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Abstract

This paper treats the problem of modeling and forecasting the outcomes of NBA

basketball games. First, it is shown how the benchmark model in the literature can

be extended to allow for heteroscedasticity and treat the estimation and testing in

this framework. Second, time-variation is introduced into the model by (i) testing

for structural breaks in the model and (ii) introducing a dynamic state space model

for team strengths. The in-sample results based on eight seasons of NBA data

provide some evidence for heteroscedasticity and a few structural breaks in team

strength within seasons. However, there is no evidence for persistent time variation

and therefore the hot hand belief cannot be confirmed. The models are used for

forecasting a large number of regular season and playoff games and the common

finding in the literature that it is difficult to outperform the betting market is

confirmed. Nevertheless, it turns out that a forecast combination of model based

forecasts with betting odds can outperform either approach individually in some

situations.
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1 Introduction

The statistical modeling of sports data has become a large topic of research over the past

decades. Detailed data of high quality has become easily available due to its publication

and distribution via the internet, which allows researchers to address a variety of questions.

One problem of particular interest is the prediction of the outcomes, both in terms of the

final score and the winning team; see Steckler et al. (2010) for an overview. This is

closely related to the issue of modeling the strength of each player or team involved in the

competition of interest. The best known example of such an approach is the Elo rating

in chess (Elo 1978), but similar statistical methods have been applied in many different

sports. Such a strength, or rating, can be obtained by variations on the statistical method

of paired comparison models by Bradley and Terry (1952) and David (1959). A notable

methodological innovation was the introduction of dynamic models of paired comparison

in Glickman (1993) and Fahrmeir and Tutz (1994). This approach has been applied to

soccer (Fahrmeir and Tutz 1994 or Koopman and Lit 2014), chess and tennis (Glickman

1999), and football (Glickman 2001, Glickman and Stern 1998), finding evidence of time-

varying team/player ratings.

The present paper treats the modeling and prediction of national basketball association

(NBA) basketball games. The NBA is the most important and strongest professional

basketball league in the world, consisting of 30 teams/franchises. With revenues of 4.6

billion US$ and an average team worth of 634 million US$ the league has a high economic

relevance.

Statistical models for various aspect of basketball have been suggested in the litera-

ture. Early contributions introducing the regression based approach to Basketball model-

ing are Stefani (1977a) and Stefani (1977b). The National Collegiate Athletic Association

(NCAA) basketball tournament has been analyzed and modeled in several studies, e.g.,

Schwertman et al. (1991), Carlin (1996) or Harville (2003), with a focus on computing

win probabilities and accurate team rankings. A further topic that is often addressed in

the literature is the home court advantage, studied in Harville and Smith (1994), Jones

(2007, 2008), or Entine and Small (2008). Other studies focus more on the relevance of

game statistics, such as Kubatko et al. (2007) who introduce various advanced statistics

computed from box score data. Several studies, e.g., Teramoto and Cross (2010), Baghal

(2012) or Page et al. (2007), explain the game outcomes using box scores and such ad-

vanced statistics, in particular the four factors. However, as this information in only

known ex post, it is unclear whether these results can be exploited for forecasting pur-
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poses. A notable exception is the Markov model in Štrumbelj and Vračar (2012), in which

the transition probabilities in a Markov chain model for basketball games are explained

by the four factors.

The prediction of basketball games is the topic of Boulier and Stekler (1999), Caudill

(2003) Loeffelhold et al. (2009), Rosenfeld et al. (2010), Stekler and Klein (2012), Štrumbelj

and Vračar (2012), or Štrumbelj (2014). These predictions are done in very different set-

tings and with quite different methodologies. In particular, forecasts are often based on

team rankings, betting odds or statistical models. A common finding of many studies is

that predictions based on betting markets are difficult to beat, thus implying efficiency

of the betting markets; see also Steckler et al. (2010) and references therein on this issue.

This paper contributes to the aforementioned literature in several ways. Building on

the benchmark linear model for team strengths, including parameters for the effect of

the home court advantage and of playing back-to-back games, team specific volatility

is introduced into the framework. The estimation and testing for heteroscedasticity is

discussed. A second contribution is to consider models for time-varying team strengths.

Two approaches are presented to this end. The first is allowing for structural breaks

in the strength parameter of a specific team at an unknown point in time, whereas the

second approach is a dynamic state space model in which the team strengths follow a

Gaussian autoregressive process. The empirical analysis relies on a large dataset of eight

NBA seasons. Estimates of teams strength and rankings, as well as the effect of the home

court advantage and back-to-back games are compared across different models. Tests

for heteroscedasticity are applied to the data providing some weak evidence against the

assumption of equal error variances across teams. Furthermore, normality tests suggest

that the residuals are normally distributed. Applying the time-varying models we find

evidence for some structural breaks, but no evidence for persistent time-varying strength

parameters. This is in line with the usual believe that the “hot hand” does not exist

for teams; see the discussion in Camerer (1989) and Brown and Sauer (1993) on this

issue. Finally, the forecasting performance of the proposed models is compared for a

large number of regular season and playoff games. The model forecasts are compared to

point spreads from the betting market and it turns out that this are a benchmark that is

difficult to beat. The model based forecasts are also combined with the point spreads and

the resulting forecast combinations often result in the best forecasts in the comparison.

The rest of the paper is structured as follow. In Section 2 the methodology is explained,

Section 3 presents the empirical application and some conclusions are given in Section 4.
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In the appendix estimation details for the dynamic state space model and additional

estimation results can be found.

2 Methodology

Let yijk be the difference in scores of the home team i minus the away team j, where

k = 1, . . . , n is the index of game k and n is the total number of games. The total number

of teams is denoted by t and each team plays a total of K games, so that n = t×K. A

simple model for the outcome of the game is

yijk = λ + α(B2Bi −B2Bj) + βi − βj + eijk, (1)

where λ denotes the (constant) home advantage, B2Bi is a dummy variable indicating

whether team i plays back-to-back games, i.e., games on two consecutive days, with α the

corresponding effect, and βi and βj denote the strength of teams i and j, respectively.1

The error term eijk is assumed to be normally distributed with mean 0 and variance σ2.

