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Abstract

We propose a dynamic model for multivariate binary outcomes, which allows the

latent variables driving these observed outcomes to follow a vector autoregressive

process. Furthermore the model is constructed using a copula representation for

the joint distribution of the resulting innovations. This has several advantages over

the standard multivariate probit model. First, it allows for nonlinear dependence

between the error terms. Second, the univariate link function can be chosen freely.

Third, the computational burden is greatly reduced, making estimation feasible in

higher dimensions and for large samples. Finally, the model can easily be extended

to allow for ordered outcomes and one may even model ordered and binary outcomes

jointly. Conditions, needed for the estimated dependence parameter to lie inside the

permissible parameter space are given, and the construction of confidence intervals

for (small sample) cases in which these conditions are not fullfilled is discussed.

Furthermore, the computation of marginal effects and the choice of the copula func-

tion for dimensions larger than two are treated. Two applications are presented.

First, we treat the problem of forecasting the probability of extreme price (co-)

occurrences, so called (co-) spikes, in Australian high frequency electricity markets,

and second, we jointly model recession probabilities for four major economies. The

supplementary material to this paper contains Monte Carlo simulations and some

details concerning the computation of the likelihood function.

Keywords: Electricity price spikes, hierarchical archimedean copulas, multivariate pro-

bit, recession forecasting,vector autoregression
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1 Introduction

Models for binary outcomes such as logit and probit models are standard tools in econo-

metrics, but the basic specifications are not always suitable for problems that arise in

applications. In particular, the analysis of time-series data and modeling more than one

variable are often of interest. Several studies have extended the basic model framework

to the dynamic time series setting by including past information in the model. Examples

are Dueker (1997), Kauppi and Saikkonen (2008) and Nyberg (2010) who apply dynamic

binary choice models to the problem of modeling and forecasting recessions, Eichengreen

et al. (1985) who model bank rate policy, or Eichler et al. (2014) who use a variation of the

model of Kauppi and Saikkonen (2008) to forecast the occurrence of spikes in Australian

Electricity prices. Theoretical properties of dynamic binary choice models are treated in

De Jong and Woutersen (2011).

The first study introducing a multivariate probit model was Ashford and Sowden

(1970). Recently, Nyberg (2013) and Candelon et al. (2013) proposed multivariate exten-

sions of the dynamic binary choice model of Kauppi and Saikkonen (2008). The former

paper proposes the generalization to a bivariate autoregressive probit model to jointly

forecast recession probabilities for the US and Germany. The latter shows how to esti-

mate the multivariate dynamic probit model in three dimensions using an exact maximum

likelihood approach and applies the model to the problem of financial crisis mutation. Fur-

thermore, Winkelmann (2012) presents an alternative model specification based on the

recursive static bivariate probit model. The idea is to maintain the probit assumption

for the marginal distributions while introducing non-normal dependence using copulas.

In an application of the proposed copula bivariate probit model to analyse the effect of

insurance status on the absence of ambulatory health care expenditure, the author shows

that a model based on the Frank copula outperforms the standard bivariate probit model.

Another notable contribution is Dueker (2005). He proposes a vector autoregressive model

that allows for the inclusion of qualitative variables and applies it to model U.S. recessions

and monetary policy contractions.

This paper makes the following contributions to the literature on multivariate discrete

choice modeling. We introduce a copula based approach which permits the estimation of

multivariate dynamic discrete choice models in dimensions larger than two, thus extending

the ideas of Kauppi and Saikkonen (2008), Candelon et al. (2013), Nyberg (2013) and

Winkelmann (2012). Our model allows for a flexible choice of the link functions, which

may even differ for the distinct dependent variables in the model. Furthermore, the use
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of copulas makes it possible to model asymmetric dependence as well as tail dependencies

between the innovations in the model. In order to make the computation of estimates

in high dimensional models feasible we propose to use the class of nested Archimedean

copulas (see, e.g., Okhrin et al. 2013 and Savu and Trede 2010) which yields closed form

expressions for the likelihood function that can be evaluated at low computational costs,

while maintaining a certain degree of flexibility. The representation of the model via the

latent processes driving the observed outcomes implies that it can easily be extended to

allow for ordered outcomes and that it can even be applied in situations in which some

of the outcomes are binary and others are ordered.

For small samples it is possible that estimation results imply perfect positive (or

negative) dependence. We analyze the necessary and sufficient conditions, which are

needed for the estimated dependence parameter to lie in the interior of the parameter

space and present a solution for cases in which these conditions are not fullfilled. A

similar problem was studied in Butler (1996) in the specific context of censored probit

models. Furthermore, we derive general formulas for computing the marginal effects of the

model, complementing several studies that have treated the estimation of marginal effects

in binary choice models. In particular, the analytical derivation of marginal effects in the

context of the bivariate probit model is given by Greene (1996) and Christofides et al.

(1997). Hasebe (2013) further derived the marginal effects for the bivariate (recursive)

copula model of Winkelmann (2012). A recent extension for multivariate probit models

with dimension greater than two was given by Mullahy (2011).

We present two applications, which demonstrate the practical relevance of our model

framework in rather distinct contexts. First, we analyze the dynamic dependence be-

tween extreme price occurrences on four interconnected electricity markets in Australia.

This subject is highly relevant for market participants in order to properly schedule de-

mand/production, execute risk management and perform statistical arbitrage. In a uni-

variate setting this problem has been studied by Christensen et al. (2009), Christensen

et al. (2012), Clements et al. (2012), Korniichuk (2012), and Eichler et al. (2014), whereas

Clements et al. (2015) treat this problem in a bivariate setting using a self-exciting peaks-

over-threshold model. In the second application we revisit the problem of modeling re-

cession probabilities in a multivariate setting and apply our framework to model the joint

recession dynamics of the US, Canada, Japan and Germany. For the US this problem

has received considerable attention in the literature in, e.g., Dueker (1997), Estrella and

Mishkin (1998), Dueker (2005), Kauppi and Saikkonen (2008), or Nyberg (2010). A

bivariate analysis for the U.S. and Germany can be found in Nyberg (2013).
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The paper is structured as follows. In Section 2 we present the model and elaborate

on the estimation, in particular the identification of the dependence parameter. We

further discuss, the computation of marginal effects, the specification of the copula and

extensions of the model. The empirical applications are presented in Section 3, while

Section 4 concludes and outlines future research questions.

2 The model

In this section we present the dynamic copula based multivariate discrete choice (DCMDC)

model. The general model specification is given in Section 2.1. In Section 2.2 we discuss

maximum likelihood estimation of the model. Furthermore the estimation of the de-

pendence parameter is treated in detail. Inference for the case when the dependence

parameter is estimated to lie on the boundary of the parameter space is discussed in Sec-

tion 2.3. Section 2.4 treats the computation of marginal effects. The precise choice of the

copula function for dimensions larger than two is discussed in Section 2.5 and in Section

2.6 we outline the extension of the model to ordered outcomes.

2.1 Multivariate dynamic discrete choice models

Let yt = (y1t, . . . , ydt)
′, for t = 1, . . . , T , be a d-dimensional vector of binary variables.

Assume that the outcomes are driven by a vector of latent variables y∗t = (y∗1t, . . . , y
∗
dt)
′.

The observable variables are defined as

yit = 1 if y∗it > 0

yit = 0 otherwise,

for i ∈ {1, . . . , d}. Furthermore, let xt = (x1t, . . . , xkt)
′ be a vector of exogenous variables.

Then generalizing the model by Kauppi and Saikkonen (2008) the latent variables are

modeled as

y∗t = πt + εt (1)

and

πt = α +Bxt + Γπt−1 +Dyt−1, (2)

where πt = (π1t, . . . , πdt)
′, α = (α1, . . . , αd)

′ is a vector of intercepts, B is a d× k matrix,

Γ and D are d × d matrices, and εt = (ε1t, . . . , εdt)
′ is a vector of zero mean i.i.d. inno-

vations. The parameters in the matrix Γ need to satisfy the usual restrictions to ensure
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stationarity of a VAR process. In this model specification the latent processes driving the

binary outcomes are autocorrelated and it permits (dynamic) spillover effects between the

endogenous variables. More general specifications in which πt depends nonlinearly on its

past or on exogenous variables are possible, see Section 3.1.2 for an example. The joint

probabilities of the possible outcomes at time t depend on the distribution of εt and are

given by

P (y1t = 1, . . . , ydt = 1) = P (ε1t > −π1t, . . . , εdt > −πdt)
...

...
... =

...
...

... (3)

P (y1t = 0, . . . , ydt = 0) = P (ε1t ≤ −π1t, . . . , εdt ≤ −πdt).

If εt is assumed to follow a multivariate normal distribution then the model is the mul-

tivariate probit model proposed by Candelon et al. (2013) and Nyberg (2013). However,

we assume a more general joint distribution for the innovations based on the copula de-

composition of multivariate distributions. In particular, the joint distribution H of εt can

be written as

H(ε1t, . . . , εdt) = Cθ(F1(ε1t), . . . , Fd(εdt)), (4)

where Fi is the marginal distribution for εit and Cθ is a d-dimensional copula with param-

eter vector θ that captures the contemporaneous dependence between the innovations.

