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Abstract

In this paper, simple variants of bias correction for dynamic panel data
models are proposed and their asymptotic properties are studied when the
number of time periods is fixed or tends to infinity with the number of
panel units. Our approach can easily generalised to higher-order autore-
gressive models and cross-sectional dependence. Panel-corrected standard
errors are proposed that allow for robust inference in dynamic models with
cross-sectionally correlated errors. Monte Carlo experiments suggest that
bias-corrected method of moment estimator outperform popular GMM es-

timators in terms of efficiency and correctly sized tests.



1 Introduction

Dynamic panel data models are now widely used in a wide area of empirical appli-
cations. Since the work of Anderson and Hsiao (1981), the instrumental variables
and the generalized method of moments (GMM) estimators have been extensively
used in the estimation of dynamic panel data models. However, it is known that
the GMM estimator by Holtz-Eakin et al. (1988) and Arellano and Bond (1991)
suffers from the weak-instruments problem when the persistency of the data is
strong, as demonstrated by Blundell and Bond (1998). They also showed that the
GMM estimator for models in levels with first-differenced instruments mitigates
that problem and proposed the so-called system GMM estimator by combining
models in first differences and in levels. Nowadays, the system GMM estimator is
most frequently used in practice albeit Bun and Windmeijer (2010) showed that it
still suffers from the weak-instruments problem when the variance of the individ-
ual specific effects is larger than that of the idiosyncratic errors. As alternatives
to the GMM approach, maximum likelihood (ML) estimators and bias-corrected
within-groups (WG) estimators were proposed. Hsiao et al. (2002) suggested a
transformed ML estimator that adapts the ML approach to the differenced vari-
ables. Hayakawa and Pesaran (2015) extended this transformed ML estimator to
allow for cross-sectional heteroskedasticity and proposed robust standard errors.

With regard to bias-corrected WG estimators, Kiviet (1995) and Judson and
Owen (1999) demonstrate that they are attractive alternatives to GMM estima-
tors. Although the bias-corrected WG estimator of Kiviet (1995) is based on a
higher-order expansion of the bias term, the analytical results are based on the
unknown parameters that have to be estimated by some consistent initial estima-
tor. Accordingly, the asymptotic distribution of this estimator is unknown. Bun
and Carree (2005) proposed an alternative bias-corrected WG estimator which
iteratively solves a nonlinear equation with regard to unknown parameters.

In this paper, we consider a simplified variant of the bias-adjusted likelihood
approach by Dhaene and Jochmans (2016). We demonstrate that the likelihood
scores can be transformed into nonlinear moment conditions that can easily be
solved with standard methods, and show that the resulting estimator is asymp-

totically equivalent to the ML estimators suggested by Hsiao et al. (2002) and



Bai (2013). This approach simplifies the derivation of the asymptotic proper-
ties and allows us to develop a bias-corrected method of moment estimator for
higher-order dynamic models. Furthermore, we propose “cluster-robust” (resp.
“panel-corrected”) standard errors that account for cross-sectional dependence.
Monte Carlo experiments suggest that these estimators perform well (in terms
of efficiency and correctly sized tests) relative to the uncorrected least-squares
(WG) or GMM approaches.

The rest of this paper is organized as follows. In Section 2, we show that
the adjusted profile scores can be written as nonlinear moment conditions, and
derive the asymptotic properties where the time series dimension is fixed or tends
to infinity with the number of cross sections diverging. In Section 3, we explore
the relationship between the bias-corrected estimator and ML estimators. In
Section 4, the model is extended to include higher-order dynamics. In Section
5, we consider the case where errors are cross-sectionally correlated. The results
of various Monte Carlo experiments are summarized in Section 6 and Section 7

concludes.

2 Bias-corrected estimators for the baseline model

To motivate our bias-corrected estimator, we first consider the pure autoregressive

model
yit://"i—l—ayi,t—l—'—uita t:17"'aT7 izl;"'aNa

where w;; LN (0,0%). For estimating the parameter o, Dhaene and Jochmans
(2016) consider the profile likelihood that results from profiling out the parame-

ters p; and o2 from the log-likelihood function, yielding the “profile scores”

s(a) = ol(a) _ Zz]il ZtT=1(yi,tf1 - ?_1,1)(% — Yis—1)
da Zil Zthl(Z/z’,t—l - 5—1,7;)2

where §_,; ; = T-! Zle Yit—1. The bias-corrected profile likelihood estimator «

)

results from solving the equation s(a) — E[s(a)] = 0. Unfortunately, the bias
term E[s(a)] is a complicated function of « as it involves an expectation of a

ratio of two random variables both depending on a. To simplify the derivation



of the bias function, we first assume that the variance o2 is known, resulting in

the profile score

1

N T
= 52 Z Z(yi,t—l - yfl,i)(yit — QYir—1)-
i=1 t=1

Our bias-adjusted method of moments estimator is based on the moment condi-

tion

E (% Z Z [(yz‘,t—l — §_17i)(y¢t — QY1) — %%(a)}) —0, (1)

=1 t=1

where

bT(Oé> —

T
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is a polynomial in « that is presented further below. Since o2

is unknown, we
replace it with an unbiased estimator. Accordingly, our modified profile likelihood

estimator is obtained by solving the moment equation

Z yz,t—l - y—l,i)(yit —QYig-1) — 32(04)5T(04)] =0,

N=a
where E[0?(a)] = 02. Solving this moment equation is much simpler than solv-
ing the bias-adjusted profile score equation suggested by Dhaene and Jochmans
(2016).

Let us now consider some more details of our alternative bias correction for

the first-order dynamic model with strictly exogenous regressors given by
yit:/*L’i—i_aoyi,tfl—i_ﬁé)xit—i_uit tzl,...,T, izla-"aN7 (2)

where o and the k£ x 1 vector B, denote the true values of the parameters of
interest. For the k x 1 vector of regressors x;; and the error term wu;; the following

assumptions are imposed:

Assumption 1. (i) The errors uy are independent across i and t with E(u;) =0
and E(u%) = o2 < C for some constant C < oo. (ii) The regressors are strictly
exzogenous with E(X;u;s) = 0 and E|jugusxqXl|| < oo for all t,s € {1,...,T}
and i € {1,...,N}. (iii) E|uy|**° < oo for all i and t and some § > 0. (iv) For
the initial values we assume E(y;0)? < oo for all i and E(y;yuy) = 0 for all i and
te{l,...,T}.



This set of assumptions is standard in the literature on dynamic panel data
models (e.g. Arellano and Bond, 1991, and Ahn and Schmidt, 1995). Note that
we do not impose any stationarity assumption on the initial values. Therefore,
the process may start at any fixed or random level in the finite past. If T is fixed,
assumption (1) does not rule out nonstationary regressors or instable dynamic
processes with o > 1. However, if T" tends to infinity, additional assumptions are
required for the limiting distribution of the estimator. It should also be noted
that we allow for individual-specific heteroskedasticity. In Remark 3 we show
that our estimator is robust to time series heteroskedasticity as 7" — oo.
Assuming normally distributed errors and treating ;o as a fixed constant, the

first-order condition of the ML (least—squares) estimator 6 = [, B/]’ results as
a Go,NT( Yig—1 — Y 1 N =D
gnr(0) = [gﬂ,NT(e)] ;; [ %, ] [6Zt(9) ei(0)| = 0,
where §_,; = T~ 3/, yis—e, with the index —¢ suppressed for £ = 0, e;(6) =
Yit — i1 — B'Xir, and &(0) = T 31 €:4(6).
The probability limit for N — oo and fixed T" evaluated at the true parameters
is obtained as (e.g. Nickell, 1981, and Moon et al., 2015)

Zyzt 1 <€zt (60) — %ZBZS(OO)>

plim g, N7(6p) = lim —
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1
— _TbT(a0)527 (3)
where 72 = limy_,oo N 7! Zf\il o? and
L T2
@)= L3 o
t=0 s=0
1 -1
=——+0(T)

Note that br(a) is a positive monotonously increasing function.
Since plimy_, . ga.nT(60) # 0, the FE estimator is inconsistent if 7" is small.

Using

- B ,
1 tzl eit(00)(ei(0o) —€(60))| = o,



we obtain the set of moment conditions

mTi,oz<00)

E my; 00 =K
[mri(6o)] I

=E[w;(00)(ei —€(60))] =0, (5)

where

mri.(0) = Z (yz‘,t—l + %eit(0>> (eir(0) —€:(0)) (6)

t=1

mr; 5(6 Z x;(e(0) —€(0)) (7)

wa(6) = [y ot ;T( feato). %] ®)

The bias-corrected method of moments estimator 5bc is obtained by solving the

moment conditions » ;" mp;(6y.) = 0 based on the recursion

Z vemTi(e())] (Z mTi(00)> )

where 6° is the initial value, @' denotes the updated value, and

00’

VQI'HTZ'(OO) =

0=60
The entries of the matrix Vymp;(0) are provided in Appendix A. The limiting

distribution for N — oo and fixed T is presented in the following theorem.

Theorem 1. (i) Under Assumption 1, the limiting distribution 0f Oy = [Qpes B;C]’
for fired T and N — oo is given by

VN (B — 80) 5 N (0,D1(80) 'S 1(8,)Dr(6) ),

where
N
. 1 DToza<0) DTocﬂ(e)/
Sr(0) = plim — » mp(0)mp(0), Dr(0) = ’ 7 ,
N—oo N zzl DTaﬁ(e) DT,,B/B(O)
2
DT,aa(e) phm AT Z Zyzt 1 yzt 1= y lz) -0 v bT( ) T_1 2bT( )27
N-oo V=5
1 N
DT,aﬁ = phm T Z Z Xit — yzt 15 DTﬁﬁ(O) = phm N Z Z Xit = Zt’
N%oo N—oo

i=1 t=1 i=1 t=1



and Vobp(a) =T 307250 sas

(i1) Let 2y = [yir—1,X,) and assume

N T
1 _ _ v
E WZZ(ZM - Zi)(zit - Zz’) — V.,

=1 t=1

as N,T — oo and N/T — k,0 < k < oo, where V, is a positive-definite and

finite matriz. The limiting distribution for N, T — oo s given by
VNT (0. — 05) % N(0,0°V. ).

Remark 1. The covariance matrix of the bias-corrected method of moments

estimator can be consistently estimated by the small-sample analog

Vr(6y) = [Z VlemTi(ébc)] (Z myz;(Bpe)mr; (O ) [Z Vymz;(B.) ] ;
(9)

and the usual test statistics can be employed for inference. For example, we
may examine the linear hypothesis Hy : RO — r = 0 by the Wald statistic
(ROy. — 1)’V N7(05) 1 (RO — 1).

