variable estimates is negligible once covariates are included. Third, I

exclude households where both spouses receive DIB. This ensures that a common shock

does not jeopardize the treatment effect on both spouses. Finally, institutional features

introduce considerable randomness in determining who will receive payments. A law

passed in 2012 assigns the claims randomly to the authorized institutions, similar to

the Norwegian setting (Dahl et al., 2014; Autor et al., 2019).10 Generally, the physicians

granting the DI requests differ substantially concerning their leniency (Barth et al., 2017).

In fact, for Switzerland, the average approval rate of DI claims ranges from 22% to

58%, depending on the advisory institution.11 Consequently, this law introduces further

10The Article 72 of the IVV (Verordnung über die Invalidenversicherung) instructs the officials to
assign the case to one of 29 advisory institutions randomly. These institutions have to meet the re-
quirements of the case, such as employing physicians speaking the language of the request or having
the demanded physician specialty. Teams of social workers, physicians, lawyers, and administrative
personnel will then coordinate decisions on DI claims.

11The weighted average of the approval rate is 44% (BSV, 2014). These are the latest statistics for
11 of the 29 advisory institutions. Several institutions do not publish those statistics, although they are



Multivariate Distribution Regression 25

exogenous variation into the process. Due to these institutional factors, individuals can

hardly anticipate whether and when their DI request is approved. In summary, the

treatment will likely be quasi-randomly assigned once controlled for covariates.

5.2 Targeted Functionals

Following up on the leading example introduced in section 2, I propose to analyze the

effect of DIB on earnings by looking at the two counterfactual distributions implied by

the treatment. Thus, after having obtained the regression coefficients, I compute the

CDF for the average degree of disability (74%) and no treatment (0%) based on equation

(3). Further, I allow for a different treatment effect in the first year of being treated. Note

that the support condition is fulfilled as we observe all values of Xi for both treated and

non-treated individuals. Comparing the counterfactuals and their implied characteristics

may be viewed as a ceteris paribus change of the treatment. It is instructive to look at

the conditional quantile function of the second earner, provided that the main earner is

in a specific range of the earnings distribution.12 In the most trivial case, it is feasible

to condition the second earners’ distribution on whether the main earner has a low or

high income, i.e., Q1(Y1) ≤ Y1 < Q50(Y1) and Q50(Y1) ≤ Y1 < Q100(Y1), thereby making

use of equation (7). Taking the left inverse of the resulting CDFs yields the conditional

QF. Finally, I define the conditional quantile treatment effect (QTE) to be the difference

between the respective QFs:

∆L(t) = F←Y2⟨·|Q1(Y1,i)≤Y1,i<Q50(Y1,i),D=1⟩(t)− F←Y2⟨·|Q1(Y1,i)≤Y1,i<Q50(Y1,i),D=0⟩(t) and (12)

∆H(t) = F←Y2⟨·|Q50(Y1,i)≤Y1,i<Q100(Y1,i),D=1⟩(t)− F←Y2⟨·|Q50(Y1,i)≤Y1,i<Q100(Y1,i),D=0⟩(t). (13)

The analog functional can be computed using the estimator by Wang et al. (2022).

Further, I also employ a univariate DR approach, including a dummy variable for the

high income of the main earner for comparison. I use the complementary log-log link

function and a grid of 20× 20 equidistant thresholds. The standard errors are obtained

using 250 bootstrap draws.

5.3 Empirical Results

On average, treated main earners experience a substantial drop in earnings of roughly

50,930 CHF (32,971 CHF using OLS) from the second year of treatment onwards (table

obliged to.
12Note that it is feasible to look at the CDF of the second earner at exactly one quantile value of

the main earners earnings as this would involve computing the multivariate pdf. However, the latter
does not converge at the rate of

√
n and would thus require additional theoretical results in the spirit of

Rothe and Wied (2020).
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VII in Appendix C). In contrast, the effect on the second earner is far smaller, with a

reduction of about 934 CHF (973). Considering the main earner, this result confirms

existing findings for Spain and the US (Marie and Castello, 2012; Autor et al., 2016; Gel-

ber et al., 2017). Further, on average, second earners do not compensate for the loss in

household income as suggested by Autor et al. (2019). Possibly, instead of raising the la-

bor supply, second earners spend more time caring for their spouses (Lee, 2020). Another

explanation could be that the social security system insures the average household; thus,

no compensation is needed. In either case, average effects are potentially misleading as

DIB may be of greater importance for low-income individuals. To see this, note that in

Switzerland DIB depend on previous income only up to a degree (Leisibach et al., 2018,

figure on p. 49).