For the copula any parametric family can in principle be used, see e.g. the books Nelsen

(2006) or Joe (1997). We come back to this issue in Section 2.5. Common choices for the

marginal distributions Fi are the standard normal distribution

Fi(ε) = Φ(ε) (5)

corresponding to the probit model or the logistic distribution

Fi(ε) =
1

1 + exp(−ε)
(6)

leading to a logit model. However, besides these two popular choices there are several al-

ternative specifications available such as the Gumbel or the complementary log-log model

(e.g. Greene 2011). In this paper we consider a further alternative distribution, namely

the Burr-10 distribution,

Fi(ε) =
1

[1 + exp(−ε)]a
, a > 0, (7)

which was used by Nagler (1994) and results in the so called skewed logit (scobit) model.

For a = 1 it nests the logit model, but otherwise the Burr-10 distribution is asymmetric.
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In contrast to the logit and probit models, the probability of observing yit = 1 is thus

allowed to be most sensitive to changes in the explanatory variables at probabilities smaller

or larger than 0.5.

Our model specification nests a number of specifications proposed in the literature.

For Γ = D = 0, F (·) = Φ(·) and C being the Gaussian copula the model reduces to the

standard multivariate probit model, see e.g. Ashford and Sowden (1970). The dynamic

specification of Candelon et al. (2013) and Nyberg (2013) is obtained if the probit link

and the Gaussian copula are used, and Γ and D are unrestricted. A bivariate, static

(recursive) version of our model using probit link functions and a general dependence

structure has been introduced by Winkelmann (2012).

Our specification has three advantages over the classical multivariate probit model.

First, more general types of dependence can be allowed for. This includes the possibility

of tail dependence and asymmetric dependence, i.e., the strength of cross dependence

in εt can be different for small and large values. This can potentially result in a better

model fit as linear correlation may not be an appropriate dependence measure in all

situations. Second, the link function F can be chosen to be of any form, thus allowing

to use distinct marginal distributions for the different dependent variables included in

the system. The third advantage is the availability of closed forms for the distribution

function H whenever the chosen copula has a closed form CDF1, which is not the case for

the multivariate normal distribution. This makes the estimation computationally more

efficient, in particular in higher dimensions, as one does not need to rely on numerical

integration techniques. Although the computational aspect may seem irrelevant given the

availability of fast computers, note that the estimation of a three or four dimensional model

with a Gaussian copula for reasonably large samples can be extremely time consuming or

even infeasible.

2.2 Maximum likelihood estimation

The model introduced above can be estimated via maximum likelihood estimation

(MLE). We begin by presenting the log-likelihood for the two-dimensional case. Let

zt = (1 x′t π
′
t−1 y

′
t−1) be the vector that stacks all explanatory variables and let γi for

i = 1, 2 be the column vector that stacks parameters from α, B, Γ and D corresponding

to the ith equation. Furthermore we make use of the fact that C(u1, 1) = u1, C(1, u2) = u2,

and C(u1, 0) = C(0, u2) = 0. Next we define sit = 2yit − 1 for i = 1, 2. Then the proba-

1Admittedly this restricts the number of choices for the copula.
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bilities corresponding to the four possible outcomes of yt which are the contributions to

the likelihood function, can be written as:

L(y1t, y2t) = P (y1t, y2t|zt)

= y1ty2t − y1ts2tF2(−ztγ2)− y2ts1tF1(−ztγ1) + s1ts2tCθ[F1(−ztγ1), F2(−ztγ2)]

(8)

The corresponding log-likelihood function for the model is then given by

LL(γ, θ) =
T∑
t=1

lnL(y1t, y2t), (9)

where γ = (γ1, γ2). In order to derive the likelihood for higher dimensions one has

to compute the probabilities corresponding to the 2d possible outcomes. These can

be computed from the general formulas for computing rectangle probabilities for mul-

tivariate distributions given in, e.g., Nelsen (2006). Consider a = (a1, a2, . . . ad) and

b = (b1, b2, . . . bd) where ai < bi, for all i = 1, 2, . . . , d and let [a,b] denote the d-box

B = [a1, b1]× [a2, b2]× · · · × [ad, bd], the Cartesian product of n closed intervals. Then for

a given cumulative distribution function H : Rd → [0, 1], the probability of X lying in the

d-box B defined by a and b is given by

PH(B) = P (a < X < b) =
2∑

j1=1

· · ·
2∑

jd=1

(−1)j1+...+jdH(xj1 , . . . , xjd), (10)

with xji = ai if ji = 1 and xji = bi if ji = 2. For our specific case one has to set ai = −ztγi
and bi =∞ for an event occurring in component i, (yit = 1) and ai = −∞ and bi = −ztγi
for the probability of no event occurring in component i, (yit = 0). Corresponding to the

possible number of outcomes, 2d probabilities need to be computed, each consisting of up

to 2m terms with m =
∑d

i=0 1{yit=1} being the number of occurrences for the probability

of interest. The log-likelihood is then computed similarly to the bivariate case. In the

supplementary material to this paper we have written out the probabilities in equation

(10) for the three and four dimensional case.

In principle estimating the DCMDC model via the maximum likelihood approach is

straightforward. First we note that the existence of the maximum likelihood estimator for

the regression parameters γi is guaranteed by the condition that there exists no parameter

vector γi such that

sit ztγi > 0 (11)
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for all t = 1, . . . , T (cf Albert and Anderson 1984), where sit = 2 yit− 1 as in the previous

section. In the following, we assume that the above condition holds for i = 1, . . . , d.

As discussed in Nyberg (2013), consistency and asymptotic normality of the MLE

can be expected to hold under suitable regularity conditions. The existence of a MLE

in the interior of the parameter space is implied by the conditions in equation (11) and

Proposition 1 below. Uniqueness does not necessarily hold when jointly estimating γ and

θ as the log-likelihood function is not strictly log-concave; see also Lesaffre and Kaufmann

(1992) on the existence and uniqueness results. Furthermore, no results concerning the

time series properties of the model in its most general form are known that would allow

for the application of a central limit theorem to ensure asymptotic normality of the MLE.

De Jong and Woutersen (2011) study such properties for (univariate) dynamic binary

choice models containing lags of yt. However, even for the univariate model of Kauppi

and Saikkonen (2008) with lags of πt no such results are known. For these reasons we

leave a formal proof of asymptotic normality for our class of models for future research

and focus on conditions for the existence of a MLE for θ in the interior of the parameter

space.

For small samples it is possible that the estimated dependence parameter lies on

the boundary of the permissible parameter space implying perfect positive (or negative)

dependence. A closely related issue has been studied by Butler (1996) in the context of

censored probit models. For this purpose we first give necessary and sufficient conditions

for the maximum likelihood estimator of θ to lie in the interior of the parameter space

for the bivariate case. Then we show how the argument extends to larger dimensions.

In the next section we discuss how to draw inference in situations when the estimated

dependence parameter lies on the boundary of the parameter space.

Proposition 1 Consider the model defined by equations (2.1) and (2.4) for d = 2. Let

the copula Cθ be parameterized by θ (possibly vector valued) and assume the copula has a

limiting parameter θ∞ for which it corresponds to the comonotonicity copula Cθ∞(u1, u2) =

min(u1, u2).

(a) A necessary condition for the maximum likelihood estimator to fulfill θ̂ < θ∞ is that

there exists at least one pair of observations such that y1t + y2t = 1.

(b) A sufficient condition for estimating θ̂ < θ∞ is that for all values of γ1 and γ2 there

is at least one pair of observations such that (i) y1t + y2t = 1 and (ii) P (Y1t =

y1t) + P (Y2t = y2t) ≤ 1.
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Furthermore assume the existence of a limiting parameter θ−∞ for which the copula cor-

responds to the countermonotonicity copula.

(c) A necessary condition for the maximum likelihood estimator to fulfill θ̂ > θ−∞ is

that there exists at least one pair of observations s.t. y1t = y2t.

(d) A sufficient condition for estimating θ̂ > θ−∞ is that for all values of γ1 and γ2

there is at least one pair of observations such that (i) y1t + y2t = 2 and P (Y1t =

0) + P (Y2t = 0) ≥ 1, or (ii) y1t + y2t = 0 and P (Y1t = 0) + P (Y2t = 0) ≤ 1.

Proof. In the following we denote P (Yit = 0) = Fi(−ztγi) by Fit.

(a) Consider

P (Y1t = 0, Y2t = 0) = Cθ(F1t, F2t),

and

P (Y1t = 1, Y2t = 1) = 1− F1t − F2t + Cθ(F1t, F2t).

Both these terms are increasing in C. Due to the Fréchet-Hoeffding upper bound

Cθ(u1, u2) ≤ min(u1, u2) = M(u1, u2) these probabilities are maximized for θ̂ = θ∞.

Thus if the stated condition does not hold the copula M maximizes the overall

likelihood.

(b) The condition stated implies one of two possible cases that are symmetric to each

other, so only one case needs to be considered. Let γ1 and γ2 be valid parameters

for the regression part of the model. Without loss of generality, we may assume

that γ1 and γ2 lie in a compact subset of the parameter space and suppose that at

least one pair of observations fulfils y1t = 1 and y2t = 0. Then (ii) implies

F2t = P (Y2t = 0) ≤ 1− P (Y1t = 1) = P (Y1t = 0) = F1t.

Now consider the corresponding joint probability of the observation

P (Y1t = 1, Y2t = 0) = F2t − Cθ(F1t, F2t).

