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Abstract

We provide empirical evidence for pronounced time-variation in the persistence of real oil

prices. In particular, we find episodes of mild explosiveness next to periods with random walk

and also mean-reverting behavior. We address the question whether dynamic persistence can

be directly related to macro-financial variables, spot-futures spreads, spill-over effects from

commodities and global real economic activity. Alongside these variables, we use a large

data set of more than one-hundred fifty potential determinants featuring, for example, further

oil-related variables (production and inventories) and key macroeconomic series for the G7

countries. By using model averaging techniques, we robustly account for the inherent model

uncertainty when dealing with such many potential explanatory variables. As it turns out,

the one and only significant measure to explain time-varying oil price persistence is the index

of global economic activity by Kilian (2009). Other variables related to e.g. supply shocks or

speculation are, however, insignificant. In line with recent findings, we argue that fundamentals

rather than speculation were the drivers of the explosive oil price in the 2000s.
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1 Introduction

The oil price rally between 2003 and 2008 attracted the attention of media, policy mak-

ers and also academics. A popular view is that financialization of oil futures markets

supported the rising oil prices at this time significantly.

”You have asked the question ’Are Institutional Investors contributing to food and energy

price inflation?’ And my unequivocal answer is ’YES.’ In this testimony I will explain

that Institutional Investors are one of, if not the primary, factors affecting commodities

prices today.” (Masters, 2008, before the Committee on Homeland Security and Gov-

ernmental Affairs)

This so-called ’Masters Hypothesis’ explains the spike in energy futures prices in 2007-08

as a result of long-only1 index investments. While the majority of studies in the aca-

demic literature could not support the hypothesis that speculation was the main price

driver during the episode between 2003 and 2008 (see, for a comprehensive overview of

the literature, Fattouh, Kilian, and Mahadeva, 2013), there are some studies providing

evidence in favour of a rational bubble in crude oil prices which collapsed in 2008 (see, for

example, Phillips and Yu, 2011; Shi and Arora, 2012; Tsvetanov, Coakley, and Kellard,

2016). These results of the two strands of the literature – on the one hand empirical

evidence against the ’Masters Hypothesis’ and on the other hand empirical evidence

supporting (speculative) bubbles – are contradictory in the sense that there might be

speculation2 without a rational bubble3 in the market, but there could not be a ratio-

nal bubble without speculation because a rational bubble is characterized by speculation.

In the context of this paper, the oil market contains a ’price bubble’ if the explosive

price decouples from its fundamental value and this bubble would be called ’speculative

price bubble’ (or ’rational bubble’) if purchases of crude oil push the price beyond the

intrinsic value because buyers anticipate rising oil prices. Hence, a rational price bubble

could not exist without investors speculating on rising prices. Thus, if we find explosive

behavior of oil prices which could be explained by speculation, it might be a speculative

1A representative investor who has a ”long position” in an asset is the buyer of this asset and profits
from increasing prices. Thus, a ”long-only” strategy is characterized by the fact that an investor profits
only in the case of positive performance of the price of the asset.

2’Speculation’ in the context of crude oil refers to a situation where someone buys oil for future rather
than for current use (see Fattouh, Kilian, and Mahadeva, 2013; Kilian and Murphy, 2014).

3In general, a ’price bubble’ describes a situation, where the price of an asset decouples from its
fundamental (see, for example, Blanchard and Watson, 1982). A ’speculative price bubble’ refers to a
situation where investors push the price of an asset beyond its intrinsic value due to their expectations
of rising prices.
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bubble. However, if we could not explain explosiveness by speculation, we can conclude

that the explosive behavior is not an expression of a speculative price bubble.

One of the first papers dealing with speculative bubbles in crude oil prices, is the study

by Phillips and Yu (2011)4. The authors use a sequential right-sided unit root test

which is based on estimated time-varying persistence. Beside other variables, Phillips

and Yu (2011) apply this methodology to crude oil prices normalized by crude oil in-

ventories as the fundamental value (similar to price-dividend or price-rent ratios in the

stock or housing market literature). This might cause problems since (i) inventories

might not capture the fundamental value of crude oil to a full extent and (ii) it imposes

unrealistic restrictions on a cointegration vector between crude oil prices and inventories

which might be unstable over time (see Section 2 for a more detailed discussion of these

problems). Overall, relatively little attention is paid to possible underlying factors of

time-varying persistence, including temporary explosive behavior.

We contribute to the literature by re-examining the persistence of oil prices. However,

we do not rely on inventories or any other variable as fundamental value. Instead, we

estimate the time-varying persistence of real Brent and WTI crude oil prices and draw

inference about its relation to more than one-hundred fifty potential determinants like,

for example, spot-futures spreads, world oil production, leading commodity prices or real

economic activity. Compared to earlier studies (see, for example, Phillips and Yu, 2011;

Shi and Arora, 2012; Brooks, Prokopczuk, and Wu, 2015; Caspi, Katzke, and Gupta,

2015), our approach has the advantage that we do not need to pre-specify a variable

which captures the fundamental part of the oil price.5 The analysis is carried out by

model averaging techniques. The benefit from using model averaging instead of model se-

lection is that model uncertainty is explicitly accounted for. Neglecting the model search

can severely affect the subsequent inference. Our approach is robust to this uncertainty

and also to first-stage estimation errors arising from estimating the dynamic persistence.