Remark 2. As shown by Hahn and Kuersteiner (2002) and Bai (2013), the
asymptotic variance for the case N/T — k is identical to the lower variance
bound, which is equivalent to the asymptotic variance in the case of no individual
specific constants. Therefore, whenever T — oo, the estimator is asymptotically
efficient. It is important to note that according to (ii) the estimator does not
involve an asymptotic bias. In contrast to the LSDV estimator and the GMM
estimators, inference is valid also for all values of k. This finding suggests that
the estimator is particularly attractive in macro panels, where N and T are of

similar magnitude (cf. Breitung, 2015).

Remark 3. According to Assumption 1, the bias-corrected method of moments
estimator is robust against heteroskedasticity across panel units. On the other
hand, the bias correction assumes that the error variances within each group

are constant over time. However, it is not difficult to see that the inconsistency



becomes less severe as T' becomes large. Let o7 = E(u?) such that

T = = =
E (Z yz‘,t—ﬂz‘) = (fzai) + @ <f2022t> +ag (fZ‘%’%) +
t=1 t=1
= br(ap) < Z%t) oo+ ao(oir_y + oip)

+aj (o7 05— 2+UzT  + o )+]

Let C; < oo be some upper bound of the variances {c, ... ,O'szl} such that
Lo t—1
f[ng—i_OéO( ’LT 1+U )+Oéo< ZT 2+UZT 1+U <CZtOé .

Since ZtT:_ll tal™! is bounded as T' — oo, it follows that

E (Z yz‘,t—lﬂz‘) = br(a) (%Zai) +O(T™).

For T — oo we have (T — 1)"' 321 (e4(60) — €(80)?> 5 72, where 52 = limyp o
T! Zthl oZ. Tt follows that the bias correction is valid under temporal het-

eroskedasticity whenever T’ is large.

Remark 4. The model setup corresponds to a fixed-effects panel data model.
The estimator can easily be adapted to a random-effects framework, where it is
assumed that p; is a random variable with E(u;) = 0, E(x7) = o7, and E(u;x) =

0 for all ¢ and ¢. In this case, my; 5(6) in moment equation (7) is replaced by

my; 5(0) = Z X;t€it(0). (10)

The respective estimator is more efficient than the original method of moments
estimator from the fixed-effects framework as long as the regressors are uncor-
related with the individual effects. The random-effects framework also allows to

include time-invariant regressors.



3 Relationship to maximum likelihood estima-
tion

In this section, we show that our bias-corrected method of moments estimator is
similar to the ML estimation procedures proposed by Hsiao et al. (2002) and Bai
(2013). In particular, we show that the first-order conditions of the ML estimation
procedures can be decomposed into two terms. The first term results from the
first-order condition of the least-squares estimator, g, n7(6), whereas the second
term acts as a bias correction. Accordingly, the main differences between these
approaches are the assumptions on the initial condition that result in different
bias correction terms. An important advantage of our approach is that we do
not need to impose any assumption on the initial condition y;y other than it has
finite variance and is uncorrelated with all subsequent errors w;, ..., u;r.

To simplify the discussion, we focus on the simple AR(1) model without ex-

ogenous variables and with homoskedastic errors. Let

€i1 Us1
€i2 U2
e = . = Yi—Qy-_1; and u; = . = €; — Ulr,
€T Uy
— / _ ! :
where y; = (Yi1, - -, ¥ir)', Y-14 = Yo, Vi1, - - - Yir—1)’, and ¢y is a T' x 1 vector of

ones. The (conditional) log-likelihood function is given by

N
NT NT 1
l(a, 0% p) = N In(27) — N In(0?) — 257 ;u;ui
N
NT NT T &
N
NT NT o9 T,
:Tln(Zﬂ)—Tln 202;; eir — —2—;%

Note that the last term in this likelihood function depends on « and p;, therefore,
dropping this term (by concentrating out ;) results in the within-groups estima-

tor that is known to be biased. The first derivative of the likelihood function is



given by

M— ! Zzyzt (e — € +—Zuzy 1

=1 t=1
As w; is unknown, we replace the last term with its expectation,
ro.._
;E(Uiy—u) = br(a),
which yields the nonlinear moment conditions of the previous section.
In the literature, two other likelihood-based estimators were suggested. Hsiao
et al. (2002) assume that w; ~ N(0,02) for t = 1,...,T and Ayy < N(b,w).

The initial condition implies

Yir — Yio = (o0 — D)o + i + wi

= Uj; — Wip + b.

and from E(ujup) = 0 it follows that E(uZ) = (w — 1)e?. The (Gaussian)
log-likelihood function is given by

N
NT NT N 1
((a,0% w) = ==~ In(2r) = = In(0?) = T () - 5 ;ef’D’ﬂ‘lDef,

where e; = (u,€}), D =(0,I7) — (Ir,0) is a T x (T 4 1) matrix, Q@ = DD’ —

(2 —w)preyis a T x T matrix, and ¢ is the first column of the 7" x T" identity

matrix Iz such that

2—-w)(T+1)
€2

where [Q] = T(w — 1) + 1. Using D'(DD’)"'D =Ir41 — (T + 1) 'eryath,, the

log-likelihood function results as

Q™' = (DD (DD') ' (DD') 7,

la, 0% w) = — gln@w) — gln( 7 — gln(\ﬂl)
N T N
1 —%\2 (2_w)(T+1) %) 2
T 992 ZZ(% - )" - 202|Q| Z(Uiﬂ — )
=1 t=0 =1
NT NT N
=— Tl (2m) — TlH(O'Q) — —In(|€2])



using the relationship
Ujp — U; = TL—I—l(uiO — ;)

between the within-group average u}; = (T+1)! Zfzo u;; that includes the initial
value u;y and the within-group average @; = 71 ZL u;; that does not include
U0

Obviously, the last term in the log-likelihood function yields a bias correction.
Instead of Tu? in the log-likelihood function (11), this approach employs an
adjusted term, where w; is replaced with the mean of the adjusted residuals,
71 ZtT:l(uit — u0). This adjustment cancels the individual effect but implies
a different variance. Indeed it is not difficult to show that TE(w; — u;)? =
T(w—1)0*+0* = 0?|Q], which explains the different denominator of the last

term. Upon differentiation, the last term yields the bias adjustment given by

b( a,w) = 0‘2|Q| Z Yio — yzfl uz(] ) (12)

In Appendix A it is shown that E[by(,w)] = br(e). An important drawback
of this approach is that it involves an additional parameter w that has to be
estimated, although the bias does not involve this parameter.

A similar comment applies to the ML framework of Bai (2013). In the AR(1)
model without exogenous variables, the individual effects can be treated as a
random effect. Again an initial condition is required. We follow Bai (2013) and
assume 1;,0 = 0 for all 7. It is not difficult to show that the derivative of the

Gaussian log-likelihood function results as

ol (cv, 0%, ) 1 T 7

T7r 02
i=1 t=1 N+

where 7y = N1 327 | 2. Profiling out E(; — a§_,,)? = T'm + 0 and o2 yields

the first-order condition

N
T Z @i,—1(yz’ - O@i,—l)
gNT(a) —+ 11;1 =0,

Z@i - 0@1',71)2

=1

10



where

N

1 N
gnr(a) = N Z
=11

~2

Yir—1(€ir — €),
1

T
§ €it — ez

=1 t=1

N

(]

"N

It is not difficult to show that, if y;0 = 0 for all ¢, then
N
Z Vi —ay_y;) £>O'2+T7T,

N
Z —a_1,;) B br(a) (o + Tm),

and, thus, the bias correction is asymptotically equivalent to the bias correction
applied in Theorem 1. It is important to notice, however, that the validity of this

bias correction crucially depends on the initial condition y;o = 0.

4 Higher-order dynamics

In this section, the bias-corrected method of moments estimator is generalized
to an autoregressive model of order p. To simplify the discussion, the (strictly
exogenous) regressors are neglected. The treatment of the additional regressors
are considered at the end of this section. Consider the autoregressive model of

order p,
Yit = i F oY1+ iz Fuy, t=1,....T, i=1,... N, (13)

where Assumption 1 applies. It is convenient to rewrite the model in companion

form:
[ 1 0 . . 0 . 0- _yu_ -041 g - ozp- r

Yio
—a; 1 0 - O 0 - 0f Y2 oy Q3

Yi,—1
—ay —oy 1 - 0 0 - 0 |Yis| =pitr+ |az O .
0 0 - —ap —ap - 1 |y 0 0 - o] LYl

11




or
Ar(a)y; = par + Br(a)y] +u; (14)
where o = [ay, ..., a,)". Accordingly, we obtain

yi = piAr(e) ar + Ap(a) ' Br(a)y; + Ar(a) 'y .

A similar representation exists for the the vector of lagsy ,; = [0,...,0,y1,..., ¥ 1]

Y_t: = 1iCre(a)ir + Rey(a)y] + ¥r(a)u; .

The matrix $r () is defined similar to ¥7 () = Ar(a)™t, dropping the first
column and expanding it with a column of zeros from the right. The matrices
Cr(a) and Ry () are not important as they refer to terms that are uncorre-
lated with w;q, ..., ur.
Let My =1 — T*I'LT’L’T. The expectation of the first-order conditions results
as
2

g
E(y’_“MTuZ-) = UQtT(\I’T7gMT) = — T@'T\I!”(a)z;p .

That is 02 /T times the sum of all elements of W1 ,. For example, consider p = 1

and 7" = 4. For this case we obtain

1 0 0 0 0O 0 0O
3 a 1 00 1 0 0 0

Urola) = Ap(a)™ = 2w 10 and Wri(a) = W10 ol
o o a1 o2 a1l 0

t

and therefore, the sum of the elements of Wy, () equal to 3o (St o, as re-

quired. An alternative — for our purpose less convenient — interpretation of the

-1

elements of the matrix Ar(a)™" is obtained from the moving-average represen-

tation of the AR(p) model. Let

Yir — E(ae|his Xit, Tig—1,--.) = Qo + Prtiz—1 + Pollip—o + .. .,

with ¢g = 1. For j > k the (j, k)-elements of the matrix Ar(a)™! are equal to

®j—r. All other elements are equal to zero.