For Cθ∞ = M this probability becomes zero and implies a log-likelihood contribution

of −∞ assuring that the maximizer θ̂γ of the log-likelihood LL(γ, θ) for fixed γ sat-

isfies θ̂γ < θ∞. Consequently, we have for every compact subset Γ of the parameter

space for γ

sup
γ∈Γ

θ̂γ < θ∞.
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Since by our assumption on γ in (11), the marginal and hence also the joint likelihood

vanishes for |γ1|+ |γ2| → ∞, this proves θ̂ < θ∞.

(c) Consider

P (Y1t = 1, Y2t = 0) = F2t − Cθ(F1t, F2t),

and

P (Y1t = 0, Y2t = 1) = F1t − Cθ(F1t, F2t).

Both these terms are decreasing in C. Due to the Fréchet-Hoeffding lower bound

W = max(u1+u2−1, 0) ≤ Cθ(u1, u2) these probabilities are maximized for θ̂ = θ−∞.

(d) Let γ1 and γ2 be valid parameters for the regression part of the model and suppose

that the pair (y1t, y2t) fulfills one of the stated conditions.

First, suppose that y1t = 1 and y2t = 1. Then for θ̂γ being on the lower bound of

the permissible parameter space, condition (i) gives

P (Y1t = 1, Y2t = 1) = 1− F1t − F2t + Cθ−∞(F1t, F2t)

= 1− F1t − F2t + F1t + F2t − 1 = 0.

Thus for Cθ = W the probability becomes zero and implies a log-likelihood contri-

bution of −∞ assuring that θ̂γ > θ−∞.

Next, suppose that y1t = 0 and y2t = 0. The corresponding joint probability of the

observation is

P (Y1t = 0, Y2t = 0) = Cθ(F1t, F2t).

Since in case of Cθ = W we have Cθ = max((F1t+F2t−1, 0), (ii) would yield Cθ = 0

and thus a joint probability of zero implying a log-likelihood contribution of −∞
assuring that θ̂γ > θ−∞.

Finally, we get θ̂ > θ−∞ similarly as in (b) from the diverging behavior of the

log-likelihood for large values of γ.

For illustration consider as a simple example the (static) bivariate probit model

y∗1t = γ1z1t + ε1t (12)

y∗2t = γ2z2t + ε2t,
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where z1t and z2t are independent standard normal variables, γ1 = γ2 = 1, and ε1t and

ε2t standard normal dependent through a Gumbel copula with θ = 4. In this case, the

critical region for the parameter vector γ where the log-likelihood LL(θ∞, γ) stays finite

can be described by

α1 γ1 < γ2 < α2 γ1

where

α1 = max{z1t/z2t|(y1t > y2t and z2t < 0) or (y1t < y2t and z2t > 0)}

and

α2 = min{z1t/z2t|(y1t < y2t and z2t < 0) or (y1t > y2t and z2t > 0)}.

If α1 ≥ α2 the region is empty and the sufficient condition for the existence of the MLE

is satisfied.

Consider the graphical illustration based on T = 100 random obervations from (12)

in Figure 1, in which the copula was parametrized by ρ = 1 − 1/θ that lies in (0, 1) and

ρ = 1 corresponds to perfect dependence. The left panel shows ρ̂γ = argmaxρ LL(ρ|γ),

the middle panel the corresponding value of the log-likelihood function and the right

panel the value of the profile likelihood LL(γ̂θ|θ). The critical region in which LL(θ∞, γ)

stays finite is marked by the black lines and the MLE is represented by the black dot.

For a large set of value for γ1 and γ2 the dependence parameter lies on the boundary of

the parameter space. However, in this particular case the MLE exists. Furthermore, the

profile likelihood is found to be bimodal indicating that the estimation of the model can

become problematic.

An alternative way to state the sufficient conditions is as follows. Define the set

Ait =

[0, Fit] if yit = 0

[Fit, 1] if yit = 1.

Then comonotonicity is possible only if

A1t ∩ A2t 6= ∅, ∀t ∈ {1, . . . , T} (13)

for some values of γ1 and γ2. Vice versa, if the intersection is empty for all possible values

of γ1 and γ2 then the ML-estimator must satisfy θ̂ < θ∞. It is straightforward to check

that the conditions are equivalent to the ones stated above. However, using this notation

the extension to d > 2 follows directly. If the dependence of all pairs of variables depends

on θ then comonotonicity is only possible if

A1t ∩ A2t ∩ . . . ∩ Adt 6= ∅, ∀t ∈ {1, . . . , T}, (14)
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Figure 1: ρ̂γ for artificial data from model (12) (left panel), the corresponding log-

likelihood (middle panel) and the profile likelihood (right panel).

and θ̂ < θ∞ when the intersection is empty. In case there are multiple dependence

parameters each characterizing the dependence for a subset of the variable pairs (as is the

case in the hierarchical models we introduce in Section 2.5 below), the sufficient condition

simply must hold for at least one of the pairs. Care must be taken when the copula is

parametrized through a correlation matrix. In order to ensure that pairwise correlations

lie in (−1, 1) the above stated conditions must hold pairwise. However, this does not

prevent degenerate behavior, as the correlation matrix may still not be positive definite.2

2.3 Inference when θ̂ lies on the boundary of the parameter

space

In practice, the question arises of how inference on the copula parameter can be drawn in

cases when θ̂ = θ∞. Due to the fact that the estimated parameter lies on the boundary of

the parameter space standard inference is not possible. We suggest computing confidence

intervals for θ̂ based on the profile likelihood method. In particular, for a fixed θ the

profile likelihood estimator for γ is defined as

γ̂θ = argmax
γ

LL(γ|θ),

2Note that countermonotonicity is not treated for d > 2 as the Fréchet-Hoeffding lower bound is not

a copula for dimensions larger than two.
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where LL(γ|θ) denotes the likelihood function in (9) when holding θ constant. The

maximum likelihood estimator for θ is then given by

θ̂ = argmax
θ

LL(γ̂θ|θ)

and (γ̂θ̂, θ̂) is the ordinary maximum likelihood estimator. We can construct a confidence

interval for θ by choosing (θl, θu) such that

2[LL(γ̂θ̂, θ̂)− LL(γ̂θl , θl)] = 2[LL(γ̂θ̂, θ̂)− LL(γ̂θu , θu)] = C1,1−α, (15)

where C1,1−α is the (1− α) quantile of the χ2(1) distribution. In principle, this approach

can also be used when θ̂ = ∞, in which case the likelihood function is typically very

flat with respect to θ. However, the approximation with a χ2(1) distribution when θ̂ can

lie on the boundary of the parameter space, but the LR statistics will follow a mixture

of a χ2(1) and a point mass at 0; see, e.g. Self and Liang (1987) or Andrews (2001).

Nonetheless, the weights of the mixture are not known and can only be computed by

simulations. We propose to approximate this distribution using a parametric bootstrap,

which is implemented as follows.

1. Select a canditate value θl (θu) for the lower (upper) boundary of the CI. Obtain

the profile likelihood estimator γ̂θl . Furthermore, obtain the unrestricted MLE and

compute the likelihood ratio statistic (LR) for testing H0 : θ = θl using (15).

2. Simulate from the model of interest using parameters θl and γ̂θl to obtain a bootstrap

sample y∗t for t = 1, . . . , T . For the exogenous variables xt use the observed values.

3. Based on the bootstrap sample y∗t for t = 1, . . . , T compute the unrestricted MLE,

as well as the profile MLE at θl, to obtain the bootstrap likelihood ratio statistic

LR∗ based on (2.15) for testing H0 : θ = θl.

4. Repeat Steps 2 and 3 M times to obtain the bootstrap distribution of LR∗. Compute

the empirical 1− α quantile of the bootstrap distribution, C∗1−α. If LR < C∗1−α the

candidate value θl is inside the confindence interval, if LR > C∗1−α it is outside the

confidence interval.

5. Repeat Steps 1 to 4 over a grid of values for θl and θu until LR ≈ C∗1−α to find the

upper and lower bounds of the confidence interval.
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Note that although this approach is straightforward and works well, as our simulations

below indicate, it is computationally very demanding due to the need to bootstrap the

likelihood ratio statistic for all candidate values of (θl, θu). Clever choices for candidate

values using confidence intervals based on the χ2(1) distribution should be used to speed

up the computations and we recommend the use of common random numbers to ensure

convergence of the search for (θl, θu).

We illustrate the quality of the resulting confidence intervals through a small simula-

tion study based on the model in (12) with sample size T = 100. We let the dependence

parameter θ of the Gumbel copula vary from 1.5 to 6 in steps of size 0.5.3 The model

parameters are estimated by MLE and θ is constrained to lie in the interval [1.01, 100].

However, we explicitly allow for θ =∞ in the estimation and we estimate the remaining

parameter using the profile likelihood in that case. Table 1 reports the fraction of samples

for which θ̂ =∞. Furthermore, it compares the corresponding coverage probability of the

95% confidence intervals computed in the traditional way using estimated standard errors

(Wald CI) with the ones estimated when applying the profile likelihood method, either

by using the χ2(1) distribution or the bootstrap method. To compute Wald confidence

intervals we excluded the value θ =∞, but computed the confidence interval using the es-

timator restricted to [1.01, 100]. The results are based on 10,000 Monte Carlo replications.

