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Abstract

We develop a framework for maximum likelihood (ML) estimation of income distributions
based on grouped data. We explicitly account for unknown group boundaries and allow for
two data generating processes (DGPs) corresponding to two different methods of grouping
observations. Dependent on the type of DGP, the likelihood exploits different data informa-
tion including group means and group boundaries, which have up to now not been included
in ML inference for grouped data. A comprehensive simulation experiment shows that the
proposed ML framework improves the statistical precision of parameter estimates relative
to the classical multinomial likelihood. The results furthermore indicate that the precision
is not significantly affected if the group boundaries are not available. We finally provide an

empirical application to a set of countries included in the World Bank database Povcal Net.
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1 Introduction

The empirical analysis of welfare, income inequality and poverty requires precise estimates of

L If the data is fully released, the distribution can be estimated

the distribution of income.
by standard parametric or non-parametric methods like Maximum Likelihood (ML) or kernel
density estimation. Especially for developing countries it is however common that researchers
can only access grouped income data which is e.g. provided by the World Bank and the World
Institute for Development Economics Research (WIDER). The data typically consists of popu-
lation shares and group-specific mean-incomes for ten to twenty income groups, where the group
boundaries are not provided. The apparent problem of limited data then makes the paramet-
ric approach to income distributions more popular and also more natural than non-parametric
techniques.

The literature provides a variety of parametric income distributions including, but not limited
to Pareto’s distribution, the lognormal distribution, Champernowne’s distribution, Fisk’s dis-
tribution, the gamma-, generalized gamma-, Weibull-, Singh-Maddala- and Dagum distribution
(see e.g. Kleiber and Kotz, 2003). McDonald (1984) proposed the generalized beta distribution
of the second kind (GB2 distribution), which nests the lognormal, generalized gamma, Singh-
Maddala, Beta-2 and Dagum distributions. Parker (1999) showed that the GB2 distribution
can be derived from microeconomic principles and the distribution has therefore become very
popular in applied economic research. An alternative, flexible way of income modeling is based
on mixture distributions, which are e.g. analyzed by Griffiths and Hajargasht (2012).

Contributions on statistical inference for grouped income data are rare. The traditional
and most frequently applied method is ML based on sample proportions using a multinomial
likelihood function (see e.g. McDonald, 1984, and Bandourian et al, 2003). This approach is
inefficient in the majority of practical applications since it neglects the information content of
observed group means and cannot account for unknown group boundaries. Recent work then
focused on nonlinear least squares and GMM estimation, where relative population- and income-
shares are effectively matched to their theoretical counterparts (see e.g. Wu and Perloff, 2005,
Wu, 2006, Chotikapanich et al., 2007 and 2012). Hajargasht et al. (2012) propose an efficient
GMM framework which accounts for unknown group boundaries but lacks a solid statistical
foundation with respect to the underlying data generating process (DGP). Hajargasht and Grif-

fiths (2016) shift the focus from income distributions to parametric Lorenz curves and provide

L An overview on the vast and growing literature on statistical inference for income distributions is e.g. provided

by Kleiber and Kotz (2003), Chotikapanich (2008) and Bandourian et al. (2003).



a GMM framework covering two DGPs of empirical relevance. Finally, Chen (2016) generalizes
the GMM framework to incorporate varying data information.

The present paper contributes to the literature by offering the first comprehensive discus-
sion of efficient ML estimation of parametric income distributions for grouped income data with
potentially unknown boundaries. ML is well known for its asymptotic efficiency and derived es-
timates of poverty or inequality measures directly inherit this property. The likelihood approach
also opens the door to Bayesian inference for grouped income data. We explicitly account for two
DGPs corresponding to two methods of grouping observations. The first method (DGP1) builds
on proportions of observations in each income group, which have been fixed prior to sampling.
As a result the group income means and group boundaries are random. In the second method
of grouping (DGP2) the group boundaries are predetermined prior to sampling. Hence both the
number of observations and the income means in each group are random. Income data from the
World Bank or WIDER typically correspond to DGP1 with unknown group boundaries. De-
pendent on the type of DGP the likelihood comprises varying data information including group
means and group boundaries. The multinomial ML method of McDonald (1984) fits DGP2 with
known boundaries. The according likelihood is misspecified in case of DGP1 and the method
cannot be applied if boundaries are unknown.