12
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The moments for the bias-corrected estimator in the AR(p) model result as

T

br(ox

mria, () = E <yz,t—e + —ZTfE 1) €¢t) (eir — €), (15)
=1

where bry(a) = (¢, Wr(a)er)/T. For the model with strictly exogenous vari-

ables x;, the complete set of moments for the parameter vector 8 = [o/, 3]
results as
mria; (0)
: T
mTi,ap<0> t=1
| i 5(6)

where mp; 5(0) is defined as in equation (7), and

Note that for T'— oo and t/T — ¢ > 0 it follows that

0? [ &
E(y; ;) = T (Z ¢j)
=0

2

B o
Tl—og——ap)
and therefore it follows for T — oo that
1
b — — .
Te(cx) l—a - —a

The bias-corrected method of moments estimator results from solving Zf\il mry; (ébc) =
0. The computational details are similar to the case of an AR(1) model. The

required derivatives 0by(a)/Ocp with £ =1,..., p are presented in Appendix A.

5 Cross-sectional dependence

In many macroeconomic applications, it is reasonable to assume the elements of

the error vector w; = [uyy,...,uy] are correlated such that

E(wuy) = X, t=1,..,T.

13



Although the bias-corrected estimator remains consistent under cross correlation,

the estimator of the covariance matrix considered in Remark 1 is biased as

(Z mTi(b\bc)> (Z mTi(abc),>] 7& —E (Z mrp; 9bc)mTz(9bc) )

in general. For the asymptotic covariance matrix we need to estimate the ex-

pression on the left-hand side consistently. The moments of the bias-corrected

estimator can be rewritten as
N

N T
S om0 = L3S w0 ) = 5 S W0 ),
=1

i=1 t=1
where Wy (0) = [w14(0),...,wn(0)], wp = [uyy, ..., uny), and @ = [y, ..., uy].

Since the vector u; is independent across t, we have as N — oo and N/T — k

T T
. 1 / . ]' /
$(60) = M B | 37 2 Wil®o) Eu’tWtW] = B | N 2 Tl
where Z; = [zy,,...,2)y,] and z; is defined in Theorem 1. Note that the bias

correction does not affect the asymptotic covariance matrix as T — oco. To
obtain a robust estimator of the covariance matrix, we may use the cluster-robust

estimator

~7rob

(NT)Spyr( 9bc Zwt 0c) etetwt(ebc) (17)

t=1

instead of Zf\il mTi(abc)mTi(abc)’ in Remark 1, where €; denotes the N x 1 vector

of mean-adjusted residuals
~ —_ o~ —_ A/ —_—
it = (Yit — i) — Qbe(Yit—1 — 3/_1,2') — Bpe(Xit — ;).
As the following theorem shows, the resulting estimator of the asymptotic co-

variance matrix is consistent in the case of weakly cross-sectionally dependent

CITrors.

Theorem 2. Let yy; be generated by the dynamic panel data model (4) with
E(wuy) = X, If the largest eigenvalues of X1, .., %, v are bounded in N,
then as N — oo and N/T — k < o0

VNT (8. — 60) 5 N (0,D(6,)'S(6,)D(6p) ") (18)

~rob

where Sy (Oe) & S(00) and T~Dy(6,.) L D(6y).

14



Remark 5. It is easy to see that the robust cluster approach runs into difficulties

if the error dependence is due to common factors. Assume that u; = A\ f; +

2

eit, where f; and e, are i.i.d. sequences with E(f?) = O’J% and E(e?) = o2

Accordingly, the error covariance matrix is
Eu,t = Eu = O';AA, + O‘gIN

where A = [A1, ..., An]". Since

T
1
NT D> W8 ANW(6) = O,(N),
t=1
in general, the estimator Bbc is no longer v/ NT-consistent (cf. Breitung, 2015,
Sec. 15.4.3).

6 Small-sample properties

6.1 Data-generating processes

To compare the small-sample properties of the bias-corrected method of moments
estimator to alternative estimators suggested in the literature, some Monte Carlo
experiments are performed. The data are generated from a slightly simplified
homoskedastic version of the dynamic panel data model used by Kiviet et al.

(2017) in their simulation exercise:

Yit = OYip—1 + BTy + Opfli + Ty,

Tip = YTig—1 + Tppli + TAN; + Oc€yp.

The regressor x;; is strictly exogenous with respect to the idiosyncratic error term
u;. The errors u;; and €;; and the individual-specific effects p; and \; are drawn
from independent standard normal distributions. Following Kiviet et al. (2017),
we choose the remaining free parameters to obtain a reasonable characterization
of the data-generating process. More details are available in the Online Appendix.

We distinguish between a process with moderate persistence, « = 0.4, and
high persistence, o = 0.9. The process is initialized at ¢ = —50 with y; _50 =

x;—50 = 0, and the first 50 observations are discarded. As a robustness check,

15



we also consider the initialization without burn-in period, ;0 = z;0 = 0, which
implies that the observed process starts off its stationary path.
To analyze the estimators’ performance under higher-order dynamics, we

modify the above data-generating process as follows:

3
Yit = Z QY-+ BTy + opfli + Ty Uiz
j=1
We set (aq, ag, az) = (0.48,—0.2,0.12) to achieve 2?21 a; =04 and (aq, a2, a3) =
(1.08,—0.45,0.27) to obtain Z?Zl a; = 0.9. All other parameter values are left
unchanged.

A data-generating process with heteroskedasticity across both dimensions is

3
Ui = \/252'775%17

where 7; and v; are independent standard normally distributed, and 9; is uni-

obtained by replacing u;; with

formly distributed over the interval (0,2). To analyze the estimators’ performance
under cross-sectional error dependence, we consider the following modifications
of the data-generating process, where v;; in all specifications is independent stan-
dard normally distributed and the parameterizations ensure that Var(u;) = 1

to keep the signal-to-noise ratio unaffected:

1. Uniform cross-sectional dependence:

3 N
Ui = \/ m jzlwz‘jvjt;

with independent uniformly distributed spatial weights w;; over the interval
(0,2).

2. Interactive random effects:

3
Uiy = \/;(52'7—15 + vit),

with independent standard normally distributed common factors 7, and

uniformly distributed factor loadings §; over the interval (0, 2).
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6.2 Simulation results

We compare the performance of the within-groups estimator (WG), our bias-
corrected estimator (BC), the one-step Arellano and Bond (1991) GMM estimator
(AB-GMM), the two-step Ahn and Schmidt (1995) GMM estimator (AS-GMM),
the two-step Blundell and Bond (1998) GMM estimator (BB-GMM), and the
Hsiao et al. (2002) QML estimator. In addition to the average bias and root
mean square error (RMSE), we report the empirical size of Wald tests given a
nominal size of 5%. We consider a fixed-T' robust variance-covariance estima-
tor clustered at the individual level and, for the WG and BC estimators in the
simulation designs with cross-sectional dependence, a large-T robust variance-
covariance estimator clustered at the time periods. For the AS-GMM and the
BB-GMM estimators, the finite-sample Windmeijer (2005) correction is applied.

We consider all sample size combinations of T € {5,10,25,50} and N €
{50,200}. The results are based on 1,000 replications for each simulation design.
For the BC estimator, we apply the following procedure to deal with the problem
that by(«) is a higher-order polynomial in « such that the moment function
mri (@) may have multiple roots, possibly even in the stationary parameter
region. Although this problem disappears as T' becomes large, for samples with T’
as small as 5 or 10, we observe a small fraction of estimates that are far away from
the true value. If the moment functions are interpreted as profile scores from an
adjusted profile likelihood function, the maximum must obey the second-order

' In our simulations, we check

condition that ngTi(ébc) is negative definite.
whether the largest eigenvalue of VemTi(ébc) is negative. If this condition is
violated, we re-initialize the search algorithm with a random draw for « from the
uniform distribution over the interval (0,1). If necessary, we repeat this process
until a solution is found that satisfies the condition of a negative-definite gradient
of the moment function. In our experience, this refinement effectively prevents
finding an inappropriate solution for the moment conditions.

As detailed results can be found in the Online Appendix, we sketch the main

results in the following:

!See Dhaene and Jochmans (2016) and Juodis (2018) for a related discussion on multiple
solutions of the adjusted profile score and the ML estimators in autoregressive models with
fixed effects.
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1. The results for the AR(1) model with stationary initial conditions and i.i.d.
errors are presented in Tables 1-2 in the Online Appendix. With respect to
bias and RMSE, our bias-corrected estimator (BC) performs very similar
to the transformed QML estimator proposed by Hsiao et al. (2002). This is
expected from our results in Section 3. One should bear in mind, however,
that the BC estimator does not require a specific assumption on the initial
value of the dynamic process. Furthermore, our estimator is computation-
ally much simpler and can be computed within a fraction of computing time
that is required for the QML estimator (in particular if 7" gets large). All

GMM based estimators perform substantially worse.

2. Tables 3—4 present results for autoregressive processes with p = 3 lags.
As no ML based estimation procedures are readily available for higher-
order autoregressive processes, we compare our estimator to the existing
GMM estimation procedures. The results suggest that the bias correction
effectively removes any bias from the estimator and yields estimates with
the lowest RMSE. The only exception is the case with high persistence
(a = 0.9) and small 7' (T" < 10), where the system GMM estimator (BB-
GMM) performs best.

3. Tables 5-6 display the results for first-order dynamic models with cross-
sectional and time-dependent heteroskedasticity. In Remark 3 we argued
that the BC estimator is robust against cross-sectional heteroscedasticity
for all N and T, whereas robustness against heteroskedasticity across time
requires large T'. The findings of our Monte Carlo experiments suggest that
for moderate persistence the BC estimator is robust against both forms of
heteroskedasticity even if T' is as small as 10. For processes with higher
persistence a larger number of time periods (7' > 25) is required to remove
the bias from the estimator. Overall, the BC estimator performs similarly to
the QML estimator and both estimators clearly outperform the other GMM
estimators in most cases. (Only the system GMM estimator performs better

when the persistence is large and 7' is small.)

4. The performance under cross-sectional dependence is studied in Tables 7—

10. The results suggest that inference based on the i.i.d. assumption may
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be severely biased whenever the errors are cross-sectionally dependent. For
the model with uniform cross-sectional dependence, the significance tests
with nominal size of 5 percent reject in more than 50 percent of the cases
and sometimes the empirical sizes even exceed 0.9. On the other hand, the
cluster-robust standard errors considered in Theorem 2 effectively correct
for cross-sectional dependence and yield empirical sizes close to the nominal
sizes. The robustification works well even in models where cross-sectional
dependence is due to common factors, although the asymptotic theory un-

derlying Theorem 2 does not apply to models with strong dependence.