For the bootstrapped confidence intervals only 1,000 Monte Carlo simulations and 1,000

bootstrap replications were used. It stands out that for large values of θ the dependence

parameter is estimated on the boundary of the parameter space in a large fraction of the

cases. In these cases the coverage rates of the classical confidence intervals is well below

its nominal level. The confidence intervals based on the profile likelihood method, on the

other hand, have coverage rates that are close to the nominal level, but that are too small

for low values of θ and too large when θ is large. It appears that whenever the sufficient

condition for a finite θ̂ is not fulfilled the likelihood function is extremely flat resulting in

a coverage rate above 95%. Furthermore, the χ2(1) approximation of the distribution of

the likelihood ratio statistic is likely imprecise near the boundary of the parameter space.

The bootstrap appears to fix this problem, resulting in coverage rates that are close to

95%.

3Note that in the case of the Gumbel copula θ = 1 corresponds to the independence copula, whereas θ =

∞ corresponds to the comonotonicity copula. Values of θ larger than 3 indicate very strong dependence.
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Table 1: Coverage rates of confidence intervals for θ

θ 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

Wald CI 0.942 0.923 0.902 0.889 0.881 0.880 0.871 0.872 0.872 0.869

Profile CI 0.945 0.933 0.920 0.933 0.960 0.974 0.981 0.986 0.987 0.988

Bootstrap CI 0.946 0.958 0.954 0.951 0.952 0.947 0.96 0.941 0.954 0.965

Fraction θ̂ =∞ 0.005 0.037 0.114 0.208 0.298 0.381 0.453 0.513 0.567 0.610

Note: Coverage probabilities of confidence intervals (CI) based on the standard approach and based

on the profile likelihood for the Gumbel copula parameter in model (12) with γ1 = γ2 = 1 based on

10,000 Monte Carlo simulations (1,000 for the bootstrapped intervals). The dependence parameter is

constrained to lie in the interval [1,100] and the value θ = ∞ is permitted. The last row reports the

fraction of samples for which θ̂ =∞.

2.4 Marginal effects

Due to the fact that the coefficients of discrete choice models do not have a direct interpre-

tation, one commonly computes the marginal effects of changes in the exogenous variables

on the probabilities of interest based on the estimated model parameters. This problem

has been addressed for certain specifications of multivariate discrete choice models in

Greene (1996), Christofides et al. (1997), Hasebe (2013) and Mullahy (2011). In the bi-

variate case marginal effects for joint conditional probabilities are obtained by calculating

the derivative of (8):

∂P (Y1t = y1t, Y2t = y2t|zt)
∂zt

= y1ts2tf1(−ztγ1)γ1 + y2ts1tf2(−ztγ2)γ2

− s1ts2t

[
∂Cθ
∂u1

· f1(−ztγ1) · γ1 +
∂Cθ
∂u2

· f2(−ztγ2) · γ2

]
,(16)

where f1 and f2 are the density functions corresponding to F1 and F2, respec-

tively, and sit has been defined in Section 2.2. We use (∂Cθ)/(∂ui) instead of

∂Cθ(F1(−ztγ1), F2(−ztγ2))/∂Fi(−ztγi) to simplify notation.

For the d-variate case marginal effects for joint conditional probabilities are given as

the derivative of (10):

∂P (Y1t = y1t, . . . , Ydt = ydt|zt)
∂zt

=

∑2
j1=1 · · ·

∑2
jd=1(−1)j1+...+jd∂H(xj1 , . . . , xjd)

∂zt
, (17)

with the corresponding xji given below equation (10). The number of marginal effects

which need to be calculated is 2d while each equation itself will again be a function of

14



the number of corresponding events with 2m terms, where m is the number of ones in the

event of interest. Furthermore the number of needed derivatives for each equation is a

function of d and m equal to
∑m

i=0

(
m
i

)
(d−m+ i). Thus computation of marginal effects

for very high dimensions will be tedious. Nonetheless, for dimensions that are relevant in

practice this is generally manageable.

In case one is interested in marginal effects with respect to a binary variable, say zk,t,

they can be computed using the difference, P (Y1t = y1t, . . . , Ydt = ydt|zk,t = 1, z−k,t) −
P (Y1t = y1t, . . . , Ydt = ydt|zkt = 0, z−k,t). Here z−k,t denotes the vector zt excluding zk,t.

2.5 Specification of the copula

Until now we have left the specification of the copula function open. In principle any

parametric copula C: [0, 1]d → [0, 1] with unrestricted domain can be considered, see

Nelsen (2006) or Joe (1997) for a large number of possibilities. In our situation the copula

should ideally satisfy some properties to be useful. First, it must be available in dimensions

larger than two. Second, while flexibility is generally speaking a nice feature the number of

parameters should not grow to fast as the dimension increases.4 Finally, the distribution

function of the copula should be available in closed form. This precludes elliptical copulas

such as the Gaussian and Student copulas, as their distribution functions are only defined

implicitly and have to be evaluated using numerical integration techniques. This also

precludes the popular class of vine copulas to handle dependence dimensions larger than

two, see Aas et al. (2009) or Czado (2010) for an introduction. One class of copulas that

satisfies the stated requirements are Archimedean copulas. They are defined through a

generator function φ : [0, 1] → [0,∞] that is continuous, strictly decreasing and convex

with φ(1) = 0 and φ(0) =∞. Then the function

C(u1, . . . , ud) = φ−1(φ(u1) + . . .+ φ(ud))

is called an Archimedean copula. Some popular examples are the Clayton copula with

φ(t) = (t−θ − 1)/θ, the Gumbel copula with φ(t) = (− ln(t))θ, or the Frank copula

with φ(t) = − ln((e−θt − 1)/(e−θ − 1)). A clear disadvantage of simple Archimedean

copulas is that a dependence parameter determines the dependence between all d variables.

However, they can be extended by relying on a nested dependence structure that allows

4This is not as important as in other applications of copula models where one may consider dimensions

of 10 or higher. Here the number of parameters in the VAR-type model driving the latent process restricts

the dimension of the model to a certain degree.
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for d − 1 distinct generators to construct d-dimensional copulas that only have partial

exchangeability. The fully nested Archimedean copula is given by

C(u1, . . . , ud) = φ−1
d−1(φd−1 ◦ φ−1

d−2[. . . (φ2 ◦ φ−1
1 [φ1(u1) + φ1(u2)] + φ2(u3)) + . . .

+ φd−2(ud−1)] + φd−1(ud)).

The dependence parameter of generator j − 1, θj−1 always has to be larger or equal to θj

in order for C to be a copula. In the trivariate case this gives the copula

C(u1, u2, u3) = Cθ2(Cθ1(u1, u2), u3),

with θ1 ≥ θ2. The bivariate dependence between u1 and u2 is characterized by θ1, whereas

the dependence of the pairs (u1, u3) and (u2, u3) is described by θ2. In the four dimensional

case this gives the fully nested structure

C(u1, u2, u3, u4) = Cθ3(Cθ2(Cθ1(u1, u2), u3), u4),

with θ1 ≥ θ2 ≥ θ3. Here θ1 is the dependence parameter for the pair (u1, u2), θ2 for the

pairs (u1, u3) and (u2, u3), and θ3 for the pairs (u1, u4), (u2, u4) and (u3, u4).

The nesting can also be done in different ways, see Savu and Trede (2010) or Okhrin

et al. (2013) for a general treatment of hierarchical Archimedean copulas. In higher

dimensions a large number of nesting structures are possible. In the four dimensional

case only one alternative nesting structure is possible,

C(u1, u2, u3, u4) = Cθ3(Cθ1(u1, u2), Cθ2(u3, u4)),

with θ1, θ2 ≥ θ3. Now θ1 characterizes the dependence of the pair (u1, u2), θ2 corresponds

to the pair (u3, u4), and θ3 is the dependence parameter of the pairs (u1, u3), (u1, u4),

(u2, u3) and (u2, u4).

Two issues concerning the use of nested Archimedean copulas arise in practice. The

first is the selection of the type of Archimedean copula. The three families mentioned

above cover the possible types of dependence one typically encounters in applications.

The Clayton family is characterized by a stronger dependence for small values of the

random variable than for large realizations and it has positive lower tail dependence. The

Gumbel copula implies upper tail dependence and stronger dependence of large values.

Finally, the Frank copula is the only Archimedean copula that is rotationally symmetric

(Frank 1979) and it has independent tails. In this sense it is similar to a Gaussian copula,
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although it has slightly lighter tails. Again, the question of which copula should be used

is an empirical issue and should be determined by the model fit.

The second issues is the precise choice of the nesting structure and the ordering of the

variables. Inspired by Hafner and Rombouts (2007) we suggest the following approach.

Start with an arbitrary ordering of the data and estimate the multivariate discrete choice

model using the independence copula C(u1, . . . , ud) = u1 ·u2 · . . . ud. Denote the resulting

marginal probabilities Pit = P (Yit = yit|zt) for t = 1, . . . , T and i = 1, . . . , d and compute

the Pearson residuals

ε̂it =
yit − Pit√
Pit(1− Pit)

.

For these compute the Spearman rank correlation matrix. As the rank correlation is a

copula based dependence measure this should give a good impression about the depen-

dence structure of the true error terms εit. The estimated rank correlation matrix can

then be used to decide upon a useful nesting structure and ordering of the variables.

2.6 Multivariate dynamic ordered discrete choice models

The models suggested above can easily be extended to allow for more than two outcomes,

therefore generalizing ordered discrete choice models such as the ordered logit and probit

models. Now we consider a vector of observed outcomes yt that takes on the J distinct

outcomes j = 1, . . . , J . The latent variable y∗t is again defined by equation (1) and (2).