Harville (2003) suggests accounting for the discreteness of the observed scores. However,

normality tests below suggest that the residuals from model (1) and its extensions below

are indeed normally distributed. Furthermore, normality of the error terms implies that

the correction for blowout victories proposed in Harville (2003) is not necessary and

would, in fact, lead to inefficient estimates given the fact that under normality ordinary

least squares (OLS) is equivalent to the (asymptotically efficient) maximum likelihood

estimator. We can state the model in matrix form letting y be the n × 1 vector of

spreads, e the n× 1 vector of errors, β = [λ α β1 . . . βt]
′ the vector of coefficients and X

the n× (t+ 1) design matrix. A typical row of this matrix has 1 as its first element (for

the home advantage), B2Bi − B2Bj in the second column, 1 in column i + 2 and −1 in

column j + 2 in the case that it corresponds to a game of team i (home) against team j

(away). The remaining elements are equal to 0. Then the model is compactly given by

y = Xβ + e. (2)

However, the matrix X is not of full rank, so for estimation one can remove the third

column. This corresponds to the normalizing restriction β1 = 0, meaning that the strength

of the first team is set equal to zero. Without this restriction the parameter vector β

1Here we made the assumption that the effect of playing back-to-back games is the same for the home

and away team.
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cannot be identified, as adding a constant to each team strength leads to an equivalent

model. The parameters can be then estimated by OLS:

β̂OLS = (X ′X)−1X ′y. (3)

2.1 Heteroscedasticity

The model above assumes constant variance of the error term, i.e., e ∼ N(0, σ2I), where

I is the n× n identity matrix. Here we relax this assumption. Let the strength of team

i in game k be given by

Sik = βi + eik, (4)

where βi is the constant component of the team strength and eik
iid
∼ N(0, σ2

i ) the team

specific error term. Thus the strength of a team in a specific game consists of a constant

component and an error term. A larger value of the error variance σ2
i implies that the

corresponding team shows a more volatile performance. Then the outcome of the game

is modeled as

yijk = λ+α(B2Bi−B2Bj)+Sik −Sjk = λ+α(B2Bi −B2Bj)+βi −βj + eik − ejk
︸ ︷︷ ︸

eijk

. (5)

Consequently, the baseline model (1) is obtained when σ2
i = σ2 for all i. In matrix

notation the model is the same as (2), but with Cov(e) = Ω 6= σ2I. The matrix Ω is

diagonal with typical element σ2
i + σ2

j , corresponding to a game between team i and j.

The model can be estimated in two ways: Maximum likelihood estimation (MLE) or

feasible generalized least squares (FGLS). MLE is straightforward since eijk ∼ N(0, σ2
i +

σ2
j ) and the errors are independent. To estimate the model by FGLS first estimate (2) by

OLS to obtain the residual vector ê. Next, run the regression

ê2 = Zγ + η, (6)

where ê2 is the vector of squared residuals and the n× t matrix Z has typical row of zeros

with entries of 1 in columns i and j if the observation corresponds to a game between

teams i and j. The estimated parameter vector γ̂ in fact gives estimates for the team

specific variances σ2
i . The fitted values from (6), say σ̂2

ijk, make up the elements on the

main diagonal of our estimate for the covariance matrix of the error terms Ω̂. Then the

FGLS estimator is given by

β̂FGLS = (X ′Ω̂−1X)−1X ′Ω̂−1y. (7)
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Consider testing the null hypothesis of homoscedasticity, i.e., a constant error variance

accross teams,

H0 : σ
2
i = σ2

j for all i 6= j. (8)

There are two ways we can test this hypothesis. First, one could estimate model (5) by

MLE and additionally estimate the model under the restriction of homoscedasticity. Let

LL0 be the log-likelihood under H0 and LL1 under the alternative. Then we can test H0

using

LR = 2(LL1 − LL0), (9)

which follows a χ2 distribution with t−1 degrees-of-freedom under the null. Alternatively,

we can base our test on the regression (6). Let SSR1 be the sum-of-squared residuals

from this model and let SSR0 be the residuals from regressing ê2 on a constant. Then

we can test H0 with the F-statistic

F =
(SSR0 − SSR1)/(t− 1)

SSR1/(n− t)
, (10)

which is distributed F (t− 1, n− t).

In general, one may be interested in computing the probability that team i (the home

team) wins a specific game. This can be computed as

P (Team i wins) = P (yijk > 0) = P (λ+ αB2Bi + Sit > αB2Bj + Sjk)

= P (λ+ αB2Bi + βi + eik > βj + αB2Bj + ejk)

= P (ejk − eik < λ+ α(B2Bi − B2Bj) + βi − βj)

= P




ejk − eik
√

σ2
i + σ2

j

<
λ+ α(B2Bi −B2Bj) + βi − βj

√

σ2
i + σ2

j





= Φ




λ+ α(B2Bi −B2Bj) + βi − βj

√

σ2
i + σ2

j



 . (11)

2.2 Dynamic Modelling

Until now we have assumed that the strength parameter of a team is constant throughout

the entire season. In this section we discuss two approaches to relax this assumption. In

Section 2.2.1 we consider a model which permits a structural break for a certain team at

an unknown point in time. Such a model may be extremely useful if one is interested in

evaluating the impact of trade, injuries or changes in the coaching staff that occur with
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a season. Section 2.2.2 outlines a dynamic state space model, in which the strength of a

team is a latent Gaussian autoregressive process. This model can be used to test the hot

hand or momentum hypothesis that suggests that team strength varies over time and is

persistent.

2.2.1 Structural change

Consider again the baseline model (1). Let the strength parameter be indexed by ki =

1, . . . , 822, i.e., we now have βi,ki. Consider testing the hypothesis

H0 : βi,1 = βi,2 = . . . = βi,82 (12)

against the alternative

H0 : βi,1 = . . . = βi,k∗
i
−1 6= βi,k∗

i
= . . . = βi,82. (13)

Thus we want to test constancy of the parameter βi,ki against the alternative of a single

structural break at game k∗
i . If the time of the break k∗

i is known this can be done with

the test of Chow (1960). This could be interesting if one is interested in testing whether

the injury of a key player or a certain trade had an impact on the strength of a team.

The test is based on the regression

y = Xβ + δD(k∗
i ) + e, (14)

where D(k∗
i ) is the i + 1th column of X, i.e., the column corresponding to team i, with

all entries for games 1 to k∗
i set to zero. Thus δ measures the change in team i’s strength

at the point in time corresponding to game k∗
i . Our null hypothesis is then equivalent to

H0 : δ = 0, (15)

which can be tested with a standard t-test. Denote the t-statistic corresponding to D(k∗
i )

by tk∗
i
. Now consider the situation that the time of the structural break k∗

i is unknown.

A test for the null hypothesis (12) with unknown breakpoint can be based on the statistic

Fsup = max
ki∈Π

t2ki , (16)

where Π is the set of potential breakpoints, which in our case excludes the first and last

10 games of the season. This truncation of the potential breakpoints is needed, because

2Note that each team plays 82 games per season, with the exception of lockout seasons such as the

2011-2012 season.
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Fsup diverges at the boundary of the sample. Thus we test for a structural break with

the maximum of the squared t-statistics3 over all potential breakpoints. The asymptotic

distribution of Fsup is non-standard and has been studied in Andrews (1993). However,

instead of relying on asymptotic critical values we use a parametric bootstrap in our

empirical application. This is achieved by repeatedly simulating from model (2) using the

OLS estimates of β and σ2 and drawing the error terms from a normal distribution. For

each draw we estimate (14) and compute Fsup. Critical values are given by the empirical

quantiles over the bootstrap distribution of Fsup.

Finally, a consistent estimate for the breakpoint is given by

k∗
i = argmax

ki∈Π
t2ki (17)

and the change in team strength is the estimated value of δ from (14).

Note that the extension to multiple breakpoints is straightforward, as outlined in Bai

and Perron (1998). However, given that each team plays only 82 regular season games

we do not believe that one can identify more than one structural break in a given season.