5. We finally study the small-sample properties of the estimators when the
initial condition affects the distribution of the dependent variable (nonsta-
tionary initialization). It is well known that in this case the BB-GMM
estimator can be severely biased. This is confirmed by our Monte Carlo
simulations presented in Tables 11-12. All other estimators are virtually
unbiased whenever N is sufficiently large. While the BC and QML es-
timators perform similarly in the case of i.i.d. errors, the BC estimator
turns out to be more efficient than the QML estimator in the model with

nonstationary initialization.

7 Conclusion

In this paper, we proposed a simple asymptotically efficient estimator for dy-
namic panel data models. The estimator is related to the bias-corrected profile
score estimator of Dhaene and Jochmans (2016) but results in a much simpler
set of moment conditions that can easily be solved with standard methods. An
important advantage of our bias-corrected estimator is that an estimator of the
asymptotic covariance matrix is readily available and the estimator can easily be
generalized to higher order dynamic models. Furthermore, robust standard er-
rors are available that effectively adjust for cross-sectional dependence, a relevant
feature in the analysis of macroeconomic panel data. We show that our estimator
is related to the QML estimator of Hsiao et al. (2002), where the bias-correction

is obtained in a different (and computationally more demanding) manner. Monte
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Carlo simulations are carried out to investigate the finite-sample properties. The
simulation results reveal that the bias-corrected method of moments estimator
performs favorable compared to existing GMM and ML based estimation proce-

dures.
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Appendix A: Computational details

The derivative of the moments mp;(0)

Consider the matrix of derivatives

va 1,00 0 / i, 0
Vymr;(0) = ria(6) ,6mT7 (6) :
VamTi”g(O) Vﬂmﬂwg(ﬂ)
We obtain
T
Vamria(0) = — (Z Yit—1 (Yig—1 — §_1,¢)>

T
V bT Z €it — 2 2bT (Z yzt 1 ezt > )

t=1

T
- (Z ?/i,t—l(yz’,t—l —Y_q 1))
t=1

where Vobp(a) =TS 25 sa*~!. Furthermore,
T br(a) <
Vimrio(0) = — ; Yip—1(Tip — T5) — 2 (;_ 1 ;(‘fz‘t - Ei)x;t> ;
T
Z Yi—1(Tir — fz)/] )

vozInTz ,6’ Z Tyt — ylt 1,

+ O'QV bT( )

E[Vamrio(0)] =E

E [Vimr:a(0)] = —E

T
Vime; p(0) = — > (1 — T;)),.

The derivatives of by /(o)

First, we consider the derivative

8AT(C¥)_1 o o
Jag r Oag




where for j — k = s, j > k, the (j, k)-th element of the matrix 0Ag(a)/das is
equal to —1, whereas all other elements are zero. From this matrix we obtain
the matrix 0¥ (a)/Oa, by expanding from the right ¢ columns of zeros and
dropping the first ¢ columns of Ar(a)™!/day. This gives

Brde) 1 (20nde),

day ?zT Oa

The expectation of br(a,w)

Treating the variance parameters o and w as known, the first derivative becomes

Mo 33 a 2
- A = 5 ) i,— uz 10 — Yi,— uz —Uq).
aa 0_2 y gt—1 y 1 t O_2|Q par yO y 1 0

i=1 t=1

We rewrite br(a) = T~ S 237 o such that

T w—1 (w—=1)(1-a")
brle) = 1gr=1 (1—a_ T —a)? >

(1) o= g (=2 - “rinar )
bT(a):T(w—l (w—1)(1—a") bT(oz)).

\1—a  TO-0a)? i T

Inserting these results in the expectation of the scores yields

E{iaﬁ(a,ﬁw)} 1 o T ((w—1)02 (w—1)o2(1 — aT)

N Ja T2 (=br(e)o )+02|Q| -« T(1—«)?

Appendix B: Proofs

Proof of Theorem 1

(i) A first-order Taylor series expansion of the moment conditions yields

N
0= Z mTi(ebc Z mrp; 90 (Z ngTz 90 > 9bc - 90)
i=1
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and

(9bc —6y) ~ (Z Vymr;(6y) > Z mr;(6o).
i=1
Since mp1 4(60y), - .., My o(60o) are independent with expectation zero, the cen-

tral limit theorem yields
1 al d
] Z mTi(HO) — N(O, ST<90))
VNT “=

From the results for the derivative Vymr;(0) in Appendix A, we obtain

N
1
_T E VfngZ(OO) £> DT(O())
=1

Hence, the limiting distribution results as stated in (i).
(i) Let y; = & + vy, where vy = Z in Baouzt _; and &; contains the current
and past values of regressors x;;, individual effects and initial conditions ;.

Then, after some algebra, we have

1 N 1 N T 3 N
\/ﬁ ;mﬂ,a(eo) = \/ﬁ Z (;(yi,tl - 5_1,i)uit> — \/;

=1

ST E

=1

where (T — 1)"'s? = Y. i (ugy — ;). Since E < A ST 1uzs> =
br(ap)o? and E(s?) = o2, it follows that

N T
ZmTza (60) = % ZZ(yz‘,t—l - E—u)uz‘t + op(1).

Furthermore,

1 N 1 N T B
\/ﬁ Zl mTz',ﬁ(eO) = ﬁ Zl (;(Xit - Xz’)uit) .

Since E(7_;,;) = E(¢_;,) and by using the fact that (y;,—1 —&_;,) and (x; — X;)

are uncorrelated with u;; we obtain
—1 NE m ~(9 ) —)N(O o*V )
VNT i=1 TZO ’ -
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From the results of Appendix A it follows that

ZV mria(6o) = ZZ@/M 1(Yit—1 —Y_ 11)4‘0( ) O,(T _1)7

zltl

N T
1
ZV m za(e ) __Zzyzt—l(xlt_xl)/_O (T_l)
grHT 0 D )
NT NT =
1 N 1 N T
~ Z VamTi,ﬂ(OO) =~ Z Z(th )yzt 1
NT =1 NT =1 t=1

N
1 1 _
NT > Vimr(6o) = “NT D (ki — X)Xy,
i=1

i=1 t=1

and, therefore, as N and T tend to infinity,

NTZVGmT’ (o) = L ZZ Zi — Zi) (2 — 7)) + Op(T™ ) -V..

zltl

With these results the limiting distribution of v N T(@bc—eo) follows as N (0, 02V !

Proof of Theorem 2
First note that

Wit(Ope) = 2it +

T _ 1bT (Qe) Prt1Cits

where ¢, ; denotes the first column of the identity matrix I;,. It follows that

NT Z mr; (0 mTl( ] = Z Z ZyuwZy | + 0,(1)
i=1 t=1
2 8(6).
Define qy, = N~ 1/2 ZZ | ZigU;; such that
1 & 1 <
NT Z mr;(6o)mr;(6o)' | = T Z E (QN,tq/N,t) :
i=1 t=1

Since wu;; is independent of z;, it follows that ]E(qNJ) = 0. Furthermore, if all
eigenvalues of 3, ; are bounded for all ¢, the norm of the covariance matrix qy,

is bounded as well and
Jim ZE A, dy,) = S(6o).

25



Online Appendix: Monte Carlo simulation

Details of the data-generating process

By normalizing the long-run variance of z; to unity, we can obtain the param-
eters m,, my, and o? by fixing the fraction of the variance of x; that is due to
the individual-specific effects (EV'F,) and the variance fraction of m,u; in the
composite individual-specific effects (IEF¥). With the normalization o2 = 1
and by further fixing the direct cumulated effect of u; on y;; relative to the noise
(DEN,]) and the signal-to-noise ratio (SNR), we can then pin down o, and j.
Following Kiviet et al. (2017), we hold fixed the fraction of the variance of x;
that is due to the individual-specific effects (EV F,) and the variance fraction
of m,u; in the composite individual-specific effects (/EF*). This allows us to

endogenously determine
m,=(1—~)VEVF,IEFY,
(1

N — YWVEVF,(1 - IEF!),
ol =/ (1-1*)(1 - EVE,).

By further fixing the direct cumulated effect of p; on y; relative to the noise
(DEN]) and the signal-to-noise ratio (SNR), we obtain®

o,=(1-a)DEN],

5 \/(1 —a7)(SNR — a2(1 + SNR))

(14+ay)(1 - EVEF,)

Fixing v = 04, EVF, = IEF} = 0.3, DEN]] = 4, and SNR = 5 implies
[ =~ 2.044 under moderate persistence and S =~ 0.307 in the high-persistence

case.

Construction of the estimators

Besides the within-groups estimator (WG) and our bias-corrected estimator (BC),

we consider the following three generalized method of moments estimators:

2See Kiviet et al. (2017, Section 4) for details.
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e The one-step Arellano and Bond (1991) GMM estimator (AB-GMM) uti-
lizes the moment conditions Ely;;—sAey] =0,2<s<4,t=s,...,T, and
E [ZtT:z AxiAey] = 0.2 With a weighting matrix that is optimal under
homoskedasticity and absence of serial correlation in the idiosyncratic error
component, the one-step GMM estimator equals the two-stage least squares

estimator.

e The two-step Ahn and Schmidt (1995) GMM estimator (AS-GMM) utilizes
the nonlinear moment conditions Ele;rAey], t = 2,...,T — 1, in addition
to the moment conditions of the AB-GMM estimator and an intercept.
The optimal weighting matrix is computed based on the residuals from
an inefficient estimator with block-diagonal weighting matrix. The block
corresponding to the AB-GMM moment conditions is identical to the AB-
GMM weighting matrix. The block corresponding to the nonlinear moment

conditions is an identity matrix.

e The two-step Blundell and Bond (1998) GMM estimator (BB-GMM) uti-
lizes the moment conditions E[Ay;¢—1e;|, t = 2,...,T, in addition to the
moment conditions of the AB-GMM estimator and an intercept. The opti-
mal weighting matrix is computed based on the residuals from the inefficient

two-stage least squares estimator.

We use the same moment conditions under AR(1) and AR(3) dynamics. In the
simulations with AR(1) dynamics, we further consider the Hsiao et al. (2002)
quasi-maximum likelihood (QML) estimator with the initial-observations param-
eterization E[Ayn|Axi, ..., Axiy| =0+ Zi’zl T\ Tjs.