Efficient ML requires the derivation of the joint (conditional) density of group mean-incomes.
This distribution is unknown for all relevant income distributions, but converges to the Gaussian
by standard central limit arguments. We approximate the density by a product of Normals with
moments given by their asymptotic counterparts. Under DGP1 the group boundaries constitute
random order statistics and can easily be included in the likelihood (known boundaries) or inte-
grated out from the joint density of group means and boundaries via MC integration (unknown
boundaries: e.g. World Bank or WIDER data). Under DGP2 both group means and relative
population shares are random and the likelihood results from the product of the joint condi-
tional density of group means and the standard multinomial likelihood. If group boundaries are
unknown, we can simply estimate them along with the remaining model parameters.

We focus on the GB2 distribution and provide an extensive simulation experiment which
shows the efficiency gains of our new ML method. Our results indicate significant improvements
over the conventional multinomial approach and we obtain very accurate parameter estimates
which come close to those obtained for individual income data. We also note that the estimation
efficiency does not suffer if group boundaries are unknown. This finding is of practical relevance,
since group boundaries are usually not provided in the World Bank or WIDER data sets.

We finally apply our method to income data for four countries obtained from the World



Bank PovcalNet data base. An evaluation of the goodness of fit using likelihood ratio tests and
an income share prediction exercise strongly favors the GB2 distribution relative to its nested
competitors.

The remainder of this paper is organized as follows. Section 2 gives general definitions and
discusses the relevant data generating processes. Section 3 introduces our ML approach and
Section 4 provides a simulation experiment in order to assess the finite sample performance of

the estimators. Section 5 provides the empirical application and Section 6 concludes.

2 Definitions and Data Generating Processes

Let y1, ..., yn be a random sample from a parametric distribution with density function f,(y;#),

distribution function F,(y;#) and moment distribution function

y
Fy(y;0) = E[lgf /tefy(t;H) dt, £=1,2,... (1)
0

where y denotes income and 6 comprises the model parameters. In the following we assume that
the first and second moments of y exist. For the GB2 distribution we e.g. obtain 6 = (a,b,p, q)’

with a, b,p,q > 0 and
il (U
y’ b
Y b*rB(p, q)(1 + (y/b)* )P+

0)
Fy(y;0) = Bu(p,q),
)

= Bu(p—FE/(I, q_g/a%
B0+ t/a, g~ /o)
B(p. q) ’

where u = (y/b)*/[1 + (y/b)?], B(:) denotes the beta function and B,(-) denotes the Beta

distribution function evaluated at w. An overview of the GB2 and its nested distributions is

provided in Table 1, which has been taken from Hajargasht et al. (2012).

Place Table 1 here.

The sample is grouped into K income groups where the boundaries are denoted by {z;_1, zi}fil
with zp = 0 and zx = co. Let n; denote the number of observations in income group ¢ such that
the sample size obtains as n = Zfi 1 ni. Typical income data (e.g. World Bank or WIDER)

contains information on relative population shares ¢; = n;/n and group-specific mean incomes



gi = (1/n:) 3251 y59i(ys), for i = 1,..., K, where

1 ifzi g <y<z
9i(y) = (2)
0 otherwise.
In some cases we do not have data on mean incomes directly but observe the overall mean income
y together with income shares {s;}X | instead, where s; = (ng)~! Z?Zl y;9i(y;j). Group-specific
mean incomes are then obtained via g; = s;4/¢;. Group boundaries {z; fi Il are usually not
provided.
The method of grouping individuals into income classes is not unique and likelihood functions
for ML estimation of # must be tailored to the respective DGP in order to enable solid statistical

inference. The upcoming subsections therefore define two distinct DGPs which are of particular

relevance in practice.

2.1 DGP1: Fixed n; and random z;, ¥;

Under DGP1 the relative proportions of observations in each income group, ¢; = n;/n, are pre-
specified. This is the case for the majority of the data sets in the World Bank and the WIDER
data base. Respective data consist of constant relative population shares corresponding e.g. to
deciles or quintiles together with the respective mean incomes.