Nevertheless, if one in interested in jointly modeling multiple seasons this could be of

interest.

2.2.2 A dynamic state space model

In the previous section we considered a model in which the (unconditional) strength of a

team is allowed to shift in value at an unknown point in time. In this section we consider

a model in which the strength of team i is a Gaussian autoregressive process of order one.

The outcome of the game in this context is modeled by

yijk = λ+ α(B2Bi −B2Bj) + βi,ki − βj,kj + eijk, (18)

where eijk
iid
∼ N(0, σ2). The time-varying team strength evolves as

βi,ki = µi + φiβi,ki−1 + ηki, (19)

where ηki ∼ N(0, σ2
ηi
). Although this is a state space model and βi,ki is unobservable the

estimation is relatively straightforward due to the fact that both ek and ηki are normally

distributed. The key difference to a standard state space model in time series analysis

3Recall that the squared t-statistic is equal to the F-statistic for testing a restriction on a single

parameter.
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is the fact that the observations are not equidistant in calendar time, and therefore the

evolution of the strength is defined from game to game.4 Nevertheless, the Kalman filter

can be applied to estimate the model parameters and the strengths of the teams. The

details on how this is done for this specific model are given in the appendix. We impose one

set of restrictions to the model in order to reduce the number of free parameters, namely we

restrict φi the same for all teams. Furthermore, we also consider imposing the restriction

that σ2
ηi
is the same for all teams, addressing the issue whether heteroscedasticity is still an

issue when allowing for time-varying strength parameters. Again, a standard likelihood

ratio test can be used to test this restriction.

3 Application

In this section we apply the models proposed in Section 2 to a large data set of NBA

games covering the Seasons 2006-2007 until 2013-2014, thus a total of eight NBA seasons.

The data was obtained from www.nbastuffer.com. Besides the outcomes of the games and

betting odds5, the data set contains further information that was not used in this study

such as the box score, the starting lineups and some advanced basketball statistics.

In a typical regular season each of the 30 teams plays 82 games, resulting in a total of

1230 regular season games. An exception is the 2011-2012 lockout season in which each

team played 66 games, implying a total of 990 regular season games. Furthermore, during

the 2012-2013 season as a result of the bombing at the Boston marathon the game Boston

vs. Indiana needed to be rescheduled and was eventually not played.

The rest of this section is structured as follows. In Section 3.1 we estimate models that

assume a constant team strength within each season, apply the tests for heteroscedasticity,

and compare the resulting rankings of the teams. In Section 3.2 the question of time-

variation in team strength is addressed. Section 3.3 compares the forecasting performance

of the models for both regular season and playoff games.

3.1 Static models and heteroscedasticity tests

In this section we address two questions. First, does the variance of the team strength

differ between teams and, second, does the incorporation of heteroscedasticity influence

the estimation of the team strength and the ranking of the teams.

4A model in which strength evolves in calendar time was also considered in a preliminary analysis.
5Based on www.scoresandodds.com.
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Table 1: Tests for homescedasticity

F-test LR-test LR-test dyn.

2006-2007 0.0449 0.1046 0.1194

2007-2008 0.1452 0.0257 0.0376

2008-2009 0.0098 0.0003 0.0004

2009-2010 0.0092 0.0022 0.0022

2010-2011 0.6020 0.4722 0.4534

2011-2012 0.1901 0.0437 0.0470

2012-2013 0.8204 0.3113 0.2956

2013-2014 0.0004 0.0000 0.0000

Note: Table 1 reports the p-values the null hypothesis of homescedastic errors against the alternative

of team specific error variances based on the static model as described in Section 2.1, as well as on the

dynamic state space model from Section 2.2.2.

Table 1 reports the p-values of the F-test and likelihood ratio test for the null hy-

pothesis of homoscedasticity given in equations (9) and (10). The likelihood ratio test is

additionally applied dynamic model characterized by equations (18) and (19). The tests

were performed for each individual season. The results show that for most seasons the null

hypothesis of homoscedasticity is rejected when looking at the tests individually. Only

for two seasons, namely 2010-2011 and 2012-2013, the assumption of constant variance of

the team strengths cannot be rejected. However, these results should be interpreted with

certain care due to the fact that we are performing multiple hypothesis tests. The tests

within each season are obviously highly correlated and we postulate that adjustments for

multiple testing may be ignored. However, we are still testing for heteroscedasticity over

eight seasons. Using a simple Bonferroni adjustment for each test individually suggests

rejection when the p-value is below 0.05/8 = 0.00625 when testing at α = 0.05. This

suggests rejection only in 3 out of 8 seasons.

Additionally, the Jarque-Bera (JB), Anderson-Darling (AD), Lilliefors, and Shapiro-

Wilk (SW) normality tests were applied on the estimated residuals of the different models.

In Table 2 we report the results for the model allowing for heteroscedasticity. In basically

all cases normality cannot be rejected. Using the Bonferroni adjustment we cannot reject

H0 for any test. Given the large sample sizes these non-rejections are quite remarkable

and confirm the normality assumption that is typically made in the literature.

The detailed estimation results can be found in Tables 3 and 4 concerning the estimated

10



Table 2: Normality tests on the residuals

JB Lilliefors AD SW

2006-2007 0.3636 0.4412 0.7242 0.6871

2007-2008 0.3395 >0.5 0.7152 0.5553

2008-2009 0.1775 >0.5 0.1578 0.1807

2009-2010 >0.5 >0.5 0.9306 0.9365

2010-2011 0.3927 >0.5 0.5056 0.688

2011-2012 >0.5 0.3968 0.5475 0.4182

2012-2013 >0.5 0.0100 0.0103 0.0985

2013-2014 >0.5 0.3421 0.4489 0.699

Note: Table 2 reports the p-values of the following tests for normality: Jarque-Bera (JB), Lillieofors,

Anderson-Darling (AD) and Shapiro-Wilk (SW). The tests are applied to the residuals of the static

heteroscedastic model (5) estimated by MLE.

effect of the home advantage and back-to-back games, as well as in Tables 8 to 15 in

Appendix B for the estimated team strengths and variances. The parameter estimates

show some differences between the different estimators and some slight differences in team

rankings emerge when allowing for heteroscedasticty. The effect of the home advantage is

estimated to be around 2.7 points per game, whereas the playing back-to-back games on

average results in a disadvantage of about 1.8 points. Looking at the range of estimated

team strengths it can be seen that the difference between the best and the worst team in

the league implies an expected point difference between 13 and 20 points.

Looking at the variance estimates themselves no clear pattern emerges. High variances

are possible both for successful and unsuccessful teams. Furthermore, no individual team

is characterized by high or low volatility over several seasons.6 However, factors that may

explain the differences in volatility may be frequency and severity of injuries suffered by

some teams, resting of older key players or changes in the coaching staff. We leave an

investigation of this issue for future research.