3We do not use all available lags of the dependent variable to avoid instrument proliferation.
As demonstrated by Hayakawa et al. (2019), 3 lags are sufficient to achieve a reasonable degree

of efficiency.
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Estimation of the variance-covariance matrix

We consider the following two estimators for the variance-covariance matrix:

Var(0) = ﬁDNT(@))—1SNT(@)leT((;v)—l, (19)
Vi (60) = D (6) SO Dar(6) (20)

Variance-covariance estimator (19) is the conventional cluster-robust estimator
clustered at the individual level. Estimator (20) is a robust estimator clustered

at the time periods. For the WG estimator, we have

N
. 1 .
Dyr(0) = NT Zvégﬂ(@), SNT ZgTz gTz )
i=1
1 I
S%7(0) = NT Z(Yt 1 X)Wy (ye-1, Xo)

N N
) 1 , . . 1 ) o
Dnr(0) = 47 > Vymzi(0), Snr(0) = NT > myi(0)myi(6)',
i=1 i=1
. 1 <& . .
SNT(0) = 55 D Wi(6) Wi W, (6)
t=1

For the GMM estimators with moment functions mr;(0) and weighting matrix

Wy, we get

N

Dyr(0) = (% Z verfm(é)) W (% Z v;rhmé)) :

=1
1 — 1 1 —

Snr(6) = (W Z vgmﬂ(e)> Wt (ﬁ 3 IhTi(O)rhTi(G)’) War (W ; VgrhT,.(e)> :

For the two-step AS-GMM and BB-GMM estimators, the variance matrix is

estimated as \75&}(9) = 7D ~7(0)7! and the Windmeijer (2005) finite-sample

correction is applied. For the QML estimator, D NT(@) is the negative Hessian

matrix and Syr(6) the outer product of the gradient.
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Table 1: Simulation results: baseline model (IID), N = 50

o B
AB- AS- BB- AB- AS- BB-
WG BC GMM GMM GMM QML | WG BC GMM GMM GMM QML

T =
Bias -0.077 0.001 -0.038 0.067 0.097 -0.003 | -0.005 -0.001 -0.022 0.019 -0.025 -0.025
RMSE | 0.086 0.041 0.117 0.150 0.140 0.041 | 0.093 0.093 0.134 0.148 0.142 0.094
T=10
Bias -0.034 0.000 -0.020 0.109 0.129 -0.006 | 0.015 0.001 -0.008 0.038 -0.042 -0.018
RMSE | 0.041 0.023 0.055 0.145 0.143 0.023 | 0.062 0.060 0.075 0.117 0.103 0.062
T=25
Bias -0.014 -0.001 -0.008 0.094 0.142 -0.004 | 0.013 0.003 0.008 0.025 -0.038 -0.006
RMSE | 0.019 0.013 0.023 0.108 0.147 0.013 | 0.037 0.035 0.044 0.080 0.067 0.035
T =50

Bias -0.006 0.000 -0.005 0.078 0.134 -0.002 | 0.006 0.000 0.006 0.015 -0.043 -0.004

RMSE | 0.011 0.009 0.014 0.087 0.138 0.009 | 0.026 0.025 0.031 0.058 0.059 0.025
a=0.9

T=5

Bias -0.433 -0.034 -0.442 -0.044 0.018 -0.003 | -0.048 -0.001 -0.058 -0.005 -0.008 -0.033
RMSE | 0438 0.124 0.561 0.205 0.091 0.156 | 0.102 0.095 0.124 0.125 0.122 0.094
T=10
Bias -0.223 -0.004 -0.249 0.007 0.031 -0.022 | -0.016 0.002 -0.031 0.002 -0.009 -0.039
RMSE | 0.226 0.067 0.321 0.084 0.053 0.073 | 0.064 0.063 0.086 0.090 0.086 0.071
T =25
Bias -0.085 0.000 -0.07v8 0.009 0.027 -0.018 | 0.004 0.003 0.002 0.013 0.003 -0.024
RMSE | 0.087 0.025 0.103 0.046 0.037 0.026 | 0.034 0.033 0.046 0.055 0.049 0.041
T =50
Bias -0.039 -0.001 -0.033 0.006 0.023 -0.009 | 0.004 0.001 0.005 0.007 -0.002 -0.017
RMSE | 0.041 0.012 0.044 0.033 0.035 0.014 | 0.025 0.024 0.033 0.041 0.035 0.029

Note: The comparison includes the within-groups estimator (WG), the bias-corrected method of moments estimator
(BC), the one-step Arellano and Bond (1991) GMM estimator (AB-GMM), the two-step Ahn and Schmidt (1995)
GMM estimator (AS-GMM), the two-step Blundell and Bond (1998) GMM estimator (BB-GMM), and the Hsiao
et al. (2002) QML estimator. Reported are the average bias of the estimates and the root mean square error
(RMSE).
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Table 2: Simulation results: baseline model (IID), N = 200

a B
AB- AS- BB- AB- AS- BB-
WG BC GMM GMM GMM QML WG BC GMM GMM GMM QML
a=04

T =
Bias -0.079 -0.001 -0.008 0.026 0.024 -0.004 | -0.002 0.000 -0.004 0.011 -0.002 -0.023
RMSE | 0.081 0.021 0.058 0.065 0.054 0.021 | 0.046 0.046 0.063 0.066 0.060 0.051
T=10
Bias -0.035 -0.001 -0.005 0.017 0.022 -0.007 | 0.014 0.000 -0.002 -0.001 -0.012 -0.020
RMSE | 0.037 0.011 0.025 0.030 0.034 0.013 | 0.033 0.030 0.038 0.041 0.042 0.036
T=25
Bias -0.013 0.000 -0.002 0.022 0.036 -0.004 | 0.011 0.001 0.002 0.001 -0.014 -0.008
RMSE | 0.015 0.007 0.011 0.027 0.039 0.008 | 0.021 0.018 0.022 0.028 0.030 0.019

T =50

Bias -0.006 0.000 -0.001 0.032 0.060 -0.002 | 0.005 0.000 0.001 0.005 -0.013 -0.005

RMSE | 0.008 0.004 0.007 0.035 0.061 0.005 | 0.014 0.013 0.016 0.025 0.023 0.014
a=0.9

T=5

Bias -0.430 -0.006 -0.191 0.000 0.001 -0.002 | -0.048 0.000 -0.025 -0.002 -0.004 -0.033
RMSE | 0.432 0.082 0.306 0.122 0.058 0.102 | 0.066 0.047 0.068 0.060 0.059 0.055
T=10
Bias -0.221  0.004 -0.083 -0.001 0.008 -0.029 | -0.016 0.000 -0.010 -0.004 -0.007 -0.038
RMSE | 0.222 0.044 0.124 0.060 0.033 0.040 | 0.034 0.030 0.041 0.042 0.042 0.047

T =25
Bias -0.084 0.000 -0.020 0.006 0.015 -0.016 | 0.002 0.001 0.001 0.001 -0.003 -0.026
RMSE | 0.084 0.012 0.035 0.026 0.022 0.019 | 0.018 0.017 0.023 0.027 0.026 0.031
T =50

Bias -0.039  0.000 -0.009 0.010 0.022 -0.009 | 0.003 0.000 0.001 0.003 0.000 -0.018
RMSE | 0.040 0.006 0.017 0.019 0.024 0.010 | 0.012 0.012 0.017 0.019 0.018 0.022

Note: The comparison includes the within-groups estimator (WG), the bias-corrected method of moments esti-
mator (BC), the one-step Arellano and Bond (1991) GMM estimator (AB-GMM), the two-step Ahn and Schmidt
(1995) GMM estimator (AS-GMM), the two-step Blundell and Bond (1998) GMM estimator (BB-GMM), and the
Hsiao et al. (2002) QML estimator. Reported are the average bias of the estimates and the root mean square error
(RMSE).

30



Table 3: Simulation results: higher-order dynamics, N = 50
o B
AB- AS- BB- AB- AS- BB-
WG BC GMM GMM GMM | WG BC GMM GMM GMM

a=oa; +as+a3=04

T =
Bias -0.143 0.000 -0.113 0.103 0.222 | -0.038 -0.002 -0.062 0.036 0.026
RMSE | 0.156 0.069 0.253 0.215 0.258 | 0.103 0.098 0.179 0.165 0.143
T=10
Bias -0.056 0.001 -0.043 0.199 0.254 | 0.006 0.003 -0.017 0.064 0.012
RMSE | 0.065 0.033 0.102 0.231 0.266 | 0.062 0.062 0.090 0.126  0.095
T=25
Bias -0.020 0.000 -0.018 0.192 0.248 | 0.007 0.000 -0.002 0.050 0.013
RMSE | 0.026 0.016 0.044 0.204 0.253 | 0.037 0.037 0.048 0.084 0.057
T =50
Bias -0.009 0.000 -0.017 0.169 0.219 | 0.004 0.000 0.001 0.040 0.008
RMSE | 0.015 0.011 0.031 0.179 0.225 | 0.026 0.025 0.033 0.063 0.042

a:a1+a2+a3:0.9

T=5
Bias -0.558 0.012 -0.588 -0.093 0.035 | -0.063 -0.003 -0.074 -0.014 -0.006
RMSE | 0.566 0.174 0.719 0.290 0.100 | 0.108 0.098 0.132 0.130 0.129
T =10
Bias -0.282 0.019 -0.341 0.006 0.047 | -0.024 0.004 -0.038 -0.004 -0.006
RMSE | 0.287 0.093 0.426 0.094 0.067 | 0.064 0.061 0.089 0.090 0.087

T =25
Bias -0.105 0.002 -0.135 0.016 0.031 | -0.003 0.001 -0.009 0.007  0.000
RMSE | 0.107 0.034 0.171 0.056 0.048 | 0.036 0.035 0.050 0.055 0.051
T =50

Bias -0.048 0.000 -0.080 -0.003 0.014 | 0.000 -0.001 -0.001 0.007 -0.003
RMSE | 0.050 0.014 0.096 0.057 0.053 | 0.024 0.024 0.034 0.041 0.036

Note: Note: The comparison includes the within-groups estimator (WG), the bias-corrected
method of moments estimator (BC), the one-step Arellano and Bond (1991) GMM estimator (AB-
GMM), the two-step Ahn and Schmidt (1995) GMM estimator (AS-GMM), the two-step Blundell
and Bond (1998) GMM estimator (BB-GMM), and the Hsiao et al. (2002) QML estimator.