However, it is unclear how to include the past observed variable in the model. One

possibility would to be include the indicator yt−1 > 1 whether the observed outcome was

larger than one, but this depends strongly on the application, in particular on the number

of outcomes that are possible. Alternatively, one can remove the lagged indicators from

the model. Additionally, define the thresholds µi,j such that the observable outcomes

relate to the latent variable as

yit = j if µi,j−1 < y∗it < µi,j, (18)

with µi,0 = −∞, µi,1 = 0 and µi,J = ∞. The probabilities for the possible outcomes are

computed similarly as for the binary case. For the bivariate model we have

P (Y1t = j, Y2t = k) = C(F1(µ1,j − ztγ1), F2(µ2,k − ztγ2))− C(F1(µ1,j−1 − ztγ1), F2(µ2,k − ztγ2))

− C(F1(µ1,j − ztγ1), F2(µ2,k−1 − ztγ2)) + C(F1(µ1,j−1 − ztγ1), F2(µ1,k−1 − ztγ2)).

Again, for some probabilities this expression simplifies as several terms drop out. For

larger dimensions the corresponding formula for multivariate interval probabilities given
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in equation (10) have to be used where now the µi,j determine the boundaries. The log-

likelihood is easily obtained by multiplying indicators for the actual outcomes with their

corresponding probabilities.

A notable possibility that arises is that one can combine, in a single multivariate model,

variables with binary outcomes and variables with ordered multiple outcomes. This may

prove useful in applications.

3 Application

In this section we illustrate the proposed DCMDC model by two applications to real data.

In Section 3.1 we consider a large data set of Australian intra-day electricity spot prices

and we model the probability of extreme price occurrences, so called spikes, across four

markets. Univariate treatments of this problem can be found in, e.g., Christensen et al.

(2012), Eichler et al. (2014) and Hurn et al. (2014). To our knowledge, the only study

considering the multivariate case is Clements et al. (2015), which relies on a bivariate

self-exciting point process model to analyze inter-regional links between the probability

of spike occurrence.

The second application presented in Section 3.2 considers the problem of modeling

and forecasting recession probabilities as studied in, e.g., Kauppi and Saikkonen (2008)

and Nyberg (2013).

3.1 Dynamics in the dependence of extreme price occurrence

between real-time electricity markets

Understanding the co-dependence of spikes in real-time electricity prices between inter-

connected markets plays a crucial role in risk-management. Furthermore it is of great

importance when pricing and hedging inter-regional spreads and/or to value interconnec-

tors between these markets. In this context the Australian power exchange provides an

ideal framework. It consists of five physically interconnected markets for which individual

electricity prices are settled in a continuous trading scheme. Nowadays more than A$10

billion worth of electricity is traded annually. In each market, cap products are traded

based on half-hourly electricity prices for which inter-regional spreads can be priced once

the co-dependence of extremes is properly analyzed. Insights concerning the dynamics

and dependence of co-spikes, i.e. simultaneous spikes in different markets, will further

help to price and hedge Settlements Residue Auction products that are available in the
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Figure 2: Different regions forming the NEM. The figure was taken from AEMO (2010).

Australian market. These products give the owner a share of the surplus generated on

interconnectors which transfer electricity between two regions. While univariate models

for spikes have recently been proposed for intradaily data in these markets, the nature

of co-spikes remains still unexplored in the existing literature. Therefore, we address

this topic and analyze the occurrence of such co-spikes and their dependence by using a

variation of the DCMDC model.

3.1.1 Data description

Our data set consists of half-hourly spot prices, i.e. the highest frequency freely avail-

able, for the four main Australian markets Victoria (VIC), New South Wales (NSW),

Queensland (QLD) and South Australia (SA). The region Tasmania was omitted as it

is assumed to have a minor role being the smallest of the 5 National Electricity Market

(NEM) regions. Figure 2 shows the regions in the market and the transmission lines

that connect them. We use data between January 1, 2008 and December 31, 2012 for

our analysis. This results in a total of 87,695 half-hourly observations. The reason to

exclude earlier data is that in 2007 the occurrence of spikes was extremely high due to

a “millennial drought”, which not only reduced the amount of water available for hydro

generation, but also limited the cooling water available for thermal (coal- and gas-fired)

generators. This resulted in noticeably higher wholesale electricity prices as the cost of

supply increased and the mix of generation sources changed.

Following Christensen et al. (2012), we define prices exceeding a threshold of A$100
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per MWh as spikes. Although this choice appears somewhat arbitrary, the threshold of

A$100/MWh is widely accepted by market participants (see Christensen et al. 2012).

Other definitions of spikes based on statistical arguments have been proposed, by, e.g.,

Chan et al. (2008), Korniichuk (2012), Janczura et al. (2013) and Eichler and Türk (2013).

Here we choose to use the concept of economic price spikes, in contrast to a statistical

definition of price spikes. Our reasoning is that the latter is important and often used

when it comes to disentangling the continuous from the discontinuous part of a time series.

The former concept of economic spikes on the other hand is of importance when market

participants can be expected to be interested in the probabilities of prices exceeding a

certain threshold in order to adapt their behavior. Over the five year period under analysis

there were 757 spikes in VIC, 867 in NSW, 954 in QLD, and 1,140 in SA. These spikes

were shown to cluster strongly in time by, e.g., Eichler et al. (2014) who apply univariate

dynamic binary choice models to analyze spike occurrences.

Table 2 presents some descriptive statistics for the occurrence of pairwise co-spikes.

Directly interconnected markets are highlighted with bold letters. They exhibit a larger

number of co-spikes than markets that are not directly connected. Among the not directly

connected pairs NSW-SA can be seen to be more interdependent than the pairs VIC-QLD

and QLD-SA. This is likely due to the physical proximity of the two markets and their

indirect connection via VIC, see Figure 2. These results indicate that co-spikes are more

likely between directly interconnected or locally close markets. A similar pattern can by

seen when looking at the rank correlations between the sizes of the spikes.5 The co-spikes

of the directly interconnected regions, VIC-NSW, VIC-SA and NSW-QLD are character-

ized by a stronger dependence than those between the remaining markets. This finding

indicates that interconnected markets exhibit stronger dependence in the magnitude of

spikes than others.

Finally, the table reports the probabilities of observing a spike in one market condi-

tional on a spike in another market during the same period and of observing a spike in one

market conditional on a spike in another market during the previous period. As expected,

these probabilities are larger for directly interconnected markets. Furthermore, it can be

expected that the conditional probability of observing a spike in a small market (such as

SA) conditional on observing a spike in a bigger directly or indirectly connected market

should be greater than the probability of the larger market spiking conditional on a spike

in the smaller market. The fact that P (SSA|SVIC), P (SSA|SQLD) and P (SSA|SNSW) are,

5Due to the fat tails of these extreme electricity prices (see Korniichuk 2012) we rely on Spearman

rank correlations instead of linear correlations.
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Table 2: Descriptive statistics for co-spikes

VIC-NSW VIC-QLD VIC-SA NSW-QLD NSW-SA QLD-SA

# of co-spikes 402 288 638 591 361 262

rank corr 0.7837 0.6559 0.8069 0.8837 0.6582 0.6021

P (S2,t|S1,t) 0.5310 0.3804 0.8428 0.6817 0.4164 0.2746

P (S1,t|S2,t) 0.4637 0.3019 0.5596 0.6195 0.3167 0.2298

P (S2,t|S1,t−1) 0.4055 0.3025 0.7001 0.5479 0.3541 0.2327

P (S1,t|S2,t−1) 0.3576 0.2442 0.4456 0.4979 0.2518 0.1886

Note: The table exhibits the number of co-spikes, the Spearman rank correlations, contemporaneous

and lagged conditional probabilities for all six market combinations. Spikes are defined as prices greater

A$100. The period under consideration goes from 01.01.2008 to 31.12.2012. Directly interconnected

markets are indicated through the use of bold letters in row 1.

respectively, greater than P (SVIC|SSA), P (SQLD|SSA) and P (SNSW|SSA) for both contem-

poraneous and lagged conditional probabilties supports this assumption. It can also be

seen that the conditional probability of a spike occurrence in SA is greatest for the directly

interconnected market VIC, followed by the physically close market NSW which again ex-

hibits higher values than the conditional probability to observe a spike in SA when a spike

in QLD has occurred. For the conditional probabilities of the three larger markets, NSW,

VIC and QLD, note that P (SNSW|SVIC) and P (SQLD|SVIC) are higher than the respective

reverse conditional probabilities. Concerning the relationship between NSW and QLD no

clear pattern can be observed. This is particularly interesting when considering that QLD

and VIC are net exporters while NSW is a net importer of electricity. Nevertheless, we

observe that for some pairs the dependence actually appears to be asymmetric. This may

have been expected and is further in line with the findings of Lindstroem and Regland

(2012) who also documented asymmetries in co-spike occurrences for daily spot prices

between European electricity markets.

3.1.2 Model specification

Based on our findings in Section 3.1.1 and on Eichler et al. (2014), where univariate spike

probabilities are modeled, we formulate the following model for the multivariate spike

probabilities:

πt = α +Blt + Γπt−1 +D1yt−1 + ediag(−D3dt−tn )D2. (19)
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Here yt = (yV IC,t, yNSW,t, yQLD,t, ySA,t)
′ is the vector of observed spikes, πt =

(πV IC,t, πNSW,t, πQLD,t, πSA,t)
′ the vector latent process driving the spike probabili-

ties, and α is a (4 × 1) column vector of constants. The vector of loads, lt =

(lV IC,t, lNSW,t, lQLD,t, lSA,t)
′, represents demand for electricity. Finally, dt−tn is the (4× 1)

vector of durations between the last spike (denoted by tn) and t in each market. Note

that this model is a variation of model (2) introduced in Section 2.1, with πt now being

allowed to nonlinearly depend on past information through the last term in equation (19).