6For example, one may expect a team such as the San Antonio Spurs that is known for its good

management and that is consistently one of the top teams of the league to show a less variable performance

than other organizations.
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Table 3: Estimated home advantage

OLS GLS MLE Dynamic

2006-2007 2.65 2.52 2.50 2.49

2007-2008 3.15 3.12 3.11 3.11

2008-2009 2.99 3.23 3.24 3.21

2009-2010 2.14 2.16 2.16 2.16

2010-2011 2.87 2.80 2.81 2.82

2011-2012 2.59 2.74 2.54 2.52

2012-2013 2.96 3.03 3.03 3.05

2013-2014 2.29 2.22 2.29 2.21

Note: Table 3 reports the estimated effect of the home court advantage based on the models defined in

equations (1), (5) and (18), denoted by OLS, GLS/MLE and Dynamic, respectively. GLS and MLE refer

to the estimation method of the heteroscedastic model (5).

3.2 Dynamic modeling

The next step in the analysis is to consider the question whether team strength is varying

over time within a given season. In Table 5 the estimated breakpoints in team strength

using the approach outlined in Section 2.2.1 are reported. Several breakpoints are identi-

fied, although their number is relatively small considering that we are looking at a total

of 30 teams over eight seasons. Note that only breakpoints significant at the 5% and 1%

level are reported, as multiple hypothesis tests are performed, which has to be kept in

mind when interpreting these results. However, the sample size of 82 regular season games

per team is relatively small given the difficulty of the problem of endogenously identifying

a change-point. Most of the estimated dates can be explained by specific events that took

place around that particular date. For example, the breakpoint for the Miami Heat on

Jan. 7, 2007 can be explained by an injury of their key player Shaquille O’Neal missing

the first 30 games of the season. Another example is the change point on March 15, 2012

by Washington, which coincides exactly with a large three-team trade on that day.7

The next step in the analysis is the estimation of the dynamic state space model

from Section 2.2.2. Intuitively this model seems a reasonable approach, as one would

expect the strengths of teams to change throughout the course of a season due to injuries,

trades, changes in coaching and team chemistry, etc. Surprisingly, the log-likelihood of the

7A list of the events associated with the estimated break dates can be provided by the author upon

request.
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Table 4: Estimated effect of back-to-back games

OLS GLS MLE Dynamic

2006-2007 -1.86 -1.80 -1.71 -1.75

2007-2008 -1.50 -1.20 -1.17 -1.27

2008-2009 -1.50 -1.28 -1.27 -1.32

2009-2010 -3.24 -3.27 -3.19 -3.18

2010-2011 -1.62 -1.91 -1.79 -1.83

2011-2012 -1.95 -1.76 -1.95 -1.98

2012-2013 -1.35 -1.40 -1.45 -1.44

2013-2014 -1.85 -1.70 -1.69 -1.73

Note: Table 4 reports the estimated effect of playing back-to-back games based on the models defined

in equations (1), (5) and (18), denoted by OLS, GLS/MLE and Dynamic, respectively. GLS and MLE

refer to the estimation method of the heteroscedastic model (5).

dynamic and static models are basically identical for all season and the point estimates

for the persistence parameter φ is always quite close to 0. Furthermore, the smoothed

and filtered estimates of the path of the team strengths looks rather erratic and do not

suggest any persistence in team strength. In order to shed further light on the question

of momentum in team strength we treat the residuals of the static model as panel data

for each team over the course of the season and perform the Lagrange-multiplier test

for autocorrelation by Baltagi and Li (1998). In all cases the null hypothesis of no-

autocorrelation cannot be rejected8. Thus we can conclude that there is no evidence of

persistent time-variation in the team strength within individuals seasons. Although this

finding is surprising at first sight, it can be explained by the large degree of professionalism

in the NBA and it is clear evidence against the believe in the hot hand.

3.3 Predictability

In this section I consider the problem of forecasting the game outcomes using the models

described above. This is done in two settings. In Section 3.3.2 regular season games are

predicted, whereas Section 3.3.2 focuses on playoff games. The forecasts are evaluated

8Detailed results for all unreported findings in this section are available from the author upon request.
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Table 5: Estimated breakpoints in team strength

Season Team Date Change Record before Record after

2006-2007 Golden State*** 05.03.2007 11.3205 26-35 16-5

Miami** 07.01.2007 8.1302 13-19 31-19

Minnesota** 20.02.2007 -8.6933 25-27 7-23

2008-2009 Boston** 25.02.2009 -8.5731 46-12 16-8

Portland** 16.03.2009 9.3325 41-25 13-3

2009-2010 Boston** 27.12.2009 -8.4914 23-5 27-27

Indiana** 14.03.2010 9.757 21-44 11-6

2010-2011 Denver** 16.02.2011 7.8313 31-25 21-25

Utah** 17.12.2010 -8.5803 18-8 21-35

2011-2012 Cleveland** 23.03.2012 -9.2674 17-24 4-18

Minnesota** 28.03.2012 -11.7942 24-27 2-13

New York** 12.03.2012 8.983 18-23 18-7

Philadelphia** 18.01.2012 -12.2324 10-3 25-28

Portland*** 29.02.2012 -11.3512 18-16 10-22

Washington*** 15.03.2012 9.1682 9-32 11-14

2012-2013 Portland** 24.03.2013 -10.9225 33-36 0-13

Sacramento** 26.02.2013 8.0524 19-38 9-16

San Antonio*** 08.03.2013 -11.122 48-14 10-10

Washington*** 07.01.2013 9.7524 4-28 25-25

2013-2014 Charlotte** 29.01.2014 7.5105 19-27 24-12

Cleveland** 07.02.2014 8.1545 16-33 17-16

Indiana*** 22.01.2014 -11.3447 33-7 23-19

Note: Table 5 reports the estimated break date in team strength within each respective season (see

Section 2.2.1 for the methodology) together with the estimated change in team strength, as well as the

record before and after the change point. ** denotes statistical significance of the test statistic at the 5%

level, and *** at the 1% level.
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using three criteria. The first criterion is the mean square prediction error (MSE):

MSE =
n∗
∑

k=1

(yijk − ŷijk)
2,

where n∗ is the number of out-of-sample observations. The second criterion is the mean

absolute prediction error (MAE),

MAE =
n∗
∑

k=1

|yijk − ŷijk|,

and the third criterion is the fraction of games in which the correct winner was predicted.

Whereas the MSE is the obvious choice for the loss function given the fact that the error

terms can safely be considered to be Gaussian, the other two criteria are easy to interpret.

The models considered in the forecasting exercise are the homoscedastic baseline model

(OLS), the heteroscedastic model (Het.) estimated by MLE and the dynamic state space

model (Dyn.). As a benchmark the Las Vegas opening spreads (Spr.) for bets on the games

are considered. Furthermore, for all models we consider the combined forecasts of the

models forecasts with the betting spreads. The forecasts are combined with equal weights,

as a preliminary analysis suggested that the two types of forecasts have approximately the

same variances and are highly correlated (> 0.9). Therefore more sophisticated weighting

schemes do not appear to be sensible here; see Timmermann (2006) for extensions.