Reported are the average bias of the estimates and the root mean square error (RMSE).
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Table 4: Simulation results: higher-order dynamics, N = 200

@ B
AB- AS- BB- AB- AS- BB-
WG BC GMM GMM GMM | WG BC GMM GMM GMM

a=oa; +as+a3=04

T =
Bias -0.141 0.000 -0.038 0.069 0.085 | -0.035 0.000 -0.019 0.033 0.019
RMSE | 0.144 0.034 0.128 0.136  0.125 | 0.059 0.049 0.088 0.091 0.072
T=10
Bias -0.057 0.000 -0.012 0.059 0.085 | 0.003 0.000 -0.005 0.018 0.007
RMSE | 0.059 0.016 0.051 0.087 0.102 | 0.030 0.030 0.042 0.053 0.044
T=25
Bias -0.020 0.000 -0.006 0.074 0.114 | 0.006 -0.001 -0.001 0.017 0.010
RMSE | 0.022 0.008 0.023 0.082 0.119 | 0.019 0.018 0.023 0.033 0.028
T =50
Bias -0.010 0.000 -0.004 0.119 0.169 | 0.005 0.000 0.000 0.034 0.028
RMSE | 0.011 0.005 0.014 0.123 0.171 | 0.014 0.013 0.017 0.041 0.034

a:a1+a2+a3:0.9

T=5
Bias -0.554 0.032 -0.309 -0.026 0.022 | -0.063 0.003 -0.036 -0.004 -0.001
RMSE | 0.556 0.125 0.444 0.157 0.081 | 0.077  0.050 0.076 0.063  0.063
T=10
Bias -0.281 0.028 -0.132 0.004 0.026 | -0.025 0.002 -0.015 -0.003 -0.005
RMSE | 0.282 0.078 0.192 0.077 0.053 | 0.039 0.030 0.043 0.042 0.042

T =25
Bias -0.104 0.001 -0.042 0.012 0.032 | -0.004 -0.001 -0.003 0.000 -0.002
RMSE | 0.105 0.016 0.063 0.037 0.041 | 0.018 0.017 0.024 0.027 0.026
T =50

Bias -0.048 0.000 -0.023 0.024 0.041 | 0.001 0.000 0.000 0.004 0.002
RMSE | 0.048 0.007 0.034 0.034 0.043 | 0.013 0.012 0.018 0.020 0.018

Note: The comparison includes the within-groups estimator (WGQ), the bias-corrected method of
moments estimator (BC), the one-step Arellano and Bond (1991) GMM estimator (AB-GMM),
the two-step Ahn and Schmidt (1995) GMM estimator (AS-GMM), the two-step Blundell and
Bond (1998) GMM estimator (BB-GMM), and the Hsiao et al. (2002) QML estimator. Reported

are the average bias of the estimates and the root mean square error (RMSE).
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Table 5: Simulation results: heteroskedasticity, N = 50

o B
AB- AS- BB- AB- AS- BB-
WG BC GMM GMM GMM QML | WG BC GMM GMM GMM QML
a=04

T=5
Bias -0.075 0.001 -0.032 0.041 0.092 -0.004 | -0.001 0.002 -0.018 0.014 -0.008 -0.024
RMSE | 0.095 0.053 0.116 0.116 0.127 0.047 | 0.097 0.098 0.133 0.132 0.125 0.100
T=10

Bias -0.034 0.000 -0.017 0.079 0.123 -0.008 | 0.018 0.004 0.001 0.040 -0.023 -0.019
RMSE | 0.042 0.024 0.064 0.128 0.138 0.024 | 0.066 0.062 0.079 0.123 0.088 0.065
T=25
Bias -0.013 0.000 -0.008 0.087 0.147 -0.005 | 0.009 -0.001 0.002 0.027 -0.035 -0.011
RMSE | 0.019 0.014 0.024 0.114 0.152 0.015 | 0.038 0.037 0.046 0.096 0.065 0.039
T =50
Bias -0.007 -0.001 -0.006 0.081 0.145 -0.003 | 0.006 0.000 0.006 0.017 -0.032 -0.005
RMSE | 0.012 0.010 0.016 0.096 0.149 0.010 | 0.027 0.026 0.032 0.068 0.050 0.027

a=0.9
T=5
Bias -0.405 -0.100 -0.373 -0.096 0.017 -0.058 | -0.047 -0.012 -0.054 -0.012 0.006 -0.033
RMSE | 0.437 0249 0.536 0.272 0.066 0.252 | 0.105 0.096 0.132 0.112 0.102 0.098
T=10

Bias -0.217  -0.028 -0.244 -0.017 0.024 -0.041 | -0.018 -0.004 -0.034 0.003 0.007 -0.041
RMSE | 0.230 0.107 0.307 0.113 0.043 0.103 | 0.063 0.060 0.085 0.079 0.070 0.072
Size 0.961 0.248 0.364 0.077 0.230 0.326 | 0.059 0.211 0.113 0.043 0.080 0.150
T=25
Bias -0.084 0.000 -0.103 -0.002 0.025 -0.018 | -0.001 -0.002 -0.011 0.007 0.009 -0.030
RMSE | 0.088 0.033 0.136 0.076 0.032 0.030 | 0.036 0.035 0.050 0.067 0.044 0.047
T =50
Bias -0.040 -0.001 -0.049 0.001 0.026 -0.010 | 0.004 0.001 0.004 0.011 0.014 -0.018
RMSE | 0.042 0.017 0.064 0.059 0.030 0.017 | 0.026 0.025 0.034 0.052 0.034 0.032

Note: The comparison includes the within-groups estimator (WG), the bias-corrected method of moments estimator
(BC), the one-step Arellano and Bond (1991) GMM estimator (AB-GMM), the two-step Ahn and Schmidt (1995)
GMM estimator (AS-GMM), the two-step Blundell and Bond (1998) GMM estimator (BB-GMM), and the Hsiao
et al. (2002) QML estimator. Reported are the average bias of the estimates and the root mean square error
(RMSE).
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Table 6: Simulation results: heteroskedasticity, N = 200

o B
AB- AS- BB- AB- AS- BB-
WG BC GMM GMM GMM QML | WG BC GMM GMM GMM QML

T =
Bias -0.071  0.003 -0.011 0.010 0.018 -0.002 | -0.002 0.001 -0.003 0.005 0.000 -0.025
RMSE | 0.084 0.037 0.056 0.040 0.044 0.028 | 0.048 0.047 0.063 0.055 0.054 0.053
T=10
Bias -0.032 0.001 -0.006 0.012 0.019 -0.007 | 0.014 0.000 -0.003 0.000 -0.012 -0.022
RMSE | 0.037 0.013 0.025 0.026 0.027 0.014 | 0.034 0.030 0.039 0.037 0.039 0.039
T=25
Bias -0.013 0.000 -0.002 0.018 0.033 -0.005 | 0.010 0.000 0.001 0.004 -0.010 -0.011
RMSE | 0.015 0.007 0.012 0.026 0.036 0.009 | 0.021 0.018 0.022 0.024 0.024 0.022
T =50

Bias -0.006 0.000 -0.001 0.029 0.057 -0.003 | 0.006 0.000 0.001 0.005 -0.010 -0.006

RMSE | 0.008 0.005 0.007 0.035 0.059 0.006 | 0.014 0.013 0.016 0.028 0.020 0.014
a=0.9

T=5

Bias -0.407 -0.092 -0.198 -0.050 0.005 -0.077 | -0.048 -0.012 -0.028 -0.012 -0.003 -0.037
RMSE | 0435 0.244 0.326 0.187 0.038 0.238 | 0.070 0.057 0.073 0.066 0.059 0.062
T=10
Bias -0.215 -0.022 -0.097 -0.006 0.007 -0.040 | -0.015 -0.001 -0.013 -0.002 -0.001 -0.037
RMSE | 0.225 0.097 0.148 0.038 0.018 0.087 | 0.035 0.031 0.044 0.036 0.035 0.048
T =25
Bias -0.083 0.002 -0.029 -0.001 0.009 -0.017 | 0.002 0.000 -0.001 0.001 0.002 -0.027
RMSE | 0.085 0.026 0.046 0.035 0.014 0.023 | 0.019 0.018 0.024 0.021 0.020 0.033
T =50
Bias -0.039 0.000 -0.013 0.003 0.011 -0.010 | 0.004 0.001 0.002 0.005 0.007 -0.018
RMSE | 0.040 0.009 0.022 0.029 0.014 0.012 | 0.013 0.012 0.017 0.021 0.018 0.022

Note: Note: The comparison includes the within-groups estimator (WG), the bias-corrected method of moments
estimator (BC), the one-step Arellano and Bond (1991) GMM estimator (AB-GMM), the two-step Ahn and Schmidt
(1995) GMM estimator (AS-GMM), the two-step Blundell and Bond (1998) GMM estimator (BB-GMM), and the
Hsiao et al. (2002) QML estimator. Reported are the average bias of the estimates and the root mean square error
(RMSE).

34



Table 7: Simulation results: uniform cross-sectional dependence, N = 50

o g
AB- AS- BB- AB- AS- BB-
WG BC GMM GMM GMM QML | WG BC GMM GMM GMM QML
a=04
T=10
Bias -0.037 -0.004 -0.070 -0.015 0.120 -0.015 | 0.014 0.001 -0.018 -0.031 -0.057 -0.032
RMSE 0.065 0.055 0.135 0.182 0.143 0.054 | 0.068 0.067 0.106 0.180 0.122  0.078
Size 0.584 0.415 0.501 0.492 0.578 0.449 | 0.086 0.412 0.154 0.189 0.111 0.121
rob-Size | 0.186  0.065 n.a. n.a. n.a. n.a. 0.099  0.065 n.a. n.a. n.a. n.a.
T=25
Bias -0.015 -0.002 -0.033 -0.001 0.135 -0.008 | 0.012 0.002 0.018 0.013 -0.035 -0.013
RMSE 0.036 0.033 0.062 0.137 0.143 0.033 | 0.045 0.043 0.057 0.127 0.071 0.046
Size 0.564 0.478 0.551 0.530 0.909 0.511 | 0.105 0.477 0.127 0.289 0.101  0.123
rob-Size | 0.101  0.066 n.a. n.a. n.a. n.a. 0.078  0.066 n.a. n.a. n.a. n.a.
T =50
Bias -0.007 -0.001 -0.025 -0.009 0.136 -0.005 | 0.007 0.001 0.025 0.012 -0.040 -0.006
RMSE 0.024 0.023 0.042 0.123 0.141 0.023 | 0.032 0.032 0.044 0.106 0.060 0.033
Size 0.540 0.496 0.568 0.535 0.961 0.518 | 0.139 0.496 0.173 0.298 0.143 0.147
rob-Size | 0.071  0.054 n.a. n.a. n.a. n.a. 0.071  0.054 n.a. n.a. n.a. n.a.
a=0.9