Panel (a) and (b) of figure 4 present the QTE for second earners conditional on

whether the main earner earnings are below or above the median (equation (12) and

(13)) for MDR and the estimator by Wang et al. (2022), respectively. Panel (c) shows

the results of a univariate DR approach using an additional covariate for an above-median

income of the main earner. First, considering panel (a), we observe that second earners

of low-income main earners increase their labor supply while the opposite holds for sec-

ond earners of high-income partners. Likely, the former need to work more to secure the

household’s financial stability. Assuming that for these households, the shock is relatively

more severe, this is in line with findings regarding other health shocks such as fatalities

(Fadlon and Nielsen, 2021). Further, we observe that high-income second earners experi-

ence the highest TEs, irrespective of whether their partners are of low or high earnings.

Potentially, high-income second earners are better educated and are currently working.

Both would facilitate changing working hours due to a better labor market position. The

heterogeneity displayed in panel (a) highlights that the response crucially depends on the

location of the bivariate distribution. Turning to panels (b) and (c), it is apparent that

neither of the other estimators can pick up a similar result. Concerning the estimator

by Wang et al. (2022), it might be that the dependence structure is not separable in

two univariate DRs. Note that while the dependence structure seems restricted by this

estimator, the univariate QTE are almost identical to the ones estimated by MDR (fig-

ure 7 in Appendix C). Finally, regarding the univariate DR approach, the unconditional

location of the main earner’s income seems less informative than the conditional one.

Considering all the evidence, the present application confirms previous findings and

contributes to the literature by analyzing the heterogeneity of the DIB’s effects on earn-

ings. In particular, receiving DIB heterogeneously affects earnings along two lines. (i)

Spouses of low-income principals increase their labor supply, but the contrary is true

for spouses of high-income principals. (ii) High-income spouses adapt their labor supply
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more strongly, likely because their better labor market position gives them more choices.

In this regard, the findings of Autor et al. (2019) are confirmed and shown to depend on

the level of earnings. Further, the results relate to the ongoing debate on how the poor

are exposed to economic shocks and the marginal propensity to consume (e.g. Blundell

et al., 2016; Misra and Surico, 2014; Kaplan et al., 2020).

Figure 4: Quantile Treatment Effects: Second to sixth year

(a) MDR (b) Wang et al. (2022) (c) Univariate DR

Notes: Panels (a)-(c) present quantile treatment effects implied by the difference of the two counterfactual
distributions (average disability degree/no disability). According to equation equation (12) and (13),
panel (a) shows QTE on the second earners earnings conditional on whether the main earner has an
income below or above the median. Panel (b) presents the analogue result for the joint distribution
implied by the estimator of Wang et al. (2022). Panel (c) shows the results of a univariate DR approach
where a dummy variable for low/high income of the ME was included. The dotted lines represent uniform
95%-confidence bands computed according to Algorithm 1 in section 3 with 250 bootstrap draws. The
number of observations is 30,604.

6 Conclusion

The present paper introduces a novel tool to analyze the multivariate distribution of

outcomes. Compared to similar approaches in the literature, the practical advantages of

MDR are threefold. First, upto date MDR is the most flexible approach to modeling a

joint distribution in the presence of many covariates. While non-parametric estimators

might suffer from the curse of dimensionality, other approaches restrict the distribution

by either parametric assumptions like copulas or the way the dependence is modeled

(Wang et al., 2022). Allowing for a flexible dependence structure might be crucial to

reduce the misspecification risk and capture heterogeneous treatment effects. Second,

MDR is robust as it does not require tuning parameters, nor is it sensible to the choice of

the grid. Finally, MDR provides a natural framework to study how regressors affect the

distribution of outcomes. Distributional treatment effects may be defined in a flexible

manner. This is beneficial for numerous research questions like studying stock market

indices, intergenerational mobility, or the allocation of household labor. Regarding the

latter, MDR can deepen established findings by analyzing specific parts of the outcome

distribution, as shown in section 5.