Denote the cumulative number of group observations by n§ = 22:1 ng. Under DGP1 the
group boundary z; (i = 1,..., K —1) corresponds to the n{’th order statistic Yng] from f,, which
represents a random variable.? The upper panel of Figure 1 depicts a schematic illustration of
DGP1 for n = 20.

We summarize that DGP1 generates random group boundaries and group means, while
relative proportions ¢; and n; = n - ¢; are preset and therefore deterministic. The non-stochastic
nature of the group frequencies renders the classical multinomial ML method of McDonald (1984)
misspecified and ML estimation for DGP1 can only be based on the information contained in

the group boundaries (if available) and the group means.

2.2 DGP2: Fixed z; and random n;, ¥;

DGP2 assumes pre-specified fixed group boundaries resulting in a random number of observa-

tions in each income group. Respective data-sets contain group means and relative population

2Note that, strictly speaking, the group boundary can take any value in [y[nﬂ,y[nfﬂ]). Corresponding data-
generating processes are however observationally equivalent and ziéy[nf] therefore constitutes an identifying

restriction.



shares which vary over income groups. Such data is rather infrequently met in practice - a few ex-
amples are found in the PovcalNet data base of the World Bank for selected countries and years.
A schematic illustration of DGP2 is provided in the lower panel of Figure 1. The multinomial
ML method of McDonald (1984) is designed under DGP2 with known group boundaries.

We summarize that DGP2 generates random population shares and group means, while
group boundaries are preset and therefore deterministic. ML estimation for DGP2 can therefore
be based on the information contained in both, the group means and the population shares.
Note that the multinomial ML method of McDonald (1984) fits DGP2 with known boundaries
but remains inefficient since the informational content of the group-specific mean incomes is not

exploited.

Place Figure 1 here.

3 Maximum Likelihood Inference

3.1 DGP1: Fixed n; and random z;, ¥;

Under DGP1 and known group boundaries (KB) the likelihood for the complete set of observable

data obtains as

Lpap1, xB(0;9,2) = [f(ylz:0)- f(20), (3)
where § = {7}, and z = {z K1 Dependence on {n;}X, is suppressed for notational
convenience.

The 7’th group boundary z; corresponds to the n{’th order statistic of iid random variables
from f,. Exploiting the Markov property of order statistics (see e.g. David and Nagaraja, 2003,

Theorem 2.5) we obtain the joint density of group boundaries in (3) as
f(2:0) = f(21;0) - f(z2l2150) - ... - flzr-1lzK—2;0), (4)

where standard calculus for order statistics gives

n! ne— nene
f(z1;0) (e~ 1)1 = )] Fy(21;0)" 7 [1 = Fy(21;0)]" ™ f,(21;0), (5)
e — (n—ni_y)!
HelE ) = = = 0l =)
[1[_ (zz(_zi: ))]] [Fy(2i59) _Fy(zi—lég)]ng_n’g_l_l fy(Zi;a)- (6)



By exploiting conditional independence the joint density of group means in Eq. (3) can be

decomposed into

f(@lz:0) = f(o1 |2150) - f(92 |21, 22:0) - oo f(YR—1 |2K—2, 2k-150) - f(UK |2-130),  (7)

where zg = 0 and zxg = oo. The distribution of the arithmetic mean is unknown for any

income distribution of practical relevance.?

We therefore replace the individual constituents
of f(y]z;0) in Eq. (7) by approximations, which are consistent in the sense that the resulting
approximation error diminishes to zero as n — co. Employing the standard Lindberg Levy

Central Limit Theorem (CLT) for iid random variables we obtain

f(@lz:0) = fn(r |2150) - [n(T2 |21, 22;0) - oo - IN(TK-1 |22, 2513 0) - [N(TK |2K-130) , (8)

where fn(yi| -) denotes the density function of a Gaussian distribution. Since conditional on the

group boundaries (z;_1, 2;), the n; — 1 individual stochastic incomes?