The matrices B, Γ, D1, and D3 are (4 × 4) coefficient matrices and D2 is a (4 × 1)

vector. Both B and D3 are restricted to be diagonal. Thus electricity loads and durations

are only allowed to affect the spike probabilities of the corresponding markets. The choice

to include this last term is based on the findings of Eichler et al. (2014), where it was

introduced in order to model an exponential decay in the probability of spike occurrence

as a function of the duration which is given by dt−tn . It therefore resembles the dynamic

structure of a Hawkes process. As this last term, i.e. the dynamic Hawkes term, already

captures the effect of past spike occurrences in the corresponding market, we restrict the

main diagonal of matrix D1 to be zero in order to prevent multicollinearity. Furthermore

the off-diagonal elements of D1 are only allowed to differ from zero for markets that are

directly connected to the corresponding market.

We consider two further restrictions on the coefficient matrix Γ in (19). First we

restrict this matrix to be diagonal, in which case the evolution of πt is described by

four univariate models. Note that the fact that the matrix D1 is not diagonal implies

that spillover effects are nonetheless possible through the inclusion of lags of yt from

neighboring markets. The second specification leaves the coefficients corresponding to

directly connected markets unrestricted, so that the model also allows for spillover effects

via πt−1.

The only part left to specify is the distribution of the error term εt in equation (1).

For the marginal distribution we chose the flexible Burr-10 distribution given in equation

(7) implying the scobit model of Nagler (1994). For the dependence between the inno-

vations we consider two choices. The first one is the independence copula. The second

one is the nested Archimedean copula from Section 2.5. In order to decide on the or-

dering of the variables and the precise nesting structure we use the approach suggested

in that section and compute the rank correlation of the Pearson residuals based on the

independence copula and using the second (more general) specification for Γ, to be found

in Table 3. It can be seen, that the Spearman correlation between directly connected mar-

kets is higher than the one between the remaining market combinations. We decide to
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Table 3: Spearman correlation for residuals

VIC-NSW VIC-QLD VIC-SA NSW-QLD NSW-SA QLD-SA

correlation 0.8722 0.7744 0.8849 0.8507 0.7837 0.6951

Note: The table exhibits Spearman correlations for residuals for all six market combinations. These

residuals resulted from applying model (19) using the Independence copula and the Scobit approach

for the link functions. The period under consideration goes from 01.01.2008 to 31.12.2011. Directly

interconnected markets are indicated through the use of bold letters in row 1.

proceed using C(uV IC , uNSW , uQLD, uSA) = Cθ3(Cθ1(uV IC , uSA), Cθ2(uNSW , uQLD)) with

θ1, θ2 > θ3 as the nesting structure. The alternative nesting C(uV IC , uNSW , uQLD, uSA) =

Cθ3(Cθ2(Cθ1(uV IC , uSA), uNSW ), uQLD) with θ1 > θ2 > θ3 also seems plausible, but re-

sulted in an inferior fit. Finally, the chosen copula family is the Gumbel copula, which

performed better in terms of the log-likelihood than alternative specifications that we

considered. Note that it would be desirable to consider a Gaussian copula or even the

standard multivariate probit model as a benchmark. However, estimating the proposed

model takes more than one day. This implies that using the Gaussian copula for esti-

mation can be expected to take several years as evaluating the CDF of the multivariate

normal distribution is computationally costly in four dimensions and for such a large

sample size.

To summarize, based on equation (19) we have a total of three models which we will

compare considering their ability to model and predict spike occurrences, namely the

model with diagonal Γ matrix and an independence copula (i.e. univariate models), the

model allowing for spillovers via πt−1 but assuming an independence copula and the same

model but assuming a nested Gumbel copula. Note that the ’univariate’ specification

includes past information from neighboring markets. We have decided to allow for this

because then all three models are based on the same information set and the comparison

between them can be considered to be fair.

3.1.3 In-sample results

For our analysis we split the sample into an in-sample period to which we fit the model

(2008-2011) and an out-of-sample period (2012) that we use to evaluate the forecasting

performance of our model.

The estimation results can be found in Table 4. We only report the parameter esti-

mates for the univariate and the Gumbel model, as the parameter estimates for the model
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Table 4: Parameter estimates for price spike models

Univariate Gumbel

VIC NSW QLD SA VIC NSW QLD SA

constant -5.3902 -5.2451 -4.9162 -8.4559 -5.8689 -6.6440 -5.6830 -6.5014

πV IC,t−1 0.2168 -0.1480 -0.0357 0.1125

πNSW,t−1 0.1950 0.0304 -0.1139 0.1724

πQLD,t−1 0.3949 0.1481 -0.0355

πSA,t−1 -0.2782 0.0619 -0.2169

D2 4.8110 9.0512 7.1481 7.1043 9.9913 9.9951 7.6561 9.9783

D3 0.5199 0.8650 0.6095 0.5331 0.5982 0.7154 0.6696 0.7959

yV IC,t−1 0.8827 1.1288 0.6264 1.5223

yNSW,t−1 0.7031 1.1297 0.9951 1.2406

yQLD,t−1 0.6263 0.8217

ySA,t−1 1.8219 1.1953

Load 1.2283 1.4270 1.0050 1.7314 1.3776 1.8001 1.5556 1.5371

scobit 0.4382 0.4873 0.5532 0.7918 0.2851 0.5082 0.5569 0.4808

[θ1, θ2, θ3] [2.5664,3.0475,1.8472]

Note: The table contains estimated parameters for the univariate model (left panel) and the DCMDC

model, when using the Gumbel copula and Cθ3(Cθ1(uV IC , uSA), Cθ2(uNSW , uQLD)) as the nesting struc-

ture (right panel). The time-period under consideration is 01.01.2008 to 31.12.2011.

allowing for spillovers but with the independence copula are quite similar to those of the

Gumbel model. We do not report standard errors, but note that all parameters were

statistically significant at the 5% level.

The parameter estimates are in line with intuition. The loads have a positive effect

on spike probabilities. Concerning the coefficients in D2 and D3 that characterize the

exponentially decaying influence of the durations, we find that the estimated coefficients

imply higher spike probabilities for shorter durations capturing the clustering of spikes.

The coefficients on the lags of πt and yt provide evidence of spillover effects across markets.

The interpretation of the individual parameters is difficult due to the interaction of the

explanatory variables, resulting in some of the estimated coefficients for πt to take on

negative values.

The parameters of the scobit link function are all smaller than one. This implies that

the slope of each individual link function takes on its maximum values at probability levels

24



which are smaller than 0.5. The parameters of the copula indicate strong dependence

between the innovations of the model. The strongest remaining dependence is reported

between the error terms of NSW and QLD, with θ2 = 3.05. This value is followed by

the dependence between the error terms of VIC and SA with θ1 = 2.57. The estimated

parameter of the connecting copula is equal to θ3 = 1.85.

The in-sample fit of the models is compared using the Bayesian information criterion

(BIC). The values of the BIC are equal to 12,325, 11,978 and 9,279, respectively for the

univariate, independence and Gumbel model. Thus we can conclude that the additional

flexibility of our model leads to notable improvements in the model fit. In particular, the

size of the improvement when allowing for dependent errors is large, implying that the

assumption of independence clearly cannot be maintained.

Based on the model that provides the best in-sample fit, i.e. the multivariate speci-

fication relying on the Gumbel copula, we compute the marginal effects caused by any

of the lagged binary variables yi,t−1. The corresponding results for the average marginal

effects are documented in Table 5. The left panel presents average marginal effects that

yi,t−1 has on the probabilities that one of the four endogenous variables is equal to one,

P (Yj,t = 1). It can be seen that the average marginal effect, caused by a market’s own

lag through the Hawkes term at a duration of one, is between 8.7% for QLD and 19% for

VIC. Furthermore, the average marginal effects on neighboring markets are all positive,

albeit - with values between 0.3% and 1.3% - far smaller than the average marginal ef-

fects caused by their own lagged dependent variables. In accordance with the descriptive

statistics, lagged spike occurrences in the more influential market VIC do exert larger

average marginal effects on the spike probability in SA than vice versa. Furthermore,

lagged spike occurrences in NSW have stronger average marginal effects on QLD and

VIC than lagged spikes occurrences in one of these two markets have on NSW. This is in

accordance with the fact that NSW is the area with the highest electricity consumption

while being a net importer and QLD and VIC being net exporters. Knowing that un-

conditionally P (Si,t|Si,t−1) is around 70%, it might be surprising that the largest average

marginal effect is about 19%. Nonetheless one has to keep in mind that we are docu-

menting the average marginal effect. This does not necessarily reflect the effect a lagged

spike will have when, e.g., loads for the corresponding market are already high, as it is the

case during day time when spikes generally occur. The same argument holds for lagged

cross effects. For example, on the 4th of January 2008 VIC exhibited prices exceeding the

threshold of 100 from 13:30 until 18:00. This occurred in combination with high loads and

with spikes occurring in SA between 13:00 and 18:00. For these observations the average
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marginal effect of yV IC,t−1 = 1 on the spike probability in VIC at time t is 62%, while

the marginal effects of ySA,t−1 = 1 and yNSW,t−1 = 1 are about 13% and 8%, respectively.