The remainder of this study is structured as follows: The next section provides a com-

pact review of the relevant literature. Section 3 introduces the used data set and the

econometric approach. Furthermore, Section 4 contains the empirical results and Sec-

4Also the paper by Miller and Ratti (2009), for example, considers oil price bubbles. However, these
authors consider earlier periods and they focus more on the relationship between oil and stock markets
and not on the results of oil price persistence based testing procedures.

5Pavlidis, Paya, and Peel (2017) suggest an alternative approach which exploits the fact that future
and spot prices must converge in the absence of a bubble (see Pavlidis, Paya, and Peel (2016)). Their
approach and ours have in common that it is not required to pre-specify a variable capturing the
fundamental part of oil prices.
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tion 5 discusses the results against the background of the current literature. Finally,

Section 6 concludes. The appendix includes a list of selected variables with details, ad-

ditional empirical results and elaborations on the t-statistics accounting for first-stage

persistence estimation.

2 Literature Review

In this section we provide a compact review of the related literature regarding oil prices.

In the first subsection we start with an overview about the traditional literature ex-

plaining oil prices by supply and demand shocks. Next, we form the connection to the

literature which explicitly takes speculation into account. This strand of literature is

strongly related to studies on speculative bubbles (or explosiveness) in oil prices which

is separately discussed in the third subsection.

2.1 Supply and Demand Shocks

The traditional literature which argues that essentially all oil price shocks coincided with

fundamental supply and demand shocks has its origin in articles by Hamilton (2003),

Barsky and Kilian (2002, 2004) and Kilian (2008a,b, 2009). Kilian (2009) distinguishes

three types of shocks: (i) oil supply shocks, (ii) aggregate demand shocks and (iii) oil-

market specific demand shocks. While Hamilton (2003) and Kilian (2008a,b) study the

role of supply shocks extensively, Kilian (2009) states that it is difficult to quantify de-

mand shocks for basically two reasons: (i) at that time, there was no index available to

capture the dynamics of global demand for all industrial commodities and (ii) expecta-

tions driving precautionary demand shocks are not observable.

Kilian (2008a) argues that supply shocks alone are insufficient to explain the major pro-

portion of oil prices. Hence, Kilian (2009) proposes a measure of the dynamics in global

real economic activity (’index of real economic activity’) which affects the demand for

all industrial commodities. Furthermore, Kilian (2009) employs a structural Vector Au-

toRegressive (VAR) model based on the ’real price of oil’, the ’change in global crude

oil production’ and the ’index of real economic activity’ to decompose the oil price.

The author argues that the serially and reciprocally uncorrelated structural innovations

might be interpreted as the oil supply shocks, aggregate demand shocks and the oil

specific-demand shocks. Kilian (2009, p. 1053) finds evidence ”that oil price shocks

historically have been driven mainly by a combination of global aggregate demand shocks

and precautionary demand shocks.”
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Considering more recent data, Hamilton (2009) concludes that the oil price rally of

2007-08 was mainly driven by strong demand due to the boom in the global economy

and stagnation in world oil production in 2005-07. However, Hamilton (2009, p. 234)

notes that, ”One can thus tell a story of the oil price shock and subsequent collapse that

is driven solely by fundamentals. But the speed and magnitude of the price collapse lead

one to give serious consideration to the alternative hypothesis that this episode represents

a speculative price bubble that popped.”

2.2 Speculation

Kilian and Murphy (2014) investigate the role of speculation by employing a structural

VAR model based on the ’real price of oil’, the ’change in global crude oil production’,

the ’index of real economic activity’ and the ’change in oil inventories above the ground’

in order to identify three different kinds of shocks: (i) a flow oil supply shock, (ii) a

flow oil demand shock and (iii) a speculative demand shock. Kilian and Murphy (2014)

report that the real price of oil between 2003 and mid-2008 was not significantly driven

by speculative demand or supply shocks rather by global oil demand shocks.

By using alternative proxies for global oil inventories, the result by Kilian and Murphy

(2014) is basically confirmed by Kilian and Lee (2014, p. 85): ”Indeed, the view that

an exogenous shift in the participation of financial investors in oil futures markets ex-

plains the surge in the real price of oil during 2003-08 can be ruled out on the basis of

our results.” Both studies argue that the result that speculation was not the significant

driver of the oil price surge does not mean that earlier (e.g., after the collapse of OPEC

in 1986) or later episodes are not significantly influenced by speculative demand.

Juvenal and Petrella (2015) argue that small-scale VAR models do not capture enough

information in order to identify the shocks. The authors employ a dynamic factor model

for commodity prices as well as a battery of macroeconomic and financial variables from

the G7 countries. The authors find that global demand plays the most import role be-

tween 2003 and mid-2008 and accounts for about 55% of the surge in the real price while

speculation is the second important driver with 15% and less than 10% are attributed

to oil supply shocks.

2.3 Bubbles or just mild Explosiveness?

Phillips and Yu (2011) apply the methodology by Phillips, Wu, and Yu (2011) to crude

oil prices normalized by crude oil inventories and report the existence of a short bubble
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period in 2008. In order to use a test procedure which allows for more than one explosive

period, Caspi, Katzke, and Gupta (2015) use the test by Phillips, Shi, and Yu (2015)

and report several episodes of arising and collapsing explosiveness between 1949 and

2008 in the nominal oil price normalized by the inventory quantity.