Besides comparing the predictions in terms of the aforementioned measures, addition-

ally the model confidence set (MCS) by Hansen et al. (2011) is computed based on the

MSE and MAE loss functions. The MCS is a set of models whose forecasting performance

is not significantly different considering a certain loss function and it can be seen as an

analogue to a confidence interval for competing (non-nested) models. Thus it acknowl-

edges the fact that it is unlikely that a single model outperforms all the others, but that

there are multiple models that perform equally well. The MCS is determined using a se-

quence of hypothesis tests. It eliminates inferior models based on the criterion of interest.

P-values for the sequential tests are determined by bootstrap procedure as described in

Hansen et al. (2011) and references therein. A size of 5% and 10000 bootstrap samples

are used to compute the MCS.

3.3.1 Regular season

The forecasting performance for the regular season data is analyzed as follows. The first

half of the regular season data, 615 games in a typical season, are used as the in-sample
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Table 6: Forecast evaluation regular season
OLS Het. Dyn. Spr. OLS-Spr. Het.-Spr. Dyn.-Spr.

2007

MSE 152.19† 151.90† 152.08† 141.89 145.15 145.01 145.13

MAE 9.74† 9.74† 9.75† 9.39 9.49 9.48 9.49

Correct 0.644 0.646 0.647 0.662 0.662 0.665 0.662

2008

MSE 136.71 137.48 136.80 135.12 133.27 133.69 133.26

MAE 9.28† 9.30† 9.29† 9.11 9.11 9.11 9.11

Correct 0.714 0.715 0.715 0.720 0.722 0.709 0.720

2009

MSE 138.94† 138.44† 139.47† 135.40 135.33 135.18 135.38

MAE 9.18 9.15 9.19† 9.03 9.05 9.04 9.04

Correct 0.712 0.712 0.706 0.707 0.709 0.707 0.709

2010

MSE 141.16 140.69 141.17 141.06 139.26 138.99 139.22

MAE 9.42 9.43 9.43 9.35 9.32 9.32 9.33

Correct 0.698 0.688 0.691 0.693 0.691 0.696 0.693

2011

MSE 127.79 128.56 128.19† 126.98 126.41 126.70 126.62

MAE 8.91 8.96 8.92† 8.88 8.86 8.88 8.87

Correct 0.694 0.688 0.691 0.693 0.699 0.693 0.698

2012

MSE 149.49† 148.15† 150.34† 139.34 141.95 141.25 142.17

MAE 9.57† 9.52† 9.56† 9.35 9.37 9.33 9.35

Correct 0.653 0.661 0.659 0.681 0.677 0.679 0.679

2013

MSE 152.68† 153.82† 152.72† 147.47 148.42 148.96 148.35

MAE 9.60† 9.62† 9.60† 9.38 9.41 9.42 9.41

Correct 0.673 0.668 0.669 0.695 0.697 0.695 0.695

2014

MSE 140.17† 140.09† 139.88† 132.99 134.48 134.32 134.35

MAE 9.22† 9.20† 9.21† 8.94 9.02 9.01 9.02

Correct 0.663 0.670 0.659 0.683 0.685 0.686 0.683

Pooled

MSE 142.21† 142.25† 143.13† 137.49 137.93 137.93 138.37

MAE 9.36† 9.36† 9.38† 9.17 9.20 9.20 9.22

Correct 0.682 0.681 0.684 0.692 0.693 0.692 0.694

Note: Table 6 gives the predictive mean-square-error (MSE), mean-absolute-error (MAE) and fraction of

correctly predicted outcomes for all games of the second half of each respective season based on recursively

estimated model parameters. OLS refers to the homoscedastic model in (1), Het. to the heteroscedastic

model in (5), Dyn. to the dynamic state space model in (18), and Spr. to the Las Vegas opening spreads.

The remaining four columns refer to equally weighted forecast combinations. The results for the best

performing model are presented in bold. A † implies that the corresponding model is not included in the

95% model confidence set.
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period, whereas the remaining games constitute the out-of-sample period. The models

are re-estimated using an expanding window scheme to produce forecasts for the full

out-of-sample period. The results are presented in Table 6, where the results for the

best performing model in each case are shown in bold. At the bottom of the table all the

forecasts are pooled to give an overall picture of the forecasting performance. With respect

to the MSE and MAE the betting spreads provide the best forecasts in most seasons and

for the pooled forecasts. However, in several instances combined forecasts perform as

well or better, and they are never much worse. The results from the model confidence

set (excluded models marked by a †) show that the betting spreads and the combined

forecasts are always included in the MCS, whereas the pure model based forecasts are

often excluded. Concerning the fraction of correct predictions no single model stands out,

but combined forecasts using either the homoscedastic or the heteroscedastic regression

model can be recommended. Overall, between 66% and 72% of the game outcomes can

be predicted correctly and it seems questionable that much better forecasts are possible,

as a certain amount of randomness/unpredictability is an inherent part of sports.

3.3.2 Playoffs

For the forecast evaluation of the playoff games the complete regular season data is used

as the training period, but the models are not re-estimated during playoff period. In

the case of the dynamic state space, however, the information set is updated throughout

the playoffs and the predicted values based on the Kalman filter are used as forecasts.

Additionally to the models used for forecasting the regular season games we also consider

the estimates considering the structural breaks from Table 5. Again, no single model

dominates. The Las Vegas spreads provide good forecasts in many cases, in particular

in terms of MSE and MAE. However, the regression based approaches and the forecast

combinations outperform the spreads in several seasons. The model confidence set ex-

cludes only very few models and the excluded ones are always among the regression based

approaches and once the combined forecast with the structural break model for the year

2013. In terms of predicting the correct outcomes different models perform well in each

season. The differences in the percentage of correctly predicted games across the models

can be up to 10% within one season. Overall, between 64% and almost 80% of all games

are correctly predicted. In summary, for forecasting playoff games the potential to beat

the betting spreads appears to be larger than for regular season games and relying on

combined forecasts seems to be a sensible approach.
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Table 7: Forecast evaluation playoffs
OLS Het. SB Dyn. Spr. OLS-Spr. Het.-Spr. SB-Spr. Dyn.-Spr.