Similar observations can be made for the lagged own and cross effects corresponding to

the remaining three markets. This finding is reasonable as a spike in one market at time

t can be expected to have larger impact on the probability of observing spikes at t+ 1 in

the same or connected markets when the system as a whole is already under stress.

The right panel of Table 5 reports the average marginal effects that yi,t−1 has on the

different co-spike probabilities for directly interconnected market pairs, P (Yj,t = 1, Yk,t =

1). The average marginal effects are in accordance with the results from the descriptive

data analysis in Section 3.1.1. As to be expected, lagged binary variables that correspond

to one of the two markets of interest exhibit higher average marginal effects than those of

other markets. Lagged spike occurrences in the more influential market VIC exert larger

average marginal effects on the probability of co-spikes between VIC and SA than lagged

spike occurrences in SA. Furthermore the marginal effect that a lagged spike occurrence in

NSW has on co-spikes in NSW and QLD or NSW and VIC is higher than the corresponding

marginal effect that is caused by a lagged spike in QLD or VIC. This can (as already for

univariate probabilities documented in the left panel) be attributed to the fact that NSW

is the area with the highest electricity consumption while being a net importer, and QLD

and VIC being net exporters. We again report the average marginal effect caused by

lagged spike occurrence in VIC, SA or NSW for January, 4th 2008 between 13:30 and

18:00. However, this time we look at the effects caused for co-spikes in VIC and SA. It

turns out, that the lagged marginal effect caused by yV IC,t−1 is 25% while the ones for

ySA,t−1 and yNSW,t−1 are 12% and 7%, respectively. Again, we can state that the size of

marginal effects will heavily depend on the overall state of the system.

3.1.4 Out-of-sample results

In order to compare the forecasting performance of the different models we compute

McFadden’s (1974) pseudo R2 and the predictive log likelihood (LL) for the overall model,

as well as the univariate Cramer (CR) statistic (see Cramer 1999) based on the out-of-

sample data and the 1-step predictions of the underlying probabilities. The pseudo R2 of

McFadden (1974) is calculated as:

pseudo R2 = 1− LL/LL0, (20)

with LL giving the log-likelihood value that corresponds to the model under consideration,

while LL0 is log-likelihood assuming constant probabilities. The predictive log likelihood is
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Table 5: Average marginal effects of lagged spikes

Univariate probabilities Co-spike probabilities

VIC NSW QLD SA VIC-NSW VIC-SA NSW-QLD

yV IC,t−1 0.1909 0.0028 - 0.0126 0.0082 0.0188 0.0006

yNSW,t−1 0.0047 0.1385 0.0085 - 0.0088 0.0016 0.0131

yQLD,t−1 - 0.0040 0.0866 - 0.0007 - 0.0098

ySA,t−1 0.0062 - - 0.1399 0.0012 0.0094 -

Note: The table contains marginal effects that correspond to the estimated parameters on probabilites

for only one of the four edongenous variables to be one (left panel) and for pairs of endongenous variables

that belong to connected markets, to be jointly one (right panel). The time-period under consideration

is 01.01.2008 to 31.12.2011.

the out-of-sample value of the log-likelihood function and the Cramer statistic is computed

as

CRi =

∑T
t=1 P̂ (yit = 1)1{yit=1}∑T

t=1 1{yit=1}
−
∑T

t=1 P̂ (yit = 1)1{yit=0}∑T
t=1 1{yit=0}

, (21)

with 1{yit=1} = 1 if yit = 1 and 0 otherwise. The first term is the average of P̂ (yit = 1)

conditional on yit = 1, while the second term gives the average of P̂ (yt = 1) conditional

on no spike having occurred at t. This measure heavily penalizes incorrect predictions.

Furthermore, because each proportion is taken within the corresponding subsample, it is

not unduly influenced by the large proportionate size of the group of more frequent out-

comes. Apart from being considered for the marginal spike probabilities for each market

separately, the Cramer statistic is further applied to the stacked marginal probabilities in

order to evaluate the joint fit of the model. For this purpose we adapt it as

CR =

∑d
i=1

∑T
t=1 P̂ (yit = 1)1{yit=1}∑d
i=1

∑T
t=1 1{yit=1}

−
∑d

i=1

∑T
t=1 P̂ (yit = 1)1{yit=0}∑d
i=1

∑T
t=1 1{yit=0}

. (22)

The results are documented in Table 6. The pseudo R2 indicate that the univariate model

gives a 50% improvement with respect to a model only including a constant term. When

allowing for spillover via πt−1 the pseudo R2 increases to about 55%, whereas the general-

ization to dependent error terms leads to a further improvement to a value of 62.5%. The

predictive (negative) LL statistics give the same ranking as the pseudo R2. We decided to

include them nonetheless in order to give the reader an impression about their absolute

magnitude as a measure of the quality of the density forecasts. The overall CR measure,
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Table 6: Out-of-sample fit

R2 LL CR CRV IC CRNSW CRQLD CRSA

Univariate 0.5001 2232 0.3640 0.4638 0.5215 0.2708 0.3209

Independence 0.5496 2011 0.4021 0.4849 0.5188 0.3023 0.3926

Gumbel 0.6250 1674 0.4169 0.4856 0.5170 0.3084 0.4307

Note: The table contains pseudo R2, predictive log-likelihood and Cramer statistic results for the out-of-

sample period from 01.01.2012 to 31.12.2012.

which stacks the univariate probabilities and the observed binary variables for each of the

four markets, also ranks the models consistently with their complexity. However, in this

case the generalization to dependent errors only results in a minor improvement compared

to the improvements yielded for R2 and predictive LL. This may be due to the fact that

this measure only considers univariate probabilities. When looking at the CR for each

time series we can see that the same argument as for the overall CR applies. Only for

NSW the univariate model appears to perform slightly better than its generalizations. Al-

together the results clearly illustrate that for the problem at hand multivariate modeling

improves quality of the forecasts.

Next we analyze how well the models perform when forecasting co-events between

directly interconnected markets. To be more precise, we evaluate their capability of

forecasting probabilities for directly interconnected markets to co-spike. Furthermore,

we look at the forecasts of the event that only one of the two markets spikes. Being

able to forecast these events is important when pricing inter-regional settlements residue.

Reliable forecasts for the probability of a single spike will help speculators to better price

their bids for transmission rights in one direction or the other. Quantifying the expected

probability of two connected markets to co-spike will allow one to bet on spreads between

resulting spikes by bidding on transmission rights in both directions.

We compare the forecasting performance using a variation of the Cramer statistic

(CRco). The adaptation is straightforward. An example on how to calculate CRco for the

co-event that yit = 1 and ykt = 0 is given by:

CRco =

∑T
t=1 P̂ (yit = 1, ykt = 0)1{yit=1,ykt=0}∑T

t=1 1{yit=1,ykt=0}
−
∑T

t=1 P̂ (yit = 0, ykt = 1)1{yit=0 or ykt=1}∑T
t=1 1{yit=0 or ykt=1}

.

(23)

Here the first term gives the mean probability that the model yields for {yit = 1, ykt = 0}
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Table 7: Out-of-sample Cramer statistic for co-events

VIC,NSW VIC,SA NSW,QLD

1,1 1,0 0,1 1,1 1,0 0,1 1,1 1,0 0,1

# of events 106 65 13 161 10 119 91 28 166

Univariate 0.3808 0.3530 0.1278 0.2633 0.1187 0.1378 0.3341 0.1636 0.1981

Independence 0.4089 0.3363 0.1203 0.3474 0.1167 0.1499 0.4148 0.1411 0.1856

Gumbel 0.4281 0.3612 0.1018 0.4352 0.0959 0.1730 0.4651 0.1253 0.2017

Note: Cramer statistic for bivariate coevents concerning directly interconnected markets. The out-of-

sample period under consideration is 01.01.2012 to 31.12.2012.

when being calculated only for the observations for which this event really occurs. The

second term gives the average probability of {yit = 1, ykt = 0} for all t at which this event

does not occur.

Table 7 reports the results. Comparing the univariate and the independence model,

we can conclude that the independence model performs better at forecasting co-spikes,

whereas the univariate model might be slightly more reliable for predictions of the event

that a single spike occurs. The Gumbel model in contrast not only outperforms its

two competitors for forecasting co-spikes, but also indicates a better performance when

forecasting the event that only one of the two markets spikes. In total it gives the best

predictions in 6 out of 9 cases. The three cases in which it does not outperform are the

ones with very few occurrences. The fact that in these three cases we only have 10, 13 and

28 observations suggests that the rankings are not very reliable. Furthermore, these cases

indicate a strong asymmetry concerning the occurrence of spikes in only a single market.

A sensible extension of our model may allow for a non-exchangeable dependence structure,

i.e. a Copula for which C(u, v) 6= C(v, u). We leave this topic for future research.

Overall, it can be stated that the Gumbel model outperforms its less complex al-

ternatives in terms of univariate spike forecasting, in terms of forecasting specific event

combinations and regarding the overall in- and out-of-sample fit.

3.2 Recession dynamics

In this section we consider the problem of modeling the dynamics of business cycle re-

cession and expansion periods. This problem has been addressed in various studies in
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a univariate context, e.g. Estrella and Mishkin (1998), Nyberg (2010) and Kauppi and

Saikkonen (2008). However, the only study considering the problem in a multivariate

context is Nyberg (2013) who applies a dynamic bivariate probit model to data for the

US and Germany (Ger). We consider the same problem, but extend the analysis to a four

dimensional setting additionally including Canada (Can) and the UK.