The framework of MDR offers various avenues for future research. For instance, the

theoretical results in section 3 rely on the simplifying assumption of i.i.d. data. Note
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that the results could be strengthened as the corresponding theorems in Kosorok (2008)

hold in more general cases. Another opportunity for future work might be developing

a test on the multivariate grid to check whether the covariates’ effects are indeed het-

erogeneous. Several additional challenges could be incorporated into MDR models. In

this regard, future research may tackle the endogeneity of the regressors. Further, one

could extend the sample selection setting of univariate DR (Chernozhukov et al., 2018)

to the multivariate case or establish the inclusion of fixed effects similar to the model in

Chernozhukov et al. (2020a). Finally, the estimated multivariate CDF offers the analysis

of many more interesting functionals. For instance, one could establish the convergence

rate for multivariate probability density functions, thereby extending the results in Rothe

and Wied (2020).
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on Quantile and Quantile Effect Functions for Discrete Outcomes,” Journal of the
American Statistical Association, jun 2019, 115 (529), 123–137.

, Iván Fernández-Val, Whitney Newey, Sami Stouli, and Francis Vella, “Semi-
parametric Estimation of Structural Functions in Nonseparable Triangular Models,”
Quantitative Economics, May 2020, 11 (2).

Chetty, Raj and Nathaniel Hendren, “The impacts of neighborhoods on intergener-
ational mobility I: Childhood exposure effects,” The Quarterly Journal of Economics,
2018, 133 (3), 1107–1162.



Multivariate Distribution Regression 31

and , “The impacts of neighborhoods on intergenerational mobility II: County-level
estimates,” The Quarterly Journal of Economics, 2018, 133 (3), 1163–1228.

, John N Friedman, Emmanuel Saez, Nicholas Turner, and Danny Ya-
gan, “Income segregation and intergenerational mobility across colleges in the United
States,” The Quarterly Journal of Economics, 2020, 135 (3), 1567–1633.

Christoffersen, Peter, Vihang Errunza, Kris Jacobs, and Hugues Langlois,
“Is the Potential for International Diversification Disappearing? A Dynamic Copula
Approach,” Review of Financial Studies, oct 2012, 25 (12), 3711–3751.

Cox, D. R., “Regression Models and Life-Tables,” Journal of the Royal Statistical So-
ciety: Series B (Methodological), jan 1972, 34 (2), 187–202.

Dahl, Gordon B., Andreas Ravndal Kostøl, and Magne Mogstad, “Family Wel-
fare Cultures,” The Quarterly Journal of Economics, aug 2014, 129 (4), 1711–1752.

Delattre, Sylvain and Etienne Roquain, “On empirical distribution function of
high-dimensional Gaussian vector components with an application to multiple testing,”
Bernoulli, feb 2016, 22 (1), 302–324.

der Vaart, Aad Van, Asymptotic statistics, Vol. 3, Cambridge university press, 2000.

Derumigny, Alexis, CondCopulas: Estimation of conditional copula models 2020. R
package.

and Jean-David Fermanian, “About tests of the “simplifying” assumption for
conditional copulas,” Dependence Modeling, aug 2017, 5 (1), 154–197.

Deshpande, Manasi, “The Effect of Disability Payments on Household Earnings and
Income: Evidence from the SSI Children’s Program,” Review of Economics and Statis-
tics, 2016, 98 (4), 638–654.

Dudley, R. M., “Weak convergence of probabilities on nonseparable metric spaces and
empirical measures on Euclidean spaces,” Illinois Journal of Mathematics, mar 1966,
10 (1), 109–126.

Eika, Lasse, Magne Mogstad, and Basit Zafar, “Educational Assortative Mating
and Household Income Inequality,” Journal of Political Economy, dec 2019, 127 (6),
2795–2835.

Evertsson, Marie, “Gender Ideology and the Sharing of Housework and Child Care in
Sweden,” Journal of Family Issues, feb 2014, 35 (7), 927–949.

Fadlon, Itzik and Torben Heien Nielsen, “Family labor supply responses to severe
health shocks: Evidence from Danish administrative records,” American Economic
Journal: Applied Economics, 2021.

Fermanian, Jean-David, “Goodness-of-fit tests for copulas,” Journal of Multivariate
Analysis, July 2005, 95 (1), 119–152.