2007

MSE 120.57 120.14 115.00 120.03 123.27 119.09 119.01 114.17 118.85

MAE 8.25 8.26 8.24 8.23 8.60 8.39 8.39 8.33 8.38

Correct 0.760 0.760 0.734 0.747 0.684 0.722 0.722 0.734 0.709

2008

MSE 175.04 176.11 175.04 172.52 163.88 167.17 167.53 167.17 165.78

MAE 10.68 10.71 10.68 10.59 10.13 10.34 10.35 10.34 10.30

Correct 0.709 0.686 0.709 0.686 0.733 0.698 0.698 0.698 0.698

2009

MSE 207.16 206.45 213.84 206.19 217.13 209.00 209.00 211.30 208.32

MAE 10.90 10.86 10.94 10.92 11.05 10.88 10.85 10.87 10.88

Correct 0.718 0.718 0.694 0.729 0.671 0.659 0.671 0.635 0.659

2010

MSE 177.94 179.10 188.55 179.13 175.23 174.53 175.12 179.01 174.71

MAE 10.50 10.52 10.82 10.53 10.16 10.28 10.29 10.43 10.29

Correct 0.659 0.659 0.671 0.671 0.683 0.695 0.707 0.659 0.707

2011

MSE 110.78 110.93 115.24 111.10 111.89 110.44 110.53 112.09 110.60

MAE 8.44 8.43 8.74 8.45 8.44 8.39 8.39 8.51 8.39

Correct 0.642 0.642 0.605 0.642 0.654 0.654 0.654 0.654 0.654

2012

MSE 111.46† 111.35† 120.67† 111.70† 97.96 102.47 102.46 105.93 102.40

MAE 8.40† 8.40† 8.79† 8.44† 7.71 7.92 7.92 8.06 7.94

Correct 0.714 0.702 0.714 0.702 0.774 0.786 0.798 0.762 0.774

2013

MSE 155.08 155.28 188.48† 153.61 147.60 150.07 150.23 164.80† 149.14

MAE 10.51 10.50 11.49† 10.46 10.09 10.29 10.29 10.76† 10.26

Correct 0.659 0.671 0.588 0.671 0.659 0.682 0.694 0.647 0.694

2014

MSE 148.12 146.17 148.14 148.86 151.17 147.94 147.04 147.20 148.17

MAE 9.67 9.61 9.79 9.65 9.67 9.65 9.62 9.70 9.64

Correct 0.640 0.640 0.562 0.640 0.584 0.596 0.573 0.562 0.573

Pooled

MSE 151.24† 151.14† 158.65† 150.85 148.96 148.046 148.06 150.70 147.69

MAE 9.69† 9.68† 9.96† 9.68 9.50 9.54 9.53 9.64 9.53

Correct 0.687 0.684 0.662 0.686 0.680 0.686 0.689 0.668 0.683

Note: Table 7 gives the predictive mean-square-error (MSE), mean-absolute-error (MAE) and fraction

of correctly predicted outcomes for all games of the playoffs of each respective season based on model

parameters estimated using the regular season data. OLS refers to the homoscedastic model in (1), Het.

to the heteroscedastic model in (5), SB to the model allowing for a structural break, Dyn. to the dynamic

state space model in (18), and Spr. to the Las Vegas opening spreads. The remaining four columns refer

to equally weighted forecast combinations. The results for the best performing model are presented in

bold. A † implies that the corresponding model is not included in the 95% model confidence set.
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4 Conclusion

In this paper I have reconsidered the modeling of team strength in professional basketball.

The standard model was extended by allowing for team specific error variances and time-

variation in team strength. The latter was achieved by (i) testing for and dating structural

breaks at unknown points during the season, and by (ii) allowing for autoregressive time

varying latent team strengths. These models were applied to the NBA games in all eight

seasons in the period 2006 until 2014. The results of the in-sample estimation suggest

the presence of heteroscedasticity in most seasons and it is found that the rankings of the

teams by their estimated strength can be different from the ones implied by the standard

homoscedastic model. Additionally, normality of the residuals cannot be rejected, which

favors the estimation of the models by least squares. This finding also implies that the

modified least squares approach proposed in Harville (2003) that controls for blowout

victories is not necessary, because the presence of such blowouts should result in outlying

observations that would lead to rejection of normality tests. Furthermore, although there

is some evidence of structural breaks in team strength that can typically be associated

with specific events such as trades or injuries, no evidence for momentum is found when

estimating a dynamic state space model for team strength. This is confirmed by the

rejection of tests for no autocorrelation on the residuals of the static models. Thus this

paper provides further evidence against the presence of momentum or hot hand effects.

Besides the methods presented in this paper several other models were considered

that were not able to improve the model fit. In particular, a model treating offensive and

defensive strength separately in both a static and dynamic setting did not yield a better

fit than its counterpart considering only one strength parameter. Furthermore, instead of

the dynamic state space model, an autoregressive observation driven approach for team

strength in which the residuals of the previous game were allowed to drive the current

team strength was considered. Due to the absence of any evidence for the hot hand belief

it is not surprising that such a model could not outperform simpler static models.

The forecasting performance of the models was evaluated using regular season and

playoff games over all eight seasons. These finding confirm the common theme in the

literature on sports forecasting: it is difficult to beat the betting markets, which indicates

that they efficient. However, combining the model based forecasts with betting spreads

sometimes leads to better forecasts and the model confidence sets imply that the combined

forecasts are statically not worse than the one based solely on betting spreads.

Future research should address the question whether advanced basketball statistics
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suggested in Kubatko et al. (2007) can be used to improve model based forecasts and

whether these statistics themselves are predictable. Furthermore, more detailed informa-

tion concerning injuries or suspensions of key players can be incorporated into the models

for forecasting purposes. Finally, it could be interesting to search for factors that can

explain the varying variances of each team’s strength parameter.
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A Implementation of the Kalman filter

Let βi,ki|ki−1 be the predicted team strength of team i for game ki conditional on the

information at game ki − 1, whereas βi,ki|ki denotes the updated strength conditional on

information up to game ki. The variance of βi,ki conditional on information at game ki−1

is denoted as Pi,ki|ki−1, whereas the updated variance of team i is Pi,ki|ki. Then the steps

of the Kalman filter for game k between teams i and j with outcome yijk, being games ki

and kj for the teams, respectively, are as follows.

Prediction step:

βi,ki|ki−1 = µi + φβi,ki−1|ki−1

βi,kj |kj−1 = µj + φβi,kj−1|kj−1

Pi,ki|ki−1 = φ2Pi,ki−1|ki−1 + σ2
ηi

Pi,kj|kj−1 = φ2Pi,kj−1|kj−1 + σ2
ηj

Observation step:

ŷijk = λ+ α(B2Bi −B2Bj) + βi,ki|ki−1 − βi,kj|kj−1

Vijk = Pi,ki|ki−1 + Pi,kj |kj−1 + σ2

êijk = yijk − ŷijk

Updating step:

βi,ki|ki = βi,ki|ki−1 + êijkPi,ki|ki−1/Vijk

βi,kj |kj = βi,kj |kj−1 − êijkPi,kj|kj−1/Vijk

Pi,ki|ki = Pi,ki|ki−1 − P 2
i,ki|ki−1/Vijk

Pi,kj |kj = Pi,kj |kj−1 − P 2
i,kj |kj−1/Vijk

The initial values are set to βi,1|0 = µi/(1−φ) and Pi,1|0 = σ2
ηi
/(1−φ2). The log-likelihood

contribution of the kth game is given by

lnLk =
1

2
ln(2π) +

1

2
ln(Vijk) +

ê2ijk
2Vijk

Finally, if one is interested in the estimates of the strength conditional on the information

of the whole sample the Kalman smoother should be applied. Smoothed state estimates,
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denoted as βi,ki|K , are obtained by iterating the following recursion on the whole sample

going from the last to the first game:

βi,ki|K = βi,ki|ki + φ
Pi,ki|ki

Pi,ki+1|ki

(βi,ki+1|K − βi,ki+1|ki).