Instead of using right-sided unit root tests, Shi and Arora (2012) and Brooks, Prokopczuk,

and Wu (2015) apply regime switching methods. While Brooks, Prokopczuk, and Wu

(2015) report some evidence in favour of bubbles in crude oil prices, Shi and Arora

(2012) confirm the results by Phillips and Yu (2011) about a short bubble in oil prices

in 2008. All these studies have in common that they need to pre-specify a measure

which captures the fundamental of crude oil. However, following Gronwald (2016), this

measure might not be observable and evidence in favour of a bubble might be caused

by misspecified market fundamentals.

Brooks, Prokopczuk, and Wu (2015) use two methods to capture the fundamentals: The

first stems from the present value model (also used by Shi and Arora (2012)) and the

second relies on macroeconomic variables. The present value model which is based on

convenience yields might be seen as a self assessment – rather than an objective assess-

ment – of future market conditions and the second approach might neglect oil specific

factors. Furthermore, Phillips and Yu (2011) and Caspi, Katzke, and Gupta (2015) nor-

malize crude oil prices by crude oil inventories. This approach captures only the supply

side and neglects important factors – like the global real economic activity – driving also

the fundamental value of crude oil. Additional to this problematic point, the authors

assume a cointegration vector of (1,−1) between inventories and the oil price which is

unlikely to hold over time (see Gronwald, 2016).

An approach to test for bubble behavior without taking an estimated or observed market

fundamental directly into account, stems from the finding that spot and future prices are

explosive in the presence of a bubble (see Diba and Grossman, 1988). Thus, Tsvetanov,

Coakley, and Kellard (2016) apply tests for mildly explosive behavior to oil spot and

future prices and report evidence in favor of a bubble between 2004 and 2008. However,

Pavlidis, Paya, and Peel (2017) note that the shortcoming of this approach is the as-

sumption that the fundamentals are non-explosive.

Thus, econometric approaches to identify bubble behavior suffer from the joint-hypothesis

problem: ”What have we learned from bubble tests? This survey showed that bubble tests

do not do a good job of differentiating between misspecified fundamentals and bubbles”

(see Gürkaynak, 2008, p. 182).
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In a more recent paper by Pavlidis, Paya, and Peel (2017), the authors apply two

methodologies proposed by Pavlidis, Paya, and Peel (2016) who utilize the fact that

in the presence of a bubble, future spot prices and market expectations must diverge.

Thus, the authors apply right-sided unit root tests to the difference between future spot

oil prices and expected future spot prices from Consensus Economics Inc. and they test

the unbiasedness hypothesis in the oil market. The latter approach exploits the fact that

the Efficient Market Hypothesis implies that the unbiased predictor for the current spot

price is the expected spot price in the absence of a bubble under rational expectations

and risk neutrality. By using this approach bubble behavior can be analyzed without

pre-specifying a market fundamental. The empirical results suggests that there is no

evidence for a bubble in real oil prices.

3 Data and Methodology

First, we describe the data set in Section 3.1 and thereafter, we discuss estimation of

dynamic persistence in Section 3.2. We apply an indirect inference approach which can

cope with the bias arising from strong persistence and a finite (relatively small) number

of observations. In Section 3.3, we explain a large set of potential variables driving the

persistence of the oil price. We make use of a model averaging approach which deals

with model uncertainty due to many potential explaining variables.

3.1 Data

We obtain data from the “Journal of Applied Econometrics Archive”6 for the widely

recognized article by Juvenal and Petrella (2015). This comprehensive data set includes

many important variables regarding the oil market. Among these are world oil produc-

tion, aggregate industrial production, inventories of oil and oil spot-future spreads. In

addition, twenty leading real commodity prices (including metals, food and non-food)

are covered. Next, key macroeconomic series for the G7 countries are included: real

GDP, personal consumption, industrial production, (un)employment rates, employee

earning indexes, consumer and producer price indexes, overnight and 10-year interest

rates, money supply (M1 and M2), trade balances, stock market indexes, (real effective)

exchanges rates and interest rate spreads (three months/ten years rate minus overnight

rate). As a measure for global economic activity, the dry cargo shipping rate index

developed by Kilian (2009) is considered as well. This index captures demand shifts for

commodities which are driven by the global economic cycle as demand for transportation

6http://qed.econ.queensu.ca/jae/

- 7 -



is mainly driven world economic growth, see Kilian (2009). A full list of variables with

additional information is available in Appendix A of Juvenal and Petrella (2015). A list

of selected variables with details is included in the Appendix of this paper. Main sources

are the International Financial Statistics database of the International Monetary Fund

and the Organisation for Economic Cooperation and Development.

The WTI (Brent) oil price taken from the Federal Reserve Bank of St. Louise Data Base

(FRED) in logs and deflated by the US CPI less food and energy. We augment the data

set by the NBER based Recession Indicator for the United States, also taken from the

FRED. Our sample comprises K = 151 variables and covers the important period from

1980Q1 to 2009Q4 yielding T = 120 quarterly observations. The reason for choosing

this sample is that we want to focus on the potentially explosive regimes due to the

price rally between 2003 and 2008. We use the first fifty observations (from 1980Q1

to 1992Q2) for rolling window estimation of persistence and the remaining seventy for

model averaging regressions (from 1992Q3 to 2009Q4). All explanatory variables are

suitably transformed to achieve stationarity, see Juvenal and Petrella (2015).