Multivariate Distribution Regression 32

and Olivier Lopez, “Single-index copulas,” Journal of Multivariate Analysis, may
2018, 165, 27–55.

Foresi, Silverio and Franco Peracchi, “The Conditional Distribution of Excess Re-
turns: An Empirical Analysis,” Journal of the American Statistical Association, jun
1995, 90 (430), 451–466.

French, Eric and Jae Song, “The Effect of Disability Insurance Receipt on Labor
Supply,” American Economic Journal: Economic Policy, may 2014, 6 (2), 291–337.

Fuwa, Makiko, “Macro-level Gender Inequality and the Division of Household Labor
in 22 Countries,” American Sociological Review, dec 2004, 69 (6), 751–767.

Gelber, Alexander, Timothy J. Moore, and Alexander Strand, “The Effect of
Disability Insurance Payments on Beneficiaries’ Earnings,” American Economic Jour-
nal: Economic Policy, aug 2017, 9 (3), 229–261.
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Appendix

A Theoretical Results

A.1 Proof of Theorems 1 and 2

The proof of theorems 1 and 2 relies on the master theorem for Z-estimators outlined in

Kosorok (2008, p. 247, theorem 13.4). Note that both theorems are direct consequences

of the following six conditions of the master theorem. Thus, it suffices to verify that the

conditions hold. In the following, denote the parameter space by Θ = RdK . In general,

Ψ(β, t) maps to a space L with norm ||·||L. In the case of MDR, I will consider the infinity

norm for space L. Further, let β̂n be an approximate zero of Ψn and β̂◦n be a minimizer

of supt∈T |Ψ◦n(β, t)| where Ψ◦n(β, t) = P◦nψβ,t, and P◦nf = n−1
∑n

i=1
ξi
ξ̄
f(Xi) denotes the

non-parametric or multiplier bootstrap where ξ̄ = n−1
∑n

i=1 ξi. In the following, (...|Xn)

states that we condition on the data. By Assumption 1, Ψ(β, t) = Pψβ,t, where P is the

probability measure and ψβ,t is the derivative of the log likelihood, that is

ψβ,t = (Λ [X ′iβ(t)]− yi(t))

(
λ [X ′iβ(t)]Xi

Λ [X ′iβ(t)] (1− Λ [X ′iβ(t)])

)
, (14)

where λ(·) denotes the derivative of Λ(·) and yi(t) = 1(Y1,i ≤ t1, ..., Yd,i ≤ td). Thus

Ψ(β, t) can be derived by integrating over the probability measure, i.e.

Ψ(β, t) = E

[
(Λ [X ′iβt]− yi(t))

(
λ [X ′iβt]Xi

Λ [X ′iβt] (1− Λ [X ′iβt])

)]
. (15)

Condition 1 : Identifiability

β 7→ Ψ(β, t) satisfies ||Ψ(βn, t)||L → 0 implies ||βn(t)− β0(t)|| → 0 for any {βn(t)} ∈ Θ.

Condition 2 : Glivenko-Cantelli

{ψβ,t; β ∈ Θ, t ∈ T } is P-Glivenko-Cantelli.

Condition 3 : Donsker Class

Fδ in Fδ ≡ {ψβ,t : ||β(t)− β0(t)|| < δ, t ∈ T } is P-Donsker for some δ > 0.

Condition 4 : Equicontinuity

supt∈T P (ψβ,t − ψβ0,t)
2 → 0, as β(t) → β0(t).

Condition 5 : Approximate Zeros

||Ψn(β̂n, t)||L = oP (n
−1/2) and P

(√
n||Ψ◦n(β̂◦n, t)||L > η|Xn

)
= oP (1) for every η > 0.

Condition 6 : Smoothness and Invertibility of the Derivative

β 7→ Ψ(β, t) is Fréchet-differentiable at β0(t) with continuously invertible derivative Ψ̇β0,t.
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Proof. Condition 1. Using the infinity norm, identifiability is given by the fact that

||Ψ(β, t)||∞ → 0 implies that Λ [X ′iβt] → FY |X(t) which is ||βn − β0||∞ → 0. Condition

2 and 3. I verify that {ψβ,t : ||β(t) − β0(t)|| < δ, t ∈ T } is P-Donsker in with the fol-

lowing argument. First, note that {P (Xq) : q = 1, ..., dx}, F1 = {X ′β : β ∈ Rdx} and