in group ¢ are independent
and identically distributed with density function f(y|zi—1,2:;6) = f(ylzi-1 < y < z; ; 0) (see
David and Nagaraja, 2003, Theorem 2.5) we obtain the moments

pwi = E@ilzi-1,2i 5 0)

n; — 1 z
= = E(ylzici <y <z ; 0)+
n n

(2

ne 1 [Fi(:6) ~ B 0)) B) | 5

= , 9
n; Fy(zi;0) — Fy(zi—1;0) n; )
and
o7 = Var(Filzic1,2 ;5 0)
n; — 1
= Zn2 Var(ylzic1 <y <z ; 0)
i
_ni— 1 [(Fa(2;0) — Fa(zi-130)) - B(y?) 2 (10)
ng Fy(2i;0) — Fy(zi-1;0) g
where i = 2,..., K — 1. Mean and variance for the first and the last income group are obtained

by analogy while recognizing that zg = 0 and zx = co.
Inserting the previously derived expressions into Eq. (3) the log-likelihood under DGP1 and
known group boundaries obtains as

L 0: i - 0 1 1 2 (QK_NK)2 = 1 1 9 (gi_,ui)2
pep1, kB(0:9,2) = 5 n(”K)"'U%(}-F; _i{n(ai)—i_i?}

+(n —nf) In[l = Fy(2;;0)] = (n = ni_y) In[l = Fy(2i-1;0)]

+(n§ —nj_; — 1) In[Fy(2;0) — Fy(zi—1;0)] +In fy(zi; 0)}, (11)

3See e.g. Nadarajah (2005) for the complex derivation of the distribution of the sum of only two GB2 distributed

random variables.
4Note that conditional on z; the last summand in y; is deterministic and given by z;.



where n§ = F,(20;0) = 0, p; and o7 are given in Eqs. (9) and (10), and

K K-1
Q=—=(2m) + Y In[(n—nf )] —In[(n—n)] —In[(nf —niy — D1, (12)
i=1

ML estimation of 6 is carried out by maximizing the log-likelihood function in Eq. (11) using
numerical techniques routinely available in standard software packages. Asymptotic standard
errors are obtained by inverting a numerical approximation to the hessian at the ML estimates.

Note that the approximation in (8) is consistent for n — oo by standard CLT arguments for
iid random variables, leaving the asymptotic properties of the ML estimator unaffected. The
quality of the approximation is further analyzed in Sections 4 and 5. The results imply overall
accurate approximations even for relatively low sample-sizes with n; = 1,000 V i.

The majority of the WIDER and World Bank data sets do not report group boundaries. We
then marginalize the joint density in Eq. (3) w.r.t. the mean incomes. The resulting likelihood
under DGP1 and unknown boundaries (UB) boils down to a (K —1)-dimensional interdependent

integral given by

Lpap1, us(0;9) = /f(?ﬂzs 0) - f(z;0) dz, (13)

which cannot be solved analytically. Typical income data consists of ten to twenty income
groups. Such low-dimensional integration problems are easily solved by standard simulation
based integration routines up to any desired degree of accuracy.
We approximate the likelihood function in (13) using importance sampling (see e.g. Robert
and Casella, 2004) and rewrite the integral as
/f@bﬂ%f@ﬂ)
m(z;0)

Lpap1, us(0;9) -m(z;0) dz

f@bﬂ%f@ﬁq7 (14)

= FE_ .

e [ m(z;0)
where m(z; #) denotes an appropriately chosen importance density. A consistent estimate of the
log-likelihood function then obtains as

1 f(gl2D;0) - f(2D;0)
2 ,

= m(z();6)

Lpcr1, u(0;y) =In [ (15)

where z() = {zlgi)}f: _11 denotes a trajectory simulated from the importance density m(z;6) and
S is the simulation sample size.

A standard approach to constructing importance densities employs a local approximation of
the logarithm of the integrand in Eq. (13) as a function in z. Using a 2'nd order Taylor series
expansion around the mode we obtain a multivariate Normal importance density with mean

vector z, and covariance matrix H, ', where z, is the maximizer of In(f(y|z;0) - f(z;0)) and



H, denotes the corresponding hessian evaluated at z,. We obtain both 2z, and H, via numer-
ical approximations using standard routines implemented in the MATLAB software package.
Existence of the expectation in (14) requires the importance density to have fatter tails than
the target density f(y,z). We therefore replace the Gaussian by a corresponding Student’s-t
importance density, where we set the d.o.f to 8.5 Simulated ML estimates of # are then obtained
by maximizing the likelihood approximation in (15) using a standard numerical optimizer. The
convergence of such an optimizer requires the likelihood to be continuous in 6. This is achieved
by computing Lpap1, us(8; ) for different values of 6 under a set of Common Random Numbers
(CRNs) (see e.g. Liesenfeld and Richard, 2006). This means that all {z(9}5, draws for different
values of § are obtained by transformation of a common set of canonical random numbers, here
standardized Student-t’s. Our simulation experiment in Section 4 shows that S = 10, 000 results

in fast and accurate importance-approximations of the likelihood function.