3.2 Indirect Inference Estimation

We start by considering a simple way of dynamic persistence estimation for the oil price

zt. An autoregressive (AR) model of order p is specified:

zt = µ+ρzt−1 +
p−1∑
i=1

τi∆zt−i + vt, (1)

where ρ equals the sum of autoregressive coefficients. OLS estimation of ρ in the AR

model (1) is heavily downward-biased in small samples and when the true value of ρ

is in the vicinity of unity. In order to cope with the OLS bias, we apply an indirect

inference estimator. Such an estimator offers bias-correction by comparing the average

OLS estimate in relation to the true parameter value via simulation. In a representa-

tive empirical situation, the OLS estimate ρ̂ might result as 0.925, while the true value

is ρ = 1. The indirect inference estimator corrects the OLS bias of -0.075 by adding

this value to ρ̂ (subject to a minor simulation error). In this way, a bias-correction is

achieved. In a companion paper, Kaufmann, Kruse, and Wegener (2017) compare a va-

riety of different approaches to bias-correction in a large-scale Monte Carlo study. Their

results demonstrate the usefulness of the indirect inference estimator over several other

approaches, e.g. bootstrap and jackknife. The estimator is also robust against various

kinds of mispecifications. Furthermore, the estimator shows excellent performance in

terms of mean squared error (MSE) for highly persistent and possibly mildly explosive

- 8 -



processes.

In some more detail, the indirect inference estimator ρ̂II (see Phillips et al., 2011) is

given by

ρ̂II = argmin
ρ∈Θ

∥∥∥∥∥∥∥ ρ̂−
1
H

H∑
h=1

ρ̂h(ρ)

∥∥∥∥∥∥∥ ,

where Θ is a compact interval. For h = 1,2, ..., H the average OLS estimate is simulated

for a given true value ρ ∈ Θ, denoted as denoted as ρ̂h(ρ).7 In theory, for H →∞ one

obtains

ρ̂II = argmin
ρ∈Θ

∥∥∥ ρ̂−q(ρ)
∥∥∥ ,

where q(ρ) = E
(̂
ρh(ρ)

)
is the so-called binding function.8 The indirect inference esti-

mator results by inversion of q(·) as

ρ̂II = q−1(ρ̂) .

Equation (1) is estimated by a rolling window scheme using w observations. This leads

to a series of dynamic persistence labeled as ρ̂t and its bias-corrected counterpart ρ̂II
t .

3.3 Model Averaging

In the following, we consider the T ×K-matrix of determinants X as described in Section

3.1. Our main interest lies in regressions of the type

yt = β′xt + ut

with yt = ρ̂II
t (cf. Section 3.2) and xt being a subset of the full determinant set Xt. With

K variables there are 2K combinations when considering all possible subsets of determi-

nants. In contrast to model selection, where a single model is selected and interpreted,

all models contribute to the averaged parameter estimates. For the construction of a

model averaging estimator all possible models are estimated and a smoothed weight is

assigned to each model. The weight depends on the relative performance of the model

in terms of an information criterion. Better performing models receive a higher weight

than weaker ones and vice versa. A main benefit of model averaging in contrast to model

7For accuracy, H should be a large number and we set H = 20,000. In addition, we specify Θ =
{0.6, ...,1.2}.

8The simulated binding function is available from the authors.
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selection is that it incorporates the uncertainty inherent in the model selection process.

In the following, we consider the smoothed AIC frequentist model averaging approach

which has been suggested by Buckland, Burnham, and Augustin (1997) and is further

developed in contributions by Burnham and Anderson (2002) and Hjort and Claeskens

(2003). As an advantage over Bayesian model averaging, frequentist approaches do not

require the specification of prior distributions and are computationally simpler. Fol-

lowing the general model averaging approach, all possible sub-models (including the

full model as well) of the reduced data set X are estimated. This leads to M = 2J − 1
models.9 For each estimated model m = {1,2, ...,2J −1}, we compute information criteria

(AIC; and BIC for comparison), i.e. ICm = {AICm, BICm}.

Let ∇m = ICm−minm ICm denote the difference in information between a model m and

the best model according to a given criterion IC. For m being the best model, we have

∇m = 0, while for all others ∇m > 0 holds. ∇m measures the information loss from fitting

model m instead of the best model. The corresponding smoothed weight for model

m ∈ {1,2, ..., M} is given by, see e.g. Buckland et al. (1997):

ωm =
exp(−1

2∇
m)∑M

i=1 exp(−1
2∇

i)
∈ (0,1) ,

M∑
m=1

ωm = 1 .