T=10
Bias -0.266 -0.092 -0.492 -0.292 -0.085 -0.080 | -0.020 -0.006 -0.056 -0.029 0.016 -0.089
RMSE 0.313 0.197 0.582 0.479 0.146 0.223 | 0.063 0.061 0.107 0.155 0.101 0.115
Size 0.949 0.527 0.924 0.807 0.503 0.865 | 0.082 0.517 0.271 0.149 0.071 0.432
rob-Size | 0.508  0.078 n.a. n.a. n.a. n.a. 0.153  0.085 n.a. n.a. n.a. n.a.
T=25
Bias -0.111  -0.032 -0.303 -0.163 -0.038 -0.050 | 0.002 0.002 -0.006 0.008 0.024 -0.061
RMSE 0.137 0.094 0352 0.332 0.072 0.100 | 0.036 0.036 0.063 0.111 0.065 0.090
Size 0.929 0.594 0945 0.847 0.569 0.796 | 0.064 0.539 0.190 0.227 0.114  0.342
rob-Size | 0.342  0.039 n.a. n.a. n.a. n.a. 0.101  0.048 n.a. n.a. n.a. n.a.
T =50
Bias -0.056 -0.017 -0.217 -0.117 -0.016 -0.033 | 0.005 0.002 0.024 0.023 0.017 -0.037
RMSE 0.075  0.057 0.246 0.276 0.044 0.058 | 0.025 0.024 0.049 0.100 0.045 0.053
Size 0.898 0.713 0972 0.829 0.429 0.818 | 0.065 0.614 0.218 0.306 0.105 0.324
rob-Size | 0.224  0.040 n.a. n.a. n.a. n.a. 0.059  0.045 n.a. n.a. n.a. n.a.

Note: The comparison includes the within-groups estimator (WG), the bias-corrected method of moments estimator
(BC), the one-step Arellano and Bond (1991) GMM estimator (AB-GMM), the two-step Ahn and Schmidt (1995)
GMM estimator (AS-GMM), the two-step Blundell and Bond (1998) GMM estimator (BB-GMM), and the Hsiao
et al. (2002) QML estimator. Reported are tlh#baverage bias of the estimates, the root mean square error (RMSE),
and the empirical size of the Wald statistics for the hypothesis 8 = fy. ‘rob-Size’ refers to the Wald test employing

robust standard errors considered in Theorem 2.



Table 8: Simulation results: uniform cross-sectional dependence, N = 200

o g
AB- AS- BB- AB- AS- BB-
WG BC GMM GMM GMM QML | WG BC GMM GMM GMM QML
a=04
T=10
Bias -0.037 -0.003 -0.064 -0.053 0.024 -0.014 | 0.016 0.002 -0.015 -0.066 -0.089 -0.031
RMSE 0.061 0.049 0.122 0.199 0.066 0.048 | 0.040 0.036 0.078 0.132 0.112  0.052
Size 0.775 0.670 0.686 0.712 0.318 0.691 | 0.138 0.670 0.319 0.365 0.376  0.246
rob-Size | 0.175  0.061 n.a. n.a. n.a. n.a. 0.131  0.061 n.a. n.a. n.a. n.a.
T=25
Bias -0.014 -0.001 -0.030 -0.038 0.044 -0.008 | 0.011 0.001 0.017 -0.010 -0.037 -0.014
RMSE 0.034 0.031 0.060 0.158 0.060 0.031 | 0.032 0.030 0.041 0.083 0.0563 0.034
Size 0.733 0.689 0.759 0.796 0.631 0.705 | 0.282 0.686 0.270 0.304 0.198 0.280
rob-Size | 0.103  0.043 n.a. n.a. n.a. n.a. 0.092  0.043 n.a. n.a. n.a. n.a.
T =50
Bias -0.006  0.000 -0.020 -0.025 0.050 -0.003 | 0.004 -0.001 0.022 0.017 -0.009 -0.009
RMSE 0.022 0.022 0.038 0.132 0.058 0.021 | 0.023 0.022 0.033 0.074 0.026 0.024
Size 0.709 0.688 0.761 0.799 0.827 0.688 | 0.271 0.688 0.368 0.523 0.169  0.305
rob-Size | 0.060  0.055 n.a. n.a. n.a. n.a. 0.061  0.055 n.a. n.a. n.a. n.a.
a=0.9

T=10
Bias -0.267 -0.092 -0.516 -0.365 -0.179 -0.085 | -0.018 -0.005 -0.057 -0.045 0.005 -0.087
RMSE 0.311 0.191 0.605 0.558 0.244 0.216 | 0.036 0.032 0.087 0.111 0.060 0.104
Size 0.982 0.614 0974 0919 0873 0917 | 0.116 0.594 0.497 0.202 0.027 0.691
rob-Size | 0.524  0.083 n.a. n.a. n.a. n.a. 0.188  0.083 n.a. n.a. n.a. n.a.
T=25
Bias -0.112  -0.034 -0.321 -0.190 -0.092 -0.052 | 0.002 0.001 -0.009 0.002 0.013 -0.063
RMSE 0.138 0.094 0.370 0.384¢ 0.129 0.100 | 0.018 0.018 0.044 0.074 0.038 0.087
Size 0.959 0.693 0973 0.931 0.904 0903 | 0.057 0.613 0.328 0.223 0.078 0.664
rob-Size | 0.356  0.043 n.a. n.a. n.a. n.a. 0.090 0.051 n.a. n.a. n.a. n.a.
T =50
Bias -0.052 -0.012 -0.206 -0.130 -0.044 -0.029 | 0.004 0.001 0.024 0.023 0.010 -0.037
RMSE 0.071 0.0564 0.235 0.311 0.073 0.053 | 0.014 0.013 0.037 0.062 0.027 0.046
Size 0.946 0.809 0.991 0.942 0.899 0.899 | 0.081 0.715 0.434 0486 0.217 0.684
rob-Size | 0.210  0.022 n.a. n.a. n.a. n.a. 0.073  0.028 n.a. n.a. n.a. n.a.

Note: The comparison includes the within-groups estimator (WG), the bias-corrected method of moments estimator
(BC), the one-step Arellano and Bond (1991) GMM estimator (AB-GMM), the two-step Ahn and Schmidt (1995)
GMM estimator (AS-GMM), the two-step Blundell and Bond (1998) GMM estimator (BB-GMM), and the Hsiao
et al. (2002) QML estimator. Reported are thdfaverage bias of the estimates, the root mean square error (RMSE),
and the empirical size of the Wald statistics for the hypothesis 8 = fy. ‘rob-Size’ refers to the Wald test employing

robust standard errors considered in Theorem 2.



Table 9: Simulation results: interactive random effects, N = 50

o g
AB- AS- BB- AB- AS- BB-
WG BC GMM GMM GMM QML | WG BC GMM GMM GMM QML
a=04

T=10
Bias -0.035 -0.001 -0.052 0.017 0.123 -0.010 | 0.017 0.002 -0.009 0.005 -0.042 -0.023
RMSE 0.056 0.045 0.106 0.159 0.142 0.044 | 0.063 0.061 0.092 0.157 0.104 0.066
Size 0.484 0.323 0.365 0.336 0.581 0.345 | 0.070 0.322 0.093 0.121 0.074 0.086
rob-Size | 0.240  0.080 n.a. n.a. n.a. n.a. 0.114  0.080 n.a. n.a. n.a. n.a.
T=25
Bias -0.014 -0.001 -0.024 0.024 0.138 -0.006 | 0.009 0.000 0.012 0.014 -0.037 -0.012
RMSE 0.029 0.026 0.048 0.125 0.145 0.026 | 0.042 0.042 0.053 0.124 0.069 0.044
Size 0.417 0.332 0.388 0.419 0.915 0.350 | 0.104 0.332 0.102 0.214 0.104 0.113
rob-Size | 0.100  0.058 n.a. n.a. n.a. n.a. 0.084  0.058 n.a. n.a. n.a. n.a.
T =50
Bias -0.008 -0.002 -0.019 0.018 0.135 -0.004 | 0.006 0.001 0.017 0.020 -0.039 -0.005
RMSE 0.020 0.019 0.034 0.105 0.140 0.019 | 0.030 0.029 0.038 0.103 0.057 0.030
Size 0.414 0.367 0446 0.381 0.960 0.375 | 0.106 0.367 0.116 0.223 0.142 0.113
rob-Size | 0.082  0.060 n.a. n.a. n.a. n.a. 0.068  0.060 n.a. n.a. n.a. n.a.
T=10
Bias -0.249 -0.063 -0.470 -0.205 -0.034 -0.070 | -0.018 -0.004 -0.053 -0.017 0.007 -0.058
RMSE 0.277 0.150 0.554 0.362 0.093 0.165 | 0.062 0.059 0.099 0.136 0.085 0.086
Size 0.943 0431 0882 0.625 0.278 0.700 | 0.080 0.401 0.206 0.103 0.045 0.241
rob-Size | 0.666  0.056 n.a. n.a. n.a. n.a. 0.145  0.059 n.a. n.a. n.a. n.a.
T=25
Bias -0.098 -0.016 -0.268 -0.137 -0.006 -0.036 | 0.003 0.002 -0.005 0.008 0.015 -0.037
RMSE 0.112 0.066 0.309 0.285 0.043 0.066 | 0.037 0.036 0.056 0.103 0.057 0.058
Size 0.922 0455 0.924 0.726 0.256 0.664 | 0.074 0.411 0.121 0.179 0.083 0.204
rob-Size | 0.478  0.022 n.a. n.a. n.a. n.a. 0.091  0.029 n.a. n.a. n.a. n.a.
T =50
Bias -0.045 -0.005 -0.162 -0.071 0.005 -0.018 | 0.003 0.000 0.018 0.018 0.010 -0.027
RMSE 0.068 0.042 0.189 0.242 0.033 0.040 | 0.025 0.025 0.042 0.094 0.040 0.040
Size 0.832 0.591 0.908 0.718 0.214 0.699 | 0.064 0.513 0.138 0.254 0.075 0.246
rob-Size | 0.279  0.025 n.a. n.a. n.a. n.a. 0.075 0.034 n.a. n.a. n.a. n.a.