B Estimated team strenghts, rankings and error vari-

ances
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Table 8: Ranking, strength and team specific variances 2006-2007

2006-2007 rank OLS rank GLS rank MLE β̂OLS β̂FGLS β̂MLE σ̂2
GLS σ̂2

MLE

San Antonio 1 1 1 13.10 13.01 13.00 108.02 101.59

Phoenix 2 3 3 12.11 12.07 12.16 56.05 54.06

Dallas 3 2 2 11.99 12.37 12.37 72.68 56.22

Houston 4 4 4 9.76 9.53 9.64 99.84 105.32

Chicago 5 5 5 9.32 9.24 9.30 115.49 113.83

Detroit 6 6 6 8.54 9.06 9.10 60.80 61.67

Cleveland 7 7 7 8.17 8.17 8.14 38.67 41.28

Utah 8 8 8 7.79 7.80 7.85 76.36 71.81

Denver 9 9 9 6.49 6.20 6.24 58.22 68.04

Toronto 10 10 10 5.53 5.35 5.42 38.14 44.81

LA Lakers 11 12 13 5.15 4.85 4.83 68.34 71.86

Orlando 12 13 12 5.07 4.79 4.97 78.85 77.58

Golden State 13 11 11 4.80 4.97 5.06 140.24 135.96

LA Clippers 14 14 14 4.77 4.63 4.70 72.64 73.78

Washington 15 15 15 3.99 4.29 4.19 64.38 68.32

New Jersey 16 16 16 3.71 4.15 4.11 35.10 30.97

New Orleans 17 17 17 3.62 3.85 3.86 34.42 29.90

Sacramento 18 19 19 3.62 3.36 3.31 42.10 44.29

Miami 19 18 18 3.48 3.39 3.42 108.73 95.24

Seattle 20 20 20 2.39 2.77 2.70 61.07 75.66

Indiana 21 21 21 2.37 1.96 2.06 49.54 62.32

New York 22 24 24 1.64 1.49 1.48 48.38 44.66

Minnesota 23 23 23 1.64 1.50 1.53 49.50 50.04

Philadelphia 24 22 22 1.56 1.77 1.85 62.45 59.34

Boston 25 25 25 1.00 1.11 1.12 49.73 51.67

Portland 26 26 26 0.88 0.92 1.00 73.72 76.82

Charlotte 27 27 27 0.74 0.81 0.89 95.03 84.51

Memphis 28 29 29 0.35 0.09 0.17 31.10 34.37

Milwaukee 29 28 28 0.32 0.16 0.24 71.03 63.65

Atlanta 30 30 30 0.00 0.00 0.00 61.93 72.82

Note: Table 8 presents the estimated ranking, team strengths and team specific error variances based on

models (1) and (5). The heteroscedastic model is estimated either by FGLS or by MLE.
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Table 9: Ranking, strength and team specific variances 2007-2008

2007-2008 rank OLS rank GLS rank MLE β̂OLS β̂FGLS β̂MLE σ̂2
GLS σ̂2

MLE

Boston 1 1 1 11.50 11.90 11.87 55.81 51.78

LA Lakers 2 2 2 9.56 9.58 9.35 79.83 80.87

Utah 3 4 4 9.00 8.74 8.46 103.24 110.39

Detroit 4 3 3 8.92 9.29 9.28 93.34 103.61

New Orleans 5 5 5 7.61 8.17 8.29 99.04 103.40

San Antonio 6 6 6 7.35 7.97 8.23 40.64 33.34

Phoenix 7 7 7 7.16 7.86 7.93 53.19 59.11

Houston 8 8 8 6.91 7.35 7.68 40.05 28.21

Orlando 9 10 10 6.90 6.96 7.05 62.59 62.22

Dallas 10 9 9 6.86 7.34 7.42 38.09 52.75

Denver 11 11 11 5.84 6.19 6.23 95.84 106.00

Toronto 12 12 12 4.61 5.16 5.24 106.56 110.29

Golden State 13 13 13 4.58 4.93 5.09 80.11 98.97

Philadelphia 14 14 14 2.22 2.58 2.85 79.68 103.89

Cleveland 15 15 15 1.85 2.30 2.37 41.92 23.51

Portland 16 17 17 1.76 1.49 1.00 27.50 4.43

Washington 17 16 16 1.45 1.97 1.99 103.12 112.76

Sacramento 18 18 18 0.41 0.73 0.97 56.56 60.59

Indiana 19 19 19 0.32 0.43 0.47 41.09 49.84

Atlanta 20 20 20 0.00 0.00 0.00 25.03 26.19

Chicago 21 21 21 -1.01 -0.78 -0.69 70.84 67.22

Charlotte 22 22 22 -2.25 -1.72 -1.43 59.92 57.45

New Jersey 23 23 23 -3.04 -2.41 -2.31 56.29 80.30

Memphis 24 24 24 -3.66 -3.46 -3.43 54.23 67.49

Minnesota 25 25 25 -3.97 -3.70 -3.85 60.24 50.14

New York 26 28 27 -4.36 -4.38 -4.17 74.28 61.13

LA Clippers 27 26 28 -4.45 -3.99 -4.18 50.37 53.96

Milwaukee 28 27 26 -4.89 -4.31 -3.86 58.84 37.19

Seattle 29 29 29 -5.97 -5.30 -4.91 66.05 61.89

Miami 30 30 30 -6.39 -5.37 -5.11 51.55 40.90

Note: Table 9 presents the estimated ranking, team strengths and team specific error variances based on

models (1) and (5). The heteroscedastic model is estimated either by FGLS or by MLE.
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Table 10: Ranking, strength and team specific variances 2008-2009