The model averaging (MA) estimator for the J-dimensional parameter vector is given

by:

β̂MA =
M∑

m=1

ωmβ̂m
0

with β̂m
0 = (β̂m,0)′ in the case of m < M (due to zero-restrictions on a number of coeffi-

cients). Only for comparison, we also consider the best performing model m∗ in terms

of AIC and BIC:

β̂IC = β̂m∗ ·1(∇m∗ = 0) , m∗ = argmin
m

IC(m) ,

where 1(·) defines the indicator function. We compute two different t-statistics for the

elements of β̂MA and β̂IC. The first one takes the model search into account (trob), while

the second one ignores this issue (tnaive).
10 We report both types for illustration and for

9The model containing only an intercept is dropped due to standardization.
10Demetrescu, Kuzin, and Hassler (2011) demonstrate the pitfalls of post-model-selection testing in

various situations. Typically, the empirical size of subsequent test statistics can be severely affected
resulting in upward distortions. Therefore, it is important to take the effects of model search into
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the purpose of judging impact of model uncertainty in our setting.11 The variance of

the k-th element of the estimated parameter vector (̂βMA or β̂IC) is computed via

var(β̂(k)) =

 M∑
m=1

ω(m,k)
√

var(β̂(m,k)|m) + (β̂(m,k)− β̂(k))2


2

where ω(m,k) denotes the model weights for the k-th parameter in model m and var(β̂(m,k)|m)

is the variance of k-th parameter estimator in model m, respectively. As Burnham and

Anderson (2002) point out, this estimator is conservative in the sense that it assumes

perfect correlation between the estimates of different model and thereby can be inter-

preted as an upper bound for the variance. On the contrary, the second estimator ignores

the model uncertainty component (β̂(m,k) − β̂(k))2 and thereby leads to a lower variance

per se and increases the absolute value of t-statistics spuriously. The differences in the

two versions of the t-statistics provide an implicit measure of model uncertainty.

As K is large, the consideration of all these sub-models will be cumbersome and overly

time-consuming. As we have even more variables than observations over time, we ex-

clude some of the variables in X with least explanatory power. We follow Christiansen,

Schmeling, and Schrimpf (2012) by computing a robust t-statistic for each single element

of X via

yt = β(k)x(k)
t + u(k)

t , k = 1,2, . . . , K

where x(k)
t is the k-th element of X at time t.12 The null hypothesis is H0 : β(k) = 0 and

the corresponding t-statistics tβ(k) are robust towards the estimation error in yt resulting

from its estimation in the first step.13 We construct the reduced set of determinants as

follows:

X=
{
x(k)

∣∣∣ |tβ(k) | > cv1−α/2
}

, k = 1,2, ..., K

meaning that only variables with a significant t-statistic are considered further on. The

dimension of the reduced set of determinants is labeled as J and it is expected that

J < K and J < T . Once X is determined, some additional minor adjustments are applied.

A variable is excluded from X if at least one of the following conditions is fulfilled:

(i) the absolute value of the correlation between the particular variable and any other

variable having a larger absolute t-value exceeds some positive threshold c̄, (ii) it has

too many missing values, i.e. at least T̃ non-NA observations. The first restriction deals

account, see also the references therein.
11Both versions also account for persistence estimation uncertainty and serially correlated errors.
12Note that the intercept is omitted as data are standardized.
13Details are provided in Appendix 7.3.
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with the potentially upcoming multi-collinearity problem in the subsequent multiple

regression models. The second requirement ensures a balanced sample in the end for

ease of comparison.

4 Empirical Results

We start by looking at the estimated time-varying persistence reported in Figures 1

and 2 for the WTI and the Brent prices, respectively. Our empirical findings from the

application of the indirect inference estimator are as follows: (i) we find compelling

evidence for time-variation and also mild explosive behavior; (ii) there is a clear need

for bias-correction - the difference between the indirect inference and the standard OLS

estimator is not just a linear level shift, but nonlinear with different strength of bias-

correction for different levels of persistence; (iii) we observe different phases of unit root,

stationary and mildly explosive behaviour; (iv) episodes of explosiveness resemble pre-

vious evidence in the bubble literature and (v) there is very little differences between

the time-varying persistence WTI and Brent Oil prices.

1995 2000 2005 2010

0.
6

0.
7

0.
8

0.
9

1.
0

Indirect Inference estimator
OLS estimator

Figure 1: Dynamic persistence for the real price of crude oil (WTI) for sample from
1992Q3 to 2009Q4.
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Table 1 collects some summary statistics on the indirect inference estimator. Real oil

prices are highly persistent on average, but with considerable differences of minima and

maxima. During the price rally, persistence peaks at 1.038 (WTI) and 1.040 (Brent)

which indicates a sizable explosive component in the prices. Estimates of this magnitude

are quite common in the related bubble literature.

1995 2000 2005 2010

0.
6

0.
7

0.
8

0.
9

1.
0

Indirect Inference estimator
OLS estimator

Figure 2: Dynamic persistence for the real price of crude oil (Brent) for sample from
1992Q3 to 2009Q4.