Note: The comparison includes the within-groups estimator (WG), the bias-corrected method of moments estimator
(BC), the one-step Arellano and Bond (1991) GMM estimator (AB-GMM), the two-step Ahn and Schmidt (1995)
GMM estimator (AS-GMM), the two-step Blundell and Bond (1998) GMM estimator (BB-GMM), and the Hsiao
et al. (2002) QML estimator. Reported are the average bias of the estimates, the root mean square error (RMSE),
and the empirical size of the Wald statistics f&7Tthe hypothesis 8 = By. ‘rob-Size’ refers to the Wald test employing

robust standard errors considered in Theorem 2.



Table 10: Simulation results: interactive random effects, N = 200

o g
AB- AS- BB- AB- AS- BB-
WG BC GMM GMM GMM QML | WG BC GMM GMM GMM QML
a=04

T=10
Bias -0.035 -0.002 -0.044 -0.018 0.027 -0.010 | 0.014 0.000 -0.009 -0.041 -0.052 -0.025
RMSE 0.053 0.040 0.095 0.133 0.053 0.039 | 0.036 0.033 0.066 0.089 0.073 0.044
Size 0.7564 0.562 0.561 0.533 0.250 0.583 | 0.105 0.562 0.231 0.201 0.175 0.166
rob-Size | 0.278  0.064 n.a. n.a. n.a. n.a. 0.135 0.064 n.a. n.a. n.a. n.a.
T=25
Bias -0.014 -0.001 -0.021 -0.010 0.041 -0.006 | 0.010 0.001 0.010 -0.008 -0.026 -0.011
RMSE 0.027 0.024 0.043 0.116 0.050 0.024 | 0.027 0.025 0.033 0.064 0.040 0.028
Size 0.660 0.577 0.620 0.617 0.646 0.603 | 0.200 0.577 0.186 0.211 0.139  0.200
rob-Size | 0.124  0.058 n.a. n.a. n.a. n.a. 0.097  0.058 n.a. n.a. n.a. n.a.
T =50
Bias -0.007  0.000 -0.015 -0.014 0.052 -0.003 | 0.006 0.000 0.015 0.018 -0.010 -0.006
RMSE 0.018 0.017 0.029 0.120 0.058 0.017 | 0.020 0.019 0.026 0.079 0.024 0.020
Size 0.656 0.605 0.641 0.673 0.890 0.610 | 0.203 0.605 0.239 0.461 0.128 0.211
rob-Size | 0.077  0.051 n.a. n.a. n.a. n.a. 0.073  0.051 n.a. n.a. n.a. n.a.
T=10
Bias -0.246 -0.059 -0.463 -0.266 -0.087 -0.071 | -0.018 -0.004 -0.052 -0.029 -0.004 -0.058
RMSE 0.271 0.143 0.546 0.429 0.139 0.155 | 0.035 0.031 0.078 0.078 0.045 0.071
Size 0.976  0.565 0.951 0.866 0.623 0.843 | 0.105 0.540 0.445 0.115 0.020 0.516
rob-Size | 0.676  0.050 n.a. n.a. n.a. n.a. 0.180  0.050 n.a. n.a. n.a. n.a.
T=25
Bias -0.097 -0.014 -0.256 -0.155 -0.043 -0.035 | 0.002 0.001 -0.005 0.002 0.005 -0.039
RMSE 0.112 0.067 0.300 0.328 0.077 0.066 | 0.018 0.018 0.036 0.058 0.029 0.049
Size 0.957 0.634 0961 0.879 0.728 0.842 | 0.050 0.566 0.216 0.176  0.042 0.536
rob-Size | 0.456  0.027 n.a. n.a. n.a. n.a. 0.081  0.033 n.a. n.a. n.a. n.a.
T =50
Bias -0.046 -0.006 -0.157 -0.094 -0.023 -0.019 | 0.004 0.000 0.018 0.019 0.008 -0.026
RMSE 0.068 0.041 0.183 0.265 0.052 0.039 | 0.013 0.013 0.029 0.056 0.024 0.033
Size 0.928 0.770 0964 0.909 0.785 0.843 | 0.067 0.634 0.296 0.389 0.146 0.515
rob-Size | 0.301  0.025 n.a. n.a. n.a. n.a. 0.074  0.033 n.a. n.a. n.a. n.a.

Note: The comparison includes the within-groups estimator (WG), the bias-corrected method of moments estimator
(BC), the one-step Arellano and Bond (1991) GMM estimator (AB-GMM), the two-step Ahn and Schmidt (1995)
GMM estimator (AS-GMM), the two-step Blundell and Bond (1998) GMM estimator (BB-GMM), and the Hsiao
et al. (2002) QML estimator. Reported are the average bias of the estimates, the root mean square error (RMSE),
and the empirical size of the Wald statistics f@&the hypothesis 8 = By. ‘rob-Size’ refers to the Wald test employing

robust standard errors considered in Theorem 2.



Table 11: Simulation results: nonstationary initialization, N = 50

a B
AB- AS- BB- AB- AS- BB-
WG BC GMM GMM GMM QML | WG BC GMM GMM GMM QML
a=04

T =
Bias -0.041 0.000 -0.056 0.031 0.386 0.000 | -0.001 -0.003 -0.041 0.009 0.071 0.009
RMSE | 0.048 0.027 0.175 0.101 0.388 0.027 | 0.098 0.099 0.172 0.156 0.187 0.099
T=10
Bias -0.023 0.001 -0.037 0.087 0.364 0.003 | 0.010 0.000 -0.018 0.043 0.003 0.010
RMSE | 0.029 0.018 0.083 0.157 0.366 0.019 | 0.062 0.062 0.090 0.138 0.118 0.062
T=25
Bias -0.011  0.000 -0.009 0.084 0.346 0.001 | 0.007 -0.001 0.002 0.036 -0.026 0.003
RMSE | 0.016 0.012 0.026 0.107 0.347 0.012 | 0.038 0.037 0.045 0.090 0.070 0.037
T =50

Bias -0.006 0.000 -0.006 0.073 0.294 0.001 | 0.005 0.000 0.005 0.017 -0.040 0.002

RMSE | 0.010 0.008 0.015 0.083 0.297 0.008 | 0.025 0.025 0.031 0.061 0.061 0.025
a=0.9

T=5

Bias -0.328 0.011 -0.448 -0.013 0.114 0.032 | -0.016 -0.002 -0.064 -0.012 -0.001 0.028
RMSE | 0.334 0.119 0.621 0.149 0.124 0.145 | 0.098 0.102 0.132 0.129 0.136 0.100
T=10
Bias -0.152  0.003 -0.308 -0.004 0.089 0.029 | -0.001 0.000 -0.047 0.003 0.008 0.032
RMSE | 0.156 0.052 0379 0.094 0.092 0.073 | 0.062 0.061 0.091 0.089 0.088 0.066
T=25
Bias -0.058 0.000 -0.265 0.006 0.055 0.011 | 0.002 -0.001 -0.036 0.009 0.011 0.020
RMSE | 0.060 0.017 0.299 0.059 0.063 0.025 | 0.036 0.036 0.059 0.057 0.052 0.040
T =50
Bias -0.030 0.000 -0.094 0.004 0.041 0.005 | 0.003 0.000 -0.003 0.007 0.006 0.013
RMSE | 0.031 0.010 0.108 0.043 0.050 0.012 | 0.024 0.024 0.034 0.040 0.036 0.027

Note: The estimators in the comparison are the within-groups estimator (WG), our bias-corrected estimator
(BC), the one-step Arellano and Bond (1991) GMM estimator (AB-GMM), the two-step Ahn and Schmidt
(1995) GMM estimator (AS-GMM), the two-step Blundell and Bond (1998) GMM estimator (BB-GMM), and
the Hsiao et al. (2002) QML estimator. Reported are the average bias of the estimates and the root mean square
error (RMSE).
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Table 12: Simulation results: nonstationary initialization, N = 200

a B
AB- AS- BB- AB- AS- BB-
WG BC GMM GMM GMM QML | WG BC GMM GMM GMM QML
a=04

T =
Bias -0.041 0.000 -0.014 0.003 0.379 0.000 | 0.000 -0.002 -0.011 -0.004 0.101 0.010
RMSE | 0.043 0.014 0.088 0.028 0.380 0.014 | 0.048 0.048 0.086 0.064 0.135 0.049
T=10
Bias -0.023 0.000 -0.010 0.006 0.348 0.002 | 0.013 0.003 -0.003 -0.001 0.019 0.012
RMSE | 0.025 0.009 0.041 0.034 0.348 0.010 | 0.033 0.030 0.045 0.047 0.065 0.032
T=25
Bias -0.011 0.000 -0.003 0.012 0.346 0.001 | 0.009 0.001 0.001 0.000 -0.010 0.004
RMSE | 0.012 0.006 0.012 0.018 0.346 0.006 | 0.020 0.018 0.024 0.029 0.037 0.018

T =50

Bias -0.006 0.000 -0.001 0.024 0.360 0.001 | 0.0056 0.000 0.001 0.007 -0.010 0.002

RMSE | 0.007 0.004 0.007 0.027 0.360 0.004 | 0.014 0.013 0.016 0.025 0.028 0.013
a=0.9

T=5

Bias -0.321 0.011 -0.210 0.020 0.115 0.022 | -0.015 -0.001 -0.029 -0.001 0.009 0.028
RMSE | 0.323 0.069 0.369 0.099 0.117 0.077 | 0.049 0.047 0.074 0.062 0.063 0.053
T=10
Bias -0.149 0.000 -0.130 0.014 0.091 0.020 | 0.001 0.003 -0.018 0.001 0.008 0.035
RMSE | 0.150 0.024 0.187 0.066 0.092 0.036 | 0.030 0.030 0.048 0.044 0.044 0.045

T=25
Bias -0.056 0.000 -0.139 0.013 0.070 0.010 | 0.004 0.001 -0.020 0.002 0.009 0.022
RMSE | 0.057 0.008 0.164 0.041 0.070 0.014 | 0.018 0.017 0.034 0.029 0.030 0.028
T =50

Bias -0.030 0.000 -0.027 0.015 0.065 0.005 | 0.003 0.000 -0.002 0.003 0.010 0.012
RMSE | 0.030 0.005 0.036 0.026 0.065 0.007 | 0.013 0.012 0.017 0.019 0.021 0.018

Note: The estimators in the comparison are the within-groups estimator (WG), our bias-corrected estimator
(BC), the one-step Arellano and Bond (1991) GMM estimator (AB-GMM), the two-step Ahn and Schmidt
(1995) GMM estimator (AS-GMM), the two-step Blundell and Bond (1998) GMM estimator (BB-GMM), and
the Hsiao et al. (2002) QML estimator. Reported are the average bias of the estimates and the root mean square
error (RMSE).
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