F2 = {1(Y1,i ≤ t1, ..., Yd,i ≤ td) : t ∈ T } are VC classes of functions. In particular,

the multivariate indicator functions, F2, are shown to be VC-classes by van der Vaart

and Wellner (1996, example 2.6.1 and 2.10.4). Following the argument in (see Cher-

nozhukov et al., 2013, p. 2263), G = {(Λ(F1) − F2)
λ[F1]

Λ[F1](1−Λ[F1])
P (Xq) : q = 1, ..., dx}

is a Lipschitz transformation of VC classes. The Lipschitz coefficient is bounded by

const||X|| and envelope function const||X||. Further, the envelope function is square

integrable. By Example 19.9 in Van der Vaart (2000), G is Donsker. As any Donsker

class is also Glivenko-Cantelli (Kosorok, 2008, p. 19), condition 2 is fulfilled too. Con-

dition 4. As β → β0, Λ(β) → Λ(β0) and λ(β) → λ(β0) for all t ∈ T . Thus,

supt∈T P (ψβ,t − ψβ0,t)
2 → 0. Condition 5. Again, using the infinity norm, the sam-

ple analogue of equation (15) can be shown to converge to 0 almost surely. To see this,

note that
∣∣∣∣∣∣ 1n∑n

i=1 ψβ̂n,t

∣∣∣∣∣∣
∞

a.s.−−→ 0 because Λ
[
X ′iβ̂n(t)

]
a.s.−−→ yi(t) as n → ∞. As ψβ,t

is Donsker and thus Glivenko-Cantelli, theorem 10.13 part (viii) in Kosorok (2008, p.

187) yields that P
(∣∣∣∣∣∣ 1n∑n

i=1
ξi
ξ̄
ψβ̂◦

n,t

∣∣∣∣∣∣
∞
> η|Xn

)
a.s.−−→ 0 which is equivalent to the desired

statement in the second part of the condition.13 Condition 6. This condition is verified

by the fact that Ψ(β, t) : M × Θ 7→ Θ meets the conditions in Lemma E.1 and E.2

in Chernozhukov et al. (2013, p. 2254) which in turn requires assumption 3. Table II

lists the parametric forms of the link functions introduced in Assumption 2. Note that
∂

∂(b′,t)
Ψ(b, t) = [J(b, t), R(b, t)]. By the dominated convergence theorem, the a.s. conti-

nuity of ∂
∂b′
ψb,t(Yi, Xi) and fY |X(t|X) and

λ[X′
iβt]Xi

Λ[X′
iβt](1−Λ[X′

iβt])
being uniformly bounded on

b ∈ Rdx, all these link functions satisfy this condition (see Chernozhukov et al., 2013, p.

2263). ■

A.2 Explicit Forms of the Link Functions

The following table entails the parametric forms of J(b, t) and R(b, t) for the link func-

tions introduced in section 3. These are defined as ∂
∂(b′,t)

Ψ(b, t) = [J(b, t), R(b, t)] where

Ψ(β, t) = E

[
(Λ [X ′iβt]− yi(t))

(
λ[X′

iβt]Xi

Λ[X′
iβt](1−Λ[X′

iβt])

)]
.

13Note that the definition of the multiplier bootstrap is slightly different than the bootstrap theorem
10.13, but it does not change the conclusions (Kosorok, 2008, p. 244).
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A.3 Testing

This section outlines a testing framework to serve three purposes. First, one may be inter-

ested in whether the effect of a specific covariate is constant across all thresholds t ∈ Rd.

More precisely, this is testable by setting the null hypothesis H0 : β̂j(t) = β̂j(Q50(Y ))

and the alternative H1 : β̂j(t) ̸= β̂j(Q50(Y )), where j identifies the regressor Xj and

β̂j(Q50(Y )) denotes the coefficient on Xj at the median of all outcomes Y , Q50(Y ). Of

course, other reference values than the median can be chosen. Second and with respect to

counterfactual distributions, it is natural to test whether multiple CDFs are sufficiently

different. While it is possible to test multivariate CDFs, I propose to directly test the

marginal CDF’s of the outcome. As argued by Fermanian (2005), all approaches to test

the former entail certain drawbacks, in particular, they frequently require a distributional

assumption. Instead, it is valid to test the marginal CDF’s as these are consistently esti-

mated. This type of tests may be executed by the well known two-sample Kolmogorov-

Smirnov test. Third and in the same spirit, one may directly target summary statistics

of multivariate distributions such as averages, variances or correlations. Having estab-

lished that these statistics are consistently estimated, they can be tested using t-test over

bootstrap draws again in the spirit of a Kolmogorov-Smirnov test.