The core part of our empirical analysis is the model averaging approach which we com-

pare to model selection as a robustness check. The initial data set containing more than

one hundred fifty variables. Given the relatively large amount of regressors, especially

in comparison to the sample size, we resort to necessary standard pretesting before we

turn to the model averaging estimator (see e.g. Ludvigson and Ng (2009)). We consider

Table 1: Summary statistics for dynamic persistence (indirect inference)

Variable Min Median Mean Max

WTI 0.600 0.962 0.924 1.038

Brent 0.602 0.947 0.923 1.040
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Table 2: Empirical findings – Model averaging, WTI

Variable β̂AIC trob tnaive β̂BIC trob tnaive

Employment Italy -0.057 -1.298 -1.729 -0.053 -1.141 -1.790

Employment UK -0.043 -0.809 -1.467 -0.032 -0.588 -1.139

Index of GEA 0.163 2.258 2.291 0.167 2.399 2.445

M1 Japan -0.001 -0.436 -0.677 -0.001 -0.377 -0.793

Personal cons UK -0.002 -0.368 -0.544 -0.001 -0.363 -0.662

REER UK -0.007 -1.242 -1.456 -0.007 -1.251 -1.677

Spread 3m-OV Italy 0.003 0.364 0.548 0.002 0.244 0.348

Table 3: Empirical findings – Model selection, WTI

Variable β̂AIC trob tnaive β̂BIC trob tnaive

Employment Italy -0.063 -1.430 -1.903 -0.075 -1.594 -2.556

Employment UK -0.070 -1.161 -2.351 0 0 0

Index of GEA 0.170 2.355 2.399 0.176 2.519 2.588

M1 Japan 0 0 0 0 0 0

Personal cons UK 0 0 0 0 0 0

REER UK -0.008 -1.329 -1.559 -0.009 -1.554 -2.08

Spread 3m-OV Italy 0 0 0 0 0 0

a regression with the respective variable and keep it if it turns out to be significant at

the five percent level. We apply Andrews (1991) HAC standard errors and include a

correction factor λ ≥ 1 for the estimation error arising from the autoregression.14 By

doing so, we end up with a smaller set of variables such that an analytical evaluation

of all possible models is computationally feasible for which the AIC and the BIC are

computed. The information criteria balance between a good fit and the amount of pa-

rameters in the models. The exclusion of variables with least significance yields J = 7
(WTI) and J = 12 (Brent) remaining variables.15 Below, we also consider a robustness

check with an initial significance level of ten percent and thus larger sets of variables,

i.e. J = 13 (WTI) and J = 15 (Brent).

These reduced set of regressors leads to the estimation of 127 (WTI) and 4,095 (Brent)

different models. For each model, information criteria are computed and as a further

results, a model weight between zero and one. The model averaging estimator is defined

as weighted average of all estimated parameters in each single model by considering the

14See Table 6 in the Appendix for a list of selected variables alongside some statistics from the pretesting.
15We specify c̄ = 0.7 and T̃ = 70.
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Table 4: Empirical findings – Model averaging, Brent

Variable β̂AIC trob tnaive β̂BIC trob tnaive

Employment Canada -0.011 -0.417 -0.623 -0.007 -0.374 -0.762

Employment Italy -0.059 -1.152 -1.686 -0.063 -1.264 -2.143

Employment UK -0.044 -0.825 -1.579 -0.033 -0.605 -1.272

Index of GEA 0.191 2.346 2.366 0.196 2.488 2.512

M1 Japan -0.001 -0.415 -0.633 -0.001 -0.294 -0.496

Personal cons Italy -0.004 -0.439 -0.690 -0.002 -0.389 -0.848

Personal cons UK -0.001 -0.303 -0.409 -0.001 -0.291 -0.491

Real GDP Italy -0.001 -0.195 -0.245 -0.002 -0.299 -0.532

Real GDP US 0.000 -0.066 -0.073 -0.001 -0.197 -0.291

REER UK -0.006 -1.115 -1.390 -0.006 -1.061 -1.529

Spread 3m-OV Italy 0.005 0.408 0.647 0.003 0.314 0.552

Unemployment Italy 0.024 0.512 0.856 0.018 0.459 0.998

Table 5: Empirical findings – Model selection, Brent

Variable β̂AIC trob tnaive β̂BIC trob tnaive

Employment Canada 0 0 0 0 0 0

Employment Italy -0.079 -1.488 -2.288 -0.093 -1.776 -3.184

Employment UK -0.078 -1.244 -2.783 0 0 0

Index of GEA 0.200 2.445 2.480 0.207 2.600 2.650

M1 Japan 0 0 0 0 0 0

Personal cons Italy 0 0 0 0 0 0

Personal cons UK 0 0 0 0 0 0

Real GDP Italy 0 0 0 0 0 0

Real GDP US 0 0 0 0 0 0

REER UK -0.008 -1.307 -1.655 -0.009 -1.494 -2.215

Spread 3m-OV Italy 0 0 0 0 0 0

Unemployment Italy 0 0 0 0 0 0

AIC or BIC weights. Results are reported in Tables 2 and 4 for the WTI and the Brent

price, respectively. In these two tables, we include the model averaging estimate for each

candidate variable alongside the robust t-statistic accounting for model uncertainty (trob)

and a naive t-statistic ignoring this effect (tnaive). A comparison of these two t-statistics

reveals the impact of model search for each variable.

The results are clear-cut in the sense that only a single variable turns out to be signifi-

cant: the index of global economic activity, developed and constructed by Kilian (2009).
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It is the only regressor with a significant robust t-statistic in all considered versions of

model averaging and even model selection (c.f. Tables 3 and 5). The robust t-statistics

take value in the range from 2.258 (AIC model averaging, WTI) to 2.600 (BIC model

selection, Brent) and are significant on the one percent level. The results are fully robust

with respect to AIC and BIC, and also with regard to model averaging and model selec-

tion. The relationship between global economic activity and dynamic persistence in real

oil prices is found to be positive. This positive relationship is plausible in the light of oil

prices which are driven by macrocosmically induced demand and discussed in detail in

Section 5. The exact interpretation of the estimated coefficients is not straightforward

as the variable is an index. However, the sign of the estimated parameters is indicative

for a significant positive relationship.