3.2 DGP2: Fixed z; and random n;, ¥;

DGP2 generates random numbers of observations n; and random mean incomes y; for each

group. The (efficient) likelihood comprising all available data information then obtains as

Lpgpa(059,n) = f(gln;0) - f(n;0), (16)

where n = {nl}fil and dependence on 2z is suppressed for notational convenience.

The distribution of n is multinomial with density function

n!

f(n;0) =

. n1 . . nK
n1! teeet nK! m T (17)

where
mi =Pr(zi1 <y < z) = Fy(z;0) — Fy(zi-1;0), i=1,..., K.

We then obtain the log-likelihood under DGP2 via inserting (17) and the Gaussian approx-
imation (8) in Eq. (16):

_ - 1 oy (7 — )
Locea(Bigm) = Q31 =5 |(d) + L () o, (18)

where p; and o7 are given in Eqgs. (9) and (10), and

i K
Q= -5 In(27) + In(n!) — Z In(n;!). (19)

i=1

5Our estimation results presented in Sections 4 and 5 are found to be robust to variations of the d.o.f of the

Student’s-t importance density.



ML estimation of # is carried out by maximizing the log-likelihood function in Eq. (18) over
6 (known boundaries) or jointly over z and € (unknown boundaries). Finally note that the
maximization of (17) for known group boundaries corresponds to the multinomial ML method

of McDonald (1984).

4 Simulation Experiment

We now perform a simulation experiment in order to investigate (i) the quality of the likelihood
approximation through the normality assumption in (8), (ii) the numerical properties of the
simulated ML estimates under DGP1 and unknown boundaries (see Eq. 15) and (iii) the finite
sample performance of the ML approach under DGP1 and DGP2 and both, known and unknown
boundaries. We consider a GB2 distribution with parameters ¢ = 1.5, b = 100, p = 1 and
qg = 1.5. This parameter setup implies a very heavy-tailed income distribution with a Gini
coefficient of 0.53, which renders estimation via our Gaussian likelihood approximation of Eq.

(8) comparatively challenging. The corresponding density function is depicted in Figure 2.

Place Figure 2 here.

We start with analyzing the quality of the Gaussian approximation to the joint density of
group means in Eq. (8). For this purpose we simulate N = 100, 000 independent data sets, each
of sample size n = 10,000, from the GB2 distribution with parametrization as given above. We
then construct K = 10 income groups, where the group boundaries are set to the theoretical
deciles of the GB2 distribution (DGP2), and compute the K group mean incomes for each of
the N data sets. The sample size n is chosen to be empirically realistic for the World Bank and
WIDER data. Figure 3 depicts kernel density approximations to the true density of the group
means (based on the N simulations) together with the Gaussian approximations with moments
given by (9) and (10). We obtain very accurate approximations for groups 1 to 9. The heavy
right tail of the income distribution however causes significant deviations from normality for the
last income group. This finding differs from our empirical results of Section 5 (see Figure 7),
where the Gaussian fit appears very accurate, but represents an interesting challenge for our
normality approximation. In order to analyze the effect of the approximation error, we introduce
a more accurate but very time-consuming approximation of the conditional density of the last
group mean in Eq. (8): In each single likelihood evaluation we simulate the distribution of the

last group mean using 1,000 CRNs and evaluate the respective likelihood contribution at a kernel

10



density estimate of the true distribution, which takes the observed skewness into account. Note
that this estimation approach is very time-consuming in general and by far too time-consuming
to be applied for our simulation based estimator under DGP1 and unknown boundaries, since
the whole density simulation would have to be performed S = 10,000 times for each likelihood
evaluation. We therefore do not recommend to employ this estimation approach in practice. In
this simulation experiment we restrict the application of the kernel density approach to known
boundaries, resulting in the additional likelihood functions Ellsegf?i kg and Ellseg}%. We include
these two new estimators in our analysis of the statistical finite sample performance further

below.