As outlined in Chernozhukov and Fernández-Val (2005), the Kolmogorov-Smirnov

tests rely on bootstrap draws to form the corresponding test statistics. To illustrate the

procedure, I outline the first type of the aforementioned tests in the following. Denote

the test statistic for the point estimates at threshold t by T (t) and the corresponding

statistic of each bootstrap draw by Tb(t). To test whether the coefficient β̂n,j of variable

Xj is constant across the distribution, I make use of the test statistics T (t) in equation

(16). Note that the bootstrapped statistic in equation (17) is recentered at the average

values of the point estimates.

T (t) =

√
N
∣∣∣β̂j(t)− β̂j(Q50(Y ))

∣∣∣
s.e.(β̂j(t)− β̂j(Q50(Y ))

(16)

Tb(t) =

√
M
∣∣∣β̂b,j(t)− β̂b,j(Q50(Y ))−

(
β̂j(t)− β̂j(Q50(Y ))

)∣∣∣
s.e.(β̂b,j(t)− β̂b,j(Q50(Y ))

, (17)

where N denotes the number of observations M is the number of observations for each

draw from the bootstrap. Note that by settingM < N one may reduce computation time.

Further, define T ⋆ = max
t∈Rd

T (t) and T ⋆
b = max

t∈Rd
Tb(t). Finally, the p-value is computed

as the number of cases in which the bootstrapped statistic is larger than the one of the

point estimates: 1
B

∑B
b=1 I(T

⋆ ≤ T ⋆
b ), where B is the number of bootstrap replications.



39

B Simulation Results

Figure 5: Simulation 1, Data Generating Process

(a) β1,s1 (b) βX,s1

(c) FY1,s1,Y2,s1|X=0 (d) FY1,s1,Y2,s1|X=1

Notes: Panel (a) and (b) of this figure describe the regression coefficients for both, the constant and the
uniformly distributed regressor, used to generate data for simulation 1. Panel (c) and (d) present the
bivariate distribution of Y1,s1 and Y2,s1 provided that the regressor X is either zero or one.



40

Table III: Simulation 1, MSE, SD and Bias of β̂X,s1

Y1 Q25 Q50 Q75

n Crit. Y2 Q25 Q50 Q75 Q25 Q50 Q75 Q25 Q50 Q75

400 MSE 1.0017 0.4265 0.2266 0.5603 0.2422 0.1290 0.2420 0.1056 0.0621
SD 0.9987 0.6525 0.4759 0.7480 0.4919 0.3591 0.4918 0.3247 0.2479

Bias 0.0654 0.0285 0.0121 0.0290 0.0125 0.0084 0.0095 0.0120 0.0242
1600 MSE 0.4624 0.3175 0.2389 0.3546 0.2435 0.1805 0.2397 0.1622 0.1232

SD 0.4624 0.3175 0.2388 0.3545 0.2434 0.1805 0.2396 0.1621 0.1218
Bias 0.0088 0.0023 0.0060 0.0094 0.0069 0.0013 0.0064 0.0054 0.0188

6400 MSE 0.2265 0.1557 0.1180 0.1766 0.1195 0.0893 0.1208 0.0800 0.0638
SD 0.2264 0.1557 0.1180 0.1761 0.1193 0.0893 0.1207 0.0797 0.0607

Bias 0.0061 0.0018 0.0023 0.0134 0.0054 0.0009 0.0047 0.0068 0.0195

Notes: This table lists the MSE, SD and Bias of β̂X,s1 for simulation 1. 10’000 Monte Carlo replications
have been estimated and evaluated at 9 locations in the distribution defined by the 25th, 50th and 75th
percentile of both outcome variables.