As a robustness check, we have experimented with a larger value of ten percent for

the nominal significance α and thereby with a larger model set (213−1 = 8,191 (WTI)

and 215 −1 = 32,767 (Brent)). Our main conclusions remain to hold and due to space

considerations, we decide not to report them here, but in the Appendix (Tables 7 and

8). As a summary, we find the following results: while Gold (with an initial first-stage

t-statistic of 1.767 (WTI) and 1.959 (Brent)) is included in the enlarged set of potential

predictors entering the model averaging stage, it turns out to be insignificant in the final

model averaging calculation accounting for the model uncertainty (with t-statistics equal

to 0.691 (0.479) in the case of WTI with AIC (BIC) model averaging and 0.612 (0.404) for

the Brent, respectively). Moreover, the oil related variables world oil production, spot-

future spread and inventories are not even passing the first stage due to their inability

to explain movements in the time-varying persistence of real oil prices. Their initial t-

statistics equal for the WTI: -1.324, -0.808 and -0.601, respectively (very similar results

are found for the Brent). This is similar to commodities which are typically traded

by speculative investors, e.g. silver (0.521), soybeans (0.576), wheat (0.788) and rice

(1.229). The given t-statistics indicate their irrelevance for the explanation of dynamic

oil price persistence.

5 Discussion

We are interested regarding the question: What drives the price persistence of crude

oil rather than the price itself? Explosive or stationary price behavior might be caused

by rational bubble or bursting periods respectively. But, for the existence of a rational

bubble, it is required that a speculative component is included in the prices16 because

16Speculation refers to a situation where someone buys oil for future rather than for immediate use.
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Figure 3: Index of global economic activity, see Kilian (2009).

a ’rational bubble’ refers to a situation where buyers push the price of oil beyond the

intrinsic value since these investors have expectations about rising oil prices. Thus, us-

ing the procedure of exclusion, if variables related to speculation – like the spot-futures

spread – are not significant for the explosive persistence, we can conclude that the ex-

plosiveness has not been caused by a rational bubble.

Our results indicate that solely increases or decreases in the global demand for energy

explain stationary, random walk and explosive behavior of oil prices. Just one variable –

namely the global economic activity (index of GEA) by Kilian (2009) plotted by Figure

3 – is significant.17 This index ”is based on dry cargo single voyage ocean freight rates

and is explicitly designed to capture shifts in the demand for industrial commodities in

global business markets” (see Kilian, 2009, p. 1055).

17It is stationary by construction (see Kilian and Murphy, 2014). Thus, we do not have to apply a
transformation of this index as presented by Table 6.
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We find explosive regimes by considering the estimated persistence (see Figure 1 in the

case of real WTI prices and Figure 2 in the case of real Brent prices) between 2005 and

2008 in oil prices which is in line with the majority of studies employing persistence-

based methodology (see, for example, Caspi, Katzke, and Gupta, 2015; Gronwald, 2016).

Just by eyeballing, the estimated persistence and the trajectory of the index of GEA,

it stands to reason that these variables are related. The explosive regime between 2005

and 2008 comes along with a strong increase in the global demand for industrial com-

modities and its dip is coincident with a decrease of the persistence.18

To be cautious regarding the interpretation of this result as non-speculation – while

speculation does not drive the persistence, it might effect the price itself because there

is no rational bubble without speculation but there might be speculation in the mar-

ket without a bubble. However, speculation which does not lead to bubble behavior

has, of course, different economic implications which are not in the scope of this paper.

Nonetheless, we find an explosive regime (see Figure 1 and Figure 2), which could not

be explained by variables related to speculation. Thus, our results indicate that this

explosive regime is not related to a rational bubble which is in line with Pavlidis, Paya,

and Peel (2017).

While the price itself could also be driven by supply shocks, the persistence appears not

to be driven by oil supply. However, Kilian and Murphy (2014) argue that the peak

oil hypothesis19 might be rejected. Additionally, we would not conclude in favour of

speculative bubbles if oil supply would have been a variable effecting the persistence of

oil prices significantly. Hence this is not the case, we conclude that supply shocks were

not the main driver for the explosive regime. Thus, our results are in line with Kilian

and Murphy (2014) concerning supply shocks.

Compared to other studies, like for example, Phillips and Yu (2011) or Caspi, Katzke,

and Gupta (2015), our approach has the advantage that we do not need to pre-specify

a fundamental for crude oil prices in order to investigate whether an explosive regime

is related to a rational bubble or not. Hence, in this particular sense, our approach is

comparable to Pavlidis, Paya, and Peel (2017) who also overcome the pre-specification

of the market fundamental for crude oil to analyze bubble behavior. However, contrary

to Pavlidis, Paya, and Peel (2017), our approach is data-driven and permits to capture

18Etienne, Irwin, and Garcia (2014) find that explosive regimes in grain futures prices are positively
connected to the index of global economic activity as well.

19The oil peak hypothesis supposes a peak in the oil production in 2006 and, as the result, increasing
oil prices.
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a large number of potential drivers of the persistence for crude oil prices.