Place Figure 3 here.

We now turn to the analysis of the numerical properties of the simulated ML estimates
under DGP1 and unknown group boundaries (see Eq. 15). We simulate a single data-set of size
n = 10,000 and estimate the parameter vector 6 for N = 10,000 different sets of CRNs, each
consisting of §' = 10,000 standard Student-¢ draws with 8 d.o.f. for each of the K —1 = 9 latent
group boundaries. We use numerical standard errors in order to assess the numerical uncertainty
arising through the simulation-based approximation of the likelihood. These standard errors are
computed as the sample standard deviations over the N different estimates. We obtain 0.000011
for a, 0.000584 for b, 0.000013 for p and 0.000025 for g. These values indicate a very high level of
numerical precision and amount to less than 0.02% of the corresponding small sample standard

errors given in Table 2, which will be discussed below.

Place Table 2 here.

We now analyze the statistical finite sample performance of our ML frameworks under both,
DGP1 and DGP2. We consider sample sizes of n = 10,000 and n = 100,000 individuals and
construct K = 10 income classes. These settings correspond to typical income data e.g. provided
by the World Bank. Under DGP1 we set ¢; = 1/K = 0.1 and group boundaries are implicitly
defined by the according order statistics. Under DGP2 we set the group boundaries to the
theoretical GB2 quantiles corresponding to group-probabilities of 0.1. We consider both, known
and unknown group boundaries, and compare the performance of the proposed ML techniques

to the empirically infeasible ML for individual observations (denoted by ML Raw Data) and

11



the alternative kernel-approximation based likelihood estimators using El]‘jeér}?i kp and EI]S%I}%,

as introduced above. For DGP2 and known group boundaries we also consider the classical
multinomial ML method (denoted by ML Multinomial).

Table 2 reports biases, standard errors and MSEs for 500 Monte-Carlo replications under
DGP1. We start with discussing the results for known group boundaries and n = 10,000. To
begin with, we observe that the moderate fit of the Gaussian approximation in the last income
group has only minor effects on the statistical performance: The MSEs obtained under £l§g§}7 KB
are in fact lower than the ones obtained under the Gaussian approximation in Lpgp1, kB, but
relative deviations are rather small, amounting to a maximum of 15%, which does not meet
the computational complexity and time effort induced by the simulation based kernel density
approach. We therefore safely recommend to apply the Gaussian approximation technique. We
now turn to the results for our proposed ML approach using Lpgp1, kB: As expected, we observe
an overall increase of MSEs for ML under grouped data relative to ML for raw data. The MSEs
of b, p and ¢ increase by about 30% while the MSE of a increases by 11%. These efficiency
losses are statistically significant at the 5% level. The right panel of Table 2 shows the results
for unknown group boundaries. Interestingly, the MSEs for the proposed ML method are close
to those obtained for ML under known boundaries. This finding is of considerable relevance
in practice since group boundaries are usually not provided for international income data. We
now analyze the effect of the observed parameter uncertainty on estimates of the income dis-
tribution itself. Figure 4 depicts mean estimated income distributions for both grouped data
with unknown boundaries and raw data along with corresponding 95% pointwise confidence
intervals, which are computed using the 500 estimated income distributions from the simulation
experiment. The figure also reports mean estimates of the Gini coefficient and according stan-
dard errors. Deviations of estimates under grouping and raw data appear minor. We conclude
that the grouping itself generates very moderate losses in estimation efficiency regarding the in-
come distribution itself and derived measures like the Gini coefficient, even for unknown group
boundaries. This is an important finding, since international income data is usually provided in
grouped form and one might reasonably expect severe statistical limitations by this data format
compared to raw data. Our results imply that this is actually not the case. The closeness of
the density estimates under ML for raw data and our ML approach with Gaussian approxima-
tions also indicates that the attainable MSE reductions by using kernel approximations do not
result in economically significant improvements in density estimation. Increasing the sample
size to n = 100, 000 induces considerable reductions in MSEs under both, known and unknown

boundaries. This finding illustrates the consistency of the estimation approaches.

12



Place Figure 4 here.