Table IV: Simulation 1, MSE, SD and Bias of β̂1,s1

Y1 Q25 Q50 Q75

n Crit. Y2 Q25 Q50 Q75 Q25 Q50 Q75 Q25 Q50 Q75

400 MSE 0.5408 0.2076 0.0956 0.2810 0.1101 0.0519 0.1104 0.0441 0.0231
SD 0.7027 0.4444 0.3056 0.5147 0.3266 0.2257 0.3251 0.2058 0.1476

Bias 0.2168 0.1004 0.0472 0.1271 0.0582 0.0303 0.0688 0.0421 0.0368
1600 MSE 0.3459 0.2224 0.1562 0.2528 0.1650 0.1149 0.1651 0.1082 0.0800

SD 0.3187 0.2128 0.1526 0.2413 0.1611 0.1130 0.1583 0.1025 0.0728
Bias 0.1343 0.0647 0.0337 0.0756 0.0359 0.0207 0.0468 0.0345 0.0331

6400 MSE 0.1934 0.1192 0.0808 0.1375 0.0858 0.0594 0.0918 0.0611 0.0491
SD 0.1562 0.1044 0.0754 0.1200 0.0788 0.0563 0.0798 0.0506 0.0366

Bias 0.1141 0.0575 0.0288 0.0671 0.0340 0.0189 0.0454 0.0341 0.0328

Notes: This table lists the MSE, SD and Bias of β̂1,s1 for simulation 1. 10’000 Monte Carlo replications
have been estimated and evaluated at 9 locations in the distribution defined by the 25th, 50th and 75th
percentile of both outcome variables.
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Table V: Simulation 2, Integrated Statistics of F̂Y1,s2,Y1,s2(t), different Specifications

MDR: Cloglog MDR: Logit MDR: Probit
NC: Gaussian NC: Triangular NC: Epanechnikov
PC: Normal PC: Gumbel PC: Frank

n Model. MSE SD Bias MSE SD Bias MSE SD Bias

400 MDR 0.0103 0.0394 0.0088 0.0107 0.0397 0.0091 0.0106 0.0392 0.0090
NC 0.0166 0.0150 0.0164 0.0149 0.0254 0.0143 0.0151 0.0242 0.0145
PC 0.0146 0.0224 0.0141 0.0169 0.0146 0.0167 0.0145 0.0240 0.0139

1600 MDR 0.0089 0.0572 0.0057 0.0093 0.0588 0.0059 0.0092 0.0579 0.0058
NC 0.0131 0.0206 0.0127 0.0126 0.0360 0.0113 0.0127 0.0342 0.0115
PC 0.0122 0.0331 0.0111 0.0136 0.0209 0.0132 0.0123 0.0353 0.0110

6400 MDR 0.0078 0.0665 0.0034 0.0084 0.0696 0.0035 0.0082 0.0686 0.0035
NC 0.0106 0.0247 0.0100 0.0111 0.0424 0.0094 0.0111 0.0404 0.0094
PC 0.0107 0.0392 0.0092 0.0113 0.0244 0.0107 0.0108 0.0418 0.0091

Notes: This table lists the average MSE, SD and Bias of F̂Y1,s2,Y2,s2
(t) for simulation 2. Three models

have been estimated: The Multivariate distribution regression (MDR), a non-parametric copula model
(NC) and a parametric copula model (PC). The estimated CDF is evaluated at a grid of 25× 25 points
defined by the quantile values of Y1,s2 and Y1,s2. The results of this table are based on a mean-zero normal
distribution with ρY1,s2,Y2,s2

= sin(4π ·X) and σY1,s2
= σY2,s2

= (X − .273)4 (DGP 3 from table I). The
results were obtained using 10’000 Monte Carlo replications.
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C Application Results

Table VI: Application to Household Labor Supply, Descriptive Statistics

Variable Mean SD Min Q(.25) Median Q(.75) Max

Labor Income ME 35024.03 45470.60 -298193 0 20298 60990 1528772
Labor Income SE 23984.70 29886.60 -63738 0 14734 40180 495450
ME Treated 0.53 0.50 0 0 1 1 1
ME Disability Degree 39.14 40.51 0 0 42 75 100
ME Female 0.07 0.25 0 0 0 0 1
ME Age 54.39 8.03 25 50 56 61 65
ME Swiss 0.90 0.30 0 1 1 1 1
Number of Children 0.61 0.98 0 0 0 1 7
Costs: Illness 1538.60 2791.32 0 0 0 2418 81914
Costs: Healthcare 3266.67 2378.71 0 0 3500 4900 48515
Costs: Being Handicapped 222.57 2479.58 0 0 0 0 136965
Net Wealth (1000 CHF) 287.36 810.38 -3259 0 87 361 40000

Notes: This table presents the descriptive statistics for the esitmation sample. The number of obser-
vations is N = 30, 604. Note that the ’costs’ variables refer to the amount of arising costs that can be
deducted from the taxable income.