6 Conclusions

In this article we tackle the question whether time-varying persistence in real oil prices

(including mildly explosive periods) can be linked to macro-financial variables from

G7 countries, oil-related measures and commodity markets. The employed economet-

ric techniques range from indirect inference bias-corrected estimation (see Phillips, Wu,

and Yu (2011)) to frequentist model averaging (see Burnham and Anderson (2002)). We

account for estimation and model uncertainty in the different steps of our analysis. Our

major finding is that the index of global economic activity (c.f. Kilian (2009)) is the only

driver of persistence in real oil prices. Our interpretation is that dynamic persistence is

solely driven by global energy demand. All other considered variables from a compre-

hensive data set by Juvenal and Petrella (2015) turn out to be insignificant. As financial

variables like the spot-futures spread do not play a role in explaining the time-varying

persistence, it is likely that the temporary explosive behavior is not related to (rational)

financial bubbles, thereby supporting the notion of Gronwald (2016). Our results are

found to be robust in several dimensions. While we consider an extensive collection of

data, there is still the risk of neglecting a significant variables which might also explain

the persistence of oil prices. Thus, our conclusions are based on the comprehensiveness

of the data compilation.
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7 Appendix

7.1 Details on selected variables
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7.2 Additional Empirical Results

Table 7: Empirical findings – Model averaging, WTI, α = 10% for X

Variable β̂AIC trob tnaive β̂BIC trob tnaive

Employment Canada -0.011 -0.410 -0.606 -0.007 -0.361 -0.702

Employment Italy -0.043 -0.999 -1.617 -0.041 -0.958 -2.193

Employment UK -0.037 -0.777 -1.549 -0.028 -0.615 -1.700

Gold price 0.002 0.691 1.010 0.001 0.479 0.812

Index of GEA 0.142 2.065 2.252 0.154 2.332 2.569

M1 Japan -0.002 -0.561 -1.020 -0.001 -0.394 -0.779

Personal cons Italy -0.003 -0.358 -0.513 -0.002 -0.310 -0.517

Personal cons UK -0.001 -0.313 -0.431 -0.001 -0.255 -0.385

Real GDP Italy 0.000 0.005 0.005 -0.001 -0.220 -0.338

Real GDP US 0.000 -0.029 -0.031 -0.001 -0.142 -0.187

REER UK -0.006 -1.207 -1.568 -0.006 -1.180 -1.858

Spread 3m-OV Italy 0.005 0.418 0.679 0.003 0.363 0.745

Unemployment Italy 0.015 0.424 0.663 0.013 0.430 0.953

Table 8: Empirical findings – Model averaging, Brent, α = 10% for X

Variable β̂AIC trob tnaive β̂BIC trob tnaive

Employment Canada -0.006 -0.334 -0.480 -0.002 -0.225 -0.344

Employment Italy -0.078 -1.782 -2.299 -0.079 -1.835 -2.627

Employment UK -0.042 -0.830 -1.639 -0.022 -0.514 -1.127

Gold price 0.001 0.612 0.929 0.001 0.404 0.670

Index of GEA 0.186 2.861 2.964 0.189 2.778 2.851

M1 Japan -0.001 -0.454 -0.728 -0.001 -0.338 -0.626

M2 Canada 0.023 1.402 1.567 0.022 1.352 1.679

Personal cons Italy 0.000 -0.067 -0.072 0.000 -0.141 -0.182

Personal cons UK -0.002 -0.348 -0.495 -0.001 -0.253 -0.403

Real GDP Canada 0.017 0.702 1.171 0.006 0.395 0.763

Real GDP Italy -0.001 -0.174 -0.212 -0.001 -0.132 -0.165

Real GDP US 0.003 0.365 0.543 0.001 0.256 0.445

REER UK -0.004 -0.975 -1.456 -0.003 -0.794 -1.726

Spread 3m-OV Italy 0.001 0.108 0.125 0.001 0.188 0.274

Unemployment Italy 0.016 0.440 0.713 0.012 0.371 0.678
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7.3 Robust t-statistics when the regressand is estimated

Estimation of the regression model ρt = β(k)x(k)
t + u(k)

t is infeasible as ρt is unobserved.

Instead, we have ρ̂t = ρt + εt, with εt being the estimation error with var(εt) = σ2
ε denote

its variance. A feasible regression is (see Dumont, Rayp, Thas, and Willemé, 2005)

ρ̂t = β(k)x(k)
t + (u(k)

t + εt).

Neglecting the fact that ρt is estimated leads to an upward-bias in absolute t-statistics.

Under the assumption that u(k)
t and εt are independent of each other, a correction factor

for the t-statistics can be constructed along the lines of Dumont et al. (2005):

λ(k) =
σ2
ε +σ2

u(k)

σ2
u(k)

≥ 1.

The corresponding robust t-statistic for testing H0 : β(k) = 0 is then given by

t̃β(k) =
β̂(k)√

λ̂(k)/
∑

t x(k)
t x(k)

t

.

As ρt is estimated in a rolling window fashion, a sequence of estimated variances for

ρ̂t is obtained. We use the median of the sequence to measure the overall estimation

uncertainty. Another issue is the widely acknowledged problem of heteroscedasticity and

autocorrelation in the residuals. We additionally employ Newey-West HAC standard

errors following the suggestions made in Andrews (1991) in the computation of t̃β(k) .
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