The results for DGP2 are reported in Table 3 and appear very similar to those obtained
under DGP1. We now also observe efficiency gains compared to the multinomial approach
under known boundaries: For Lpgps we find MSE reductions of 74% to 85% for n = 10, 000 and
72% to 77% for n = 100, 000. All MSE differences are significant at any conventional significance
level. Figure 5 depicts mean income distributions along with 95% pointwise confidence intervals
for known boundaries and both, the proposed ML approach of Eq. (16) and the classical
multinomial ML method. Deviations in the estimated distributions appear minor. We therefore
conclude that the inclusion of the group mean incomes in the likelihood of Eq. (16) contributes
to the statistical efficiency regarding estimation of the model parameters, but the effect on the

income distribution and derived measures of income inequality appears moderate.

Place Table 3 and Figure 5 here.

5 Empirical Application

We now apply our ML estimation framework to grouped household income data from the World
Bank website PovcalNet provided for the year 2013.° We consider a selection of four countries:
Malaysia, Thailand, Bangladesh and Poland. The data consists of group-specific mean incomes
y; and population shares ¢; for 10 income groups, where the grouping mechanism corresponds to
DGP1 with unknown boundaries (constant population shares ¢; = 0.1 Vi). The complete data

set is given in Table 4.

Place Table 4 here.

We start with an assessment of the adequacy of the GB2 for modeling the observed group
mean incomes and compare the goodness of fit relative to three nested distributions: the B2
(a = 1), Singh-Maddala (p = 1) and Dagum distribution (¢ = 1). Parameter estimates are

obtained by numerical maximization of the simulated log-likelihood Lpgp1, us provided in Eq.

5The income is measured in purchasing power parity Dollar rates. See PovcalNet for details.

13



(15) with S = 10,000. The likelihood-ratio test serves as natural testing-device against the
GB2. We also consider the ability to forecast observed income shares s; for ¢ = 1,...,10 as an
additional criterion for the goodness of fit (see also Hajargasht et al., 2012). Predicted cumulative
income shares 7n; are obtained by the first-moment distribution function, 7; = Fl(zi;é). The
group boundaries z; are unknown and therefore replaced by the inverse distribution function
evaluated at the cumulative income shares (compare Hajargasht et al., 2012). Predicted income
shares are then obtained as §; = 7; — 7;—1.

Table 5 reports the log-likelihood values for the four income distributions. At the 1% level
the GB2 turns out as the best fitting distribution for all considered data-sets. The Root Mean
Squared Errors (RMSEs) for the forecasted income shares are reported in Table 6. Note that
we do not assess the significance of RMSE differences, since each RMSE is based on only ten
observations. The GB2 performs best in all cases. Our findings therefore support the adequacy

of the GB2 for modeling international income data. However note that the obtained RMSEs

are very low for all considered income distributions.

Place Tables 5-6 here.

Table 7 reports the parameter estimates under the GB2 distribution along with estimates of
the Gini coefficient and the headcount ratio (HC) while Figure 6 depicts the estimated income
distributions along with asymptotic 95% pointwise confidence intervals.” For a given poverty

line x, the headcount ratio is the proportion of population with income less than xz. Hence
HC = F(x;0),

where we set x = 57.79 as provided by the World Bank. The Gini coefficient is obtained by

R T
Gini = —1 + Byl O/y F(y;0) f(y;0) dy,

where the integral is evaluated numerically. Table 7 also includes predictions of the income shares
for the first and the last group. Accurate predictions for the first group are of special importance
for poverty measurement, while predictions for the last group suffer from the thick right tail of
typical income data. Estimated standard deviations are computed by inverting a numerical
approximation to the hessian of the log-likelihood at the estimates. Standard deviations for the

Gini and the headcount ratio are obtained by the delta method.

"Results for the nested distributions are available upon request.
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The asymptotic standard errors reported in Table 7 are low and indicate a high level of
estimation precision, in particular for the Gini coefficient and the headcount ratio, which are
of special interest in applied economic research. The income share predictions for the first and
the last income group are very accurate with a RMSE of 0.0003 for s; and 0.0059 for s19. The
highest absolute prediction error is obtained for Thailand (3.43%) for the last income group,
where the heavy right tail of the income distribution makes accurate predictions rather hard
to obtain. We conclude that the flexible GB2 distribution delivers very precise income share

predictions and outperforms its nested competitors w.r.t the in-sample fit.