Figure 6: Histogram Labor Income
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Notes: This figure presents the unconditional distributions of main and second earners labor income.
The dotted black line refers to the average earnings (i.e. 90,355 CHF for MEs and 27,231 CHF for SEs).
The bottom and top 1% of both distributions is not plotted to improve readability.
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Table VII: Application to Household Labor Supply, Aggregate Results

OLS MDR

Earnings ME Earnings SE Earnings ME Earnings SE
Coef SD Coef SD TE SD TE SD

ME Disability Degree -445.56 6.87 -13.16 4.95 -50930.07 -219.1 -934.49 26.7
ME First Year Treated 1165.73 1923.39 1504.45 1384.32
ME Degree*First Year 132.89 25.06 -25.03 18.04 -30532.21 171.41 -1297.51 166.73
ME Female -14336.94 947.64 -23598.36 682.05
ME Age 5331.53 293.96 1973.37 211.57
ME Age Squared -52.5 2.92 -21 2.1
ME Swiss 11313.14 808.49 -1751.55 581.89
Number of Children 2027.07 278.43 337.37 200.4
Costs: Illness 0.04 0.09 0.17 0.06
Costs: Healthcare 1.22 0.13 0.78 0.09
Costs: Being Handicapped 0.12 0.09 0.09 0.07
Net Wealth (1000 CHF) 8.74 0.29 2.99 0.21

Region FE Y Y Y Y
Year FE Y Y Y Y
R2 0.22 0.07
F-Statistic 400 103
N 30604 30604 30604 30604

Notes: This table presents the OLS and MDR results for the esitmation sample. In the case of OLS,
the numbers refer to the regression coefficients whereas for the MDR results, ’TE’ refers to the treatment
effect. The latter is defined as the average earnings implied by the difference of the two marginal,
counterfactual distributions (average disability degree/no disability in the first year treated or later). The
standard errors for the MDR estimator have been obtained using 250 bootstrap draws. Note that the
’costs’ variables refer to the amount of arising costs that can be deducted from the taxable income.
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Figure 7: Univariate Quantile Treatment Effects
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(b) Wang et al.: ME
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(c) MDR: SE
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(d) Wang et al.: SE

Notes: Panels (a)-(d) present univariate quantile treatment effects implied by the difference of the
two counterfactual distributions (average disability degree/no disability) estimated either by MDR or
the estimator of Wang et al. (2022). T1 refers to the first period of being treated and T2-T6 for the
remaining periods. The dotted black and grey lines show the TE implied by an OLS regression. The
dotted blue lines represent uniform 95%-confidence bands computed according to Algorithm 1 in section
3 with 250 bootstrap draws. The number of observations is 30,604.
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Figure 8: Bivariate Distribution of Labor Earnings

(a) Untreated (b) Treated (second to sixth year)

Notes: This figure presents the two counterfactual distribution of labor earnings outlined in section 5.
Y1 denotes the main earners labor earnings whereas Y2 denotes the second earners labor earnings.

Figure 9: Quantile Treatment Effects: First year
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(b) Wang et al. (2022)

0.2 0.4 0.6 0.8

−
10

00
0

0
10

00
0

20
00

0
30

00
0

Quant. Earnings Wife

T
E

Low−income ME
High−income ME

(c) Univariate DR

Notes: Panels (a)-(c) present quantile treatment effects implied by the difference of the two counterfactual
distributions (average disability degree/no disability). According to equation equation (12) and (13),
panel (a) shows QTE on the second earners earnings conditional on whether the main earner has an
income below or above the median. Panel (b) presents the analogue result for the joint distribution
implied by the estimator of Wang et al. (2022). Panel (c) shows the results of a univariate DR approach
where a dummy variable for low/high income of the ME was included. The dotted lines represent uniform
95%-confidence bands computed according to Algorithm 1 in section 3 with 250 bootstrap draws. The
number of observations is 30,604.
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