3.2.1 Data

For the US the commonly used recession indicators by the National Bureau of Economic

Research (NBER) are considered. For the remaining countries the turning points provided

by the Economic Cycle Research Institute (ECRI)6 are used. We base our study on

monthly data for the period January 1970 until May 2013. Following Nyberg (2013), two

exogenous variables are considered, namely stock returns rit on country i’s MSCI stock

index and long-short terms spread Sit . The latter are computed as the difference between

the interest rates on 10-year and 3-month government bonds. The interest rate data has

been downloaded from the FRED database by the Federal Reserve Bank of St. Louis.

3.2.2 Results

A number of choices need to be made when applying our proposed model to recession

dynamics for the US, Canada, Germany and the UK. The first issue is the ordering

of the variables concerning the hierarchical modeling with nested Archimedean copulas.

Following our suggested approach in Section 2.5 we initially estimated various model

specifications using an independence copula and looked at the rank correlation matrix

to decide on reasonable orderings. The ordering that turned out to most appropriate

C(uUS, uCan, uGer, uUK) = Cθ3(Cθ2(Cθ1(uUS, uCan), uUK), uGer). The copula that gave the

best fit was the fully nested Gumbel copula. This implies that the first estimated de-

pendence parameter describes the dependence between the innovations for the US and

Canada, the second copula parameter the dependence for the pair US-UK and Can-UK

and the third parameter the dependence for the remaining pairs. Recall the restriction

θ1 ≥ θ2 ≥ θ3. Note that the ordering was robust across different model specifications.

The next issue to be considered is the precise model specification. As pointed out in

previous studies, the information on business cycle turning points is only known with a

significant delay. Therefore the following models are based on equation (2) without the

lagged recession indicator yt−1. We consider five model specifications:

6https://www.businesscycle.com/
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Model 1: The coefficient matrix Γ is restricted to be diagonal, the matrix B is restricted

such that only rit and Sit can influence πit and the copula is set to the independence

copula. This corresponds to univariate modeling approaches of recession dynamics.

Model 2: The same as Model 1, but allowing for a fully nested Gumbel Copula to capture

the dependence between the innovations.

Model 3: The same as Model 2, but the matrix Γ is unrestricted.

Model 4: The same as Model 2, but the matrix B is unrestricted.

Model 5: All parameters are unrestricted.

Besides the restrictions due to the model specification we restrict the matrix Γ to have

some 0 entries. The restrictions were based on a general-to-specific model search. We

do not report the full estimation results for all 5 model specifications. Note, however,

that the model fit in terms of the BIC evolved from Model 1 to Model 5 as 1337 →
1210→ 1062→ 891→ 731. Thus each generalization of the model specification leads to

a significantly better model fit. In Table 8 we report the parameter estimates for Model

1 and Model 5. The parameter values of the autoregressive terms show high persistence

in the recession regimes for all countries and for both models. The spillover effects via

the lags of πit indicate spillovers from the US to the other countries and including the lag

of πGer,t helps predicting recessions for the US and the UK (with a negative coefficient).

One has to be careful when interpreting the exogenous variables for Model 5, as the

regressors are highly correlated, making it hard to separate effects of individual variables.

Nevertheless, these results are in line with the results in Nyberg (2013). Finally, two

observations can be made concerning the estimated dependence parameters. First, θ1 is

estimated to be quite large, which may partially be explained by the discussion in Section

2.2. Second, the estimated standard errors are extremely large, most notably for θ2. This

is confirmed by large variation of the estimated dependence parameter across the other

model specifications. This is not entirely surprising as we try to identify the dependence

parameter in a complex model using binary data and, in contrast to the application to

electricity price spikes, we have a relatively small sample.
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Table 8: Parameter estimates for multivariate recession models

Model 1 Model 5

US Can UK Ger US Can UK Ger

constant 0.0796 -0.193 -0.0953 -0.0484 0.1657 0.7065 0.7776 0.151

(0.0431) (0.0266) (0.0359) (0.0218) (0.0568) (0.2727) (0.1023) (0.0547)

πUS,t−1 0.8771 0.9304 0.5782 0.1672 -0.0409

(0.0313) (0.0028) (0.1379) (0.0805) (0.0129)

πCan,t−1 0.9096 0.9087

(0.0091) (0.0117)

πUK,t−1 0.8956 0.9999

(0.0332) (0.0001)

πGer,t−1 0.8652 -0.0738 -0.3251 0.9417

(0.0125) (0.0321) (0.1954) (0.0018)

Spread US -0.2588 -0.1916 -0.3766 -0.2994 -0.1434

(0.0525) (0.0357) (0.2388) (0.0866) (0.0414)

MSCI US -0.0953 -0.213 -0.1769 -0.0494 0.0412

(0.0355) (0.0664) (0.1483) (0.2707) (0.0361)

Spread Can -0.1818 0.0751 -0.654 0.1544 0.0149

(0.0149) (0.0304) (0.2262) (0.1264) (0.0367)

MSCI Can -0.0196 0.0273 -0.1367 -0.046 0.0383

(0.0163) (0.0375) (0.0932) (0.0887) (0.0358)

Spread UK -0.0157 -0.0774 -1.0153 -0.1438 -0.0483

(0.0164) (0.0197) (0.3435) (0.0689) (0.0217)

MSCI UK -0.0619 0.0346 0.1795 -0.2741 -0.0367

(0.0093) (0.0305) (0.1483) (0.1828) (0.0184)

Spread Ger -0.1202 -0.3138 0.5676 -0.1115 -0.2103

(0.0117) (0.0603) (0.1928) (0.0768) (0.0566)

MSCI Ger -0.1202 0.068 -0.0077 0.2273 -0.0942

(0.0282) (0.0286) (0.0772) (0.0695) (0.0253)

[θ1, θ2, θ3] [9.6634, 2.7936, 1.6685]

(3.1127, 20.2940, 0.4045)

Note: The table contains estimated parameters for the univariate model 1 (left panel) and the multi-

avaraite model 5, for which all parameters are unrestricted (left panel). Corresponding standard errors

are given in parentheses. The time-period under consideration is January 1970 to May 2013.
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Figure 3: Estimated probabilities of recession based on Model 1 (red), Model 4 (blue)

and Model 5 (black) with actual recessions shaded in gray.

In Figure 3 we provide plots of the estimated probabilities of a recession based on

Models 1 (red), 4 (blue) and 5 (black) along with the actual recession dates (shaded in

grey). One can clearly see that the multivariate models (4 and 5) are superior to the

univariate model (Model 1) in capturing the recession regimes. Furthermore, Model 5

allowing for spillovers captures the recession regimes slightly better and does not lead to

as many false alarms as the other specifications; see, e.g., the period between the last two

recession for the UK.

Overall we conclude that multivariate modeling of recession probabilities is quite ben-

eficial. We can achieve a significantly better fit than using univariate models due to

spillovers, dependent innovations, but also by using exogenous information in the form

of interest rate spread and stock market returns from other countries. One can therefore

expect a better forecasting performance of multivariate models. However, we refrain from

performing an out-of-sample evaluation of the model, because we do not have much data

and an evaluation of the forecasting performance based on a single recession per country

does not appear to be sensible. We leave this issue for future research using a larger

cross section of countries to have enough out-of-sample observations to make a credible

comparison of competing models.
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4 Conclusion

This paper proposes a general model for multivariate binary and ordered outcomes in

a time series setting. The model specification allows the researcher to freely choose the

link function and copula, therefore nesting a large number of different models. Choosing

a copula other than the Gaussian has the further advantage of drastically simplifying

the computations needed to evaluate the likelihood function of the model at the price of

some restrictions on the dependence structure. This makes the estimation of the model

in dimension larger than two feasible even for very large sample sizes.

We discuss the identification of the dependence parameter and find that for small

samples one might get estimates on the boundary of the parameter space implying perfect

dependence. There is no simple answer on how to treat this issue when it occurs in an

application, as one has to decide between a model with perfectly dependent or one with

independent innovations. However, confidence intervals for the copula parameter can be

computed using a bootstrap. The computation of marginal effects for any probability of

interest is straightforward.

The applications of the paper show that one can obtain considerable improvements in

model fit and forecasting precision when applying the general multivariate model com-

pared to univariate models or models assuming independent error terms.

Finally, Monte Carlo simulations in the supplementary material to this paper suggest

that the identification problem of the dependence parameter does not seem to affect the

estimation of the remaining model parameters, while a misspecification of the link function

or the copula can lead to biased estimates of marginal effects.

Several issues need to be addressed in future research. First of all, a formal proof

for the consistency and asymptotic normality of the maximum likelihood estimator is

needed. In particular, this requires the formulation of stationarity conditions for the

model. Next, the the development of tools for an impulse response analysis could greatly

improve the usefulness and interpretability of the model. Furthermore, the efficiency gains

of estimators based on the multivariate model compared to univariate models, similar to

the case of seemingly unrelated regressions in the linear case, could be studied. Finally,

we adapted the univariate Cramer statistic in an adhoc manner in order to use it as

a multivariate fit measure. A more thorough analysis of its properties, as well as the

development of further goodness-of-fit measures for multivariate binary choice models,

could be of interest.
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