Place Table 7 and Figure 6 here.

We finally check the quality of our Gaussian approximation to the joint density of group
means at the estimated parameters of the four income distributions. We again simulate N =
100, 000 independent data sets, each of sample size corresponding to the actual data, from the
estimated GB2 distributions for Malaysia, Thailand, Bangladesh and Poland. We then construct
K = 10 income groups for each country according to DGP1 and compute the K group mean
incomes for each of the N data sets. Figure 7 depicts kernel density approximations to the
true densities of the group means (based on the N simulations) together with the Gaussian
approximations with moments given by (9) and (10). We observe a very accurate fit which

confirms the quality of our approximation for actual income data.

Place Figure 7 here.

6 Conclusion

In this paper we develop a general framework for maximum likelihood estimation of parametric
income distributions for grouped data with potentially unknown group boundaries. Our ML
approach accounts for two data generating processes and incorporates the information of group
mean incomes into the likelihood. The method is therefore more efficient than the traditional
multinomial ML approach of McDonald (1984) which neglects the informational content of the
group mean incomes and is furthermore misspecified under DGP1 and/or unknown boundaries.
This is a considerable shortcoming, since empirical studies typically employ data from the World

Bank and/or WIDER, which correspond to this particular DGP.
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A Monte-Carlo simulation experiment shows that the proposed ML framework results in
improved statistical efficiency relative to the multinomial likelihood under DGP2. We also find
comparable estimation precision under known and unknown group boundaries for both, DGP1
and DGP2. This finding is of considerable relevance in practice since the group boundaries
are usually not provided for international income data. Even compared to ML for raw (un-
grouped) income data, the proposed ML framework performs very well and resulting reductions
in estimation efficiency appear moderate.

We finally apply the ML approach to World Bank data for four countries and find strong
evidence for the GB2 distribution relative to its nested competitors such as the Beta2, Singh-
Maddala and the Dagum distribution. The obtained estimates of inequality and poverty mea-
sures as well as predictions of income shares show a high degree of accuracy. These findings

confirm the appropriateness of the GB2 distribution and the proposed ML estimation framework.
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Figure 1: Schematic illustration of the two data generating processes DGP1 and DGP2 for
n = 20. Black bullets denote individual income y; on the real line. The example for DGP1

assumes ¢; = 0.2 V 7.
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Figure 2: Probability density function of a GB2 distribution with parameters a = 1.5, b = 100,
p=1and ¢ =1.5.
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Figure 3: Approximate Gaussian distributions of K = 10 group means together with kernel

density estimates of their true counterparts. Dashed black line: kernel density estimate; thick

gray line: Gaussian approximation using the moments provided in Egs. (9) and (10). The kernel

density estimates are based on 100,000 simulations from a GB2 distribution with parameters

a=1.5,0=100, p=1 and ¢ = 1.5. The sample size is n = 10,000. The group boundaries are

set to the theoretical deciles of the GB2 distribution (DGP2).
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Figure 4: Mean estimated income distributions for both, grouped data with unknown boundaries
(K = 10 income groups, circles) and raw data (boxes), along with corresponding 95% pointwise
confidence intervals under DGP1 with n = 10,000. The mean distributions and confidence
intervals are computed using the 500 estimated income distributions from the Monte-Carlo
experiment of Section 4. The figure also reports mean estimates of the Gini coefficient and
according finite sample standard errors which are computed as the sample standard deviation

over the 500 Gini estimates.
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Figure 5: Mean estimated income distributions for known boundaries and both, the proposed ML

approach of Eq. (16) (circles) and the multinomial ML method (boxes), along with corresponding

95% pointwise confidence intervals under DGP2 with n = 10,000. The mean distributions and

confidence intervals are computed using the 500 estimated income distributions from the Monte-

Carlo experiment of Section 4. The figure also reports mean estimates of the Gini coefficient and

according finite sample standard errors which are computed as the sample standard deviation

over the 500 Gini estimates.
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Figure 6: Estimated GB2 income distributions along with asymptotic 95% pointwise confidence

bounds for Malaysia, Thailand, Bangladesh and Poland.
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