2008-2009 rank OLS rank GLS rank MLE β̂OLS β̂FGLS β̂MLE σ̂2
GLS σ̂2

MLE

Cleveland 1 1 1 7.00 6.39 6.32 49.44 53.19

Boston 2 3 3 5.71 5.16 5.20 65.90 66.93

LA Lakers 3 2 2 5.55 5.32 5.29 28.65 43.18

Orlando 4 4 4 4.66 4.67 4.51 87.02 97.93

Portland 5 5 5 3.08 2.89 2.88 77.53 90.15

Houston 6 6 7 1.94 1.41 1.23 23.53 20.29

San Antonio 7 8 6 1.60 1.31 1.27 42.19 59.02

Denver 8 7 8 1.40 1.37 1.20 79.61 64.37

Utah 9 9 9 0.57 0.71 0.69 42.54 45.46

Atlanta 10 11 10 0.00 0.00 0.00 33.54 27.66

Dallas 11 10 11 -0.02 0.00 -0.15 85.29 87.54

Phoenix 12 12 12 -0.14 -0.70 -0.68 78.29 71.61

New Orleans 13 13 13 -0.42 -0.74 -0.93 45.33 50.76

Miami 14 14 14 -1.19 -1.10 -1.18 30.28 35.36

Philadelphia 15 15 15 -1.52 -1.45 -1.45 41.77 40.06

Chicago 16 16 16 -1.83 -1.97 -1.85 61.04 47.01

Detroit 17 17 18 -1.99 -2.16 -2.42 36.99 25.23

Indiana 18 18 17 -2.47 -2.25 -2.36 21.82 18.98

Milwaukee 19 19 19 -2.70 -2.92 -3.13 71.48 61.47

Charlotte 20 20 20 -2.90 -3.15 -3.27 43.59 62.13

New York 21 21 21 -4.02 -4.13 -4.25 94.84 89.81

New Jersey 22 22 22 -4.08 -4.31 -4.35 142.99 144.70

Toronto 23 23 23 -4.17 -4.42 -4.49 70.52 83.92

Golden State 24 24 24 -5.59 -5.84 -6.00 62.30 57.08

Minnesota 25 25 25 -6.41 -6.26 -6.26 74.48 79.85

Memphis 26 26 26 -6.84 -6.71 -6.57 59.49 48.74

Oklahoma City 27 27 27 -7.71 -7.87 -7.87 69.34 56.48

Washington 28 28 28 -8.75 -8.97 -8.97 52.46 53.02

Sacramento 29 29 29 -10.16 -10.14 -10.29 91.82 82.26

LA Clippers 30 30 30 -10.27 -10.35 -10.33 141.39 150.31

Note: Table 10 presents the estimated ranking, team strengths and team specific error variances based

on models (1) and (5). The heteroscedastic model is estimated either by FGLS or by MLE.
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Table 11: Ranking, strength and team specific variances 2009-2010

2009-2010 rank OLS rank GLS rank MLE β̂OLS β̂FGLS β̂MLE σ̂2
GLS σ̂2

MLE

Orlando 1 1 1 2.76 2.45 2.58 43.39 60.18

Cleveland 2 2 2 1.70 1.27 1.34 11.14 16.07

LA Lakers 3 5 4 0.86 0.29 0.32 61.10 65.79

Utah 4 3 3 0.84 0.56 0.50 64.69 65.95

San Antonio 5 4 5 0.62 0.31 0.14 48.89 33.43

Phoenix 6 7 7 0.22 -0.21 -0.26 70.21 64.12

Atlanta 7 6 6 0.00 0.00 0.00 50.85 48.77

Denver 8 8 8 -0.23 -0.54 -0.66 65.71 73.76

Oklahoma City 9 9 10 -0.63 -1.04 -1.18 44.68 42.03

Boston 10 10 11 -0.88 -1.19 -1.20 81.11 95.02

Portland 11 11 9 -0.97 -1.27 -1.08 43.61 42.96

Dallas 12 12 12 -1.70 -2.22 -2.20 134.36 106.67

Miami 13 13 13 -2.48 -2.85 -2.77 128.09 137.77

Milwaukee 14 15 15 -3.21 -3.53 -3.65 52.15 56.74

Charlotte 15 14 14 -3.37 -3.40 -3.35 65.44 64.72

Houston 16 16 16 -4.20 -4.33 -4.37 77.32 72.54

Memphis 17 18 18 -5.65 -5.96 -5.95 67.38 61.09

Chicago 18 17 17 -5.85 -5.93 -5.75 89.01 86.13

Toronto 19 19 19 -6.07 -6.43 -6.45 74.90 82.45

New Orleans 20 21 21 -6.73 -7.73 -7.75 25.26 30.10

Indiana 21 20 20 -7.24 -6.89 -6.82 78.87 65.10

Golden State 22 22 22 -7.50 -7.77 -7.81 83.35 91.18

Philadelphia 23 23 23 -8.36 -8.29 -8.13 55.62 53.52

Sacramento 24 25 25 -8.43 -8.70 -8.73 23.13 16.91

New York 25 24 24 -8.48 -8.61 -8.56 134.00 124.41

Detroit 26 26 26 -9.27 -8.81 -8.82 61.91 56.23

Washington 27 27 27 -9.27 -9.03 -9.27 36.37 42.64

LA Clippers 28 28 28 -10.35 -10.86 -10.92 91.72 101.09

New Jersey 29 29 29 -13.18 -13.10 -13.14 35.84 46.06

Minnesota 30 30 30 -13.52 -13.88 -13.91 62.89 61.86

Note: Table 11 presents the estimated ranking, team strengths and team specific error variances based

on models (1) and (5). The heteroscedastic model is estimated either by FGLS or by MLE.
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Table 12: Ranking, strength and team specific variances 2010-2011

2010-2011 rank OLS rank GLS rank MLE β̂OLS β̂FGLS β̂MLE σ̂2
GLS σ̂2

MLE

Miami 1 1 1 7.81 7.86 7.87 75.27 79.33

Chicago 2 2 2 7.49 7.16 7.18 58.24 42.75

LA Lakers 3 3 3 7.11 6.97 7.05 90.79 92.06

San Antonio 4 4 4 6.81 6.91 6.98 43.77 35.18

Orlando 5 5 5 5.96 6.36 6.35 66.72 72.15

Boston 6 8 7 5.86 5.47 5.56 42.20 53.41

Denver 7 6 6 5.77 5.60 5.68 72.69 79.27

Dallas 8 7 8 5.42 5.50 5.50 34.63 36.48

Oklahoma City 9 9 9 4.68 4.44 4.55 38.93 44.96

Memphis 10 11 10 3.59 3.50 3.56 54.61 56.49

Houston 11 10 11 3.40 3.52 3.45 27.41 27.83

Portland 12 12 12 2.89 3.13 3.19 62.64 64.19

New Orleans 13 14 14 2.21 2.17 2.24 76.22 71.19

Philadelphia 14 13 13 2.16 2.32 2.27 74.79 77.40

New York 15 15 15 1.66 1.80 1.78 61.53 68.96

Phoenix 16 16 16 0.42 0.44 0.52 45.23 41.52

Atlanta 17 18 17 0.00 0.00 0.00 113.23 106.98

Milwaukee 18 17 18 -0.05 0.01 -0.07 65.30 62.14

Indiana 19 19 19 -0.30 -0.11 -0.18 75.16 73.22

Utah 20 20 20 -0.47 -0.59 -0.57 71.07 63.25

Golden State 21 21 21 -0.92 -1.07 -1.10 57.41 56.26

LA Clippers 22 22 22 -1.59 -1.72 -1.75 37.73 44.60

Detroit 23 23 23 -2.75 -2.73 -2.68 31.86 33.36

Charlotte 24 24 24 -3.15 -3.14 -3.06 52.33 51.34

Sacramento 25 25 25 -3.83 -4.11 -4.12 62.82 59.34

Minnesota 26 26 26 -5.04 -5.00 -4.92 67.89 69.54

Toronto 27 28 28 -5.22 -5.12 -5.11 56.07 61.79

New Jersey 28 27 27 -5.22 -5.04 -5.03 25.42 29.89

Washington 29 29 29 -6.34 -6.34 -6.30 65.92 68.60

Cleveland 30 30 30 -7.97 -7.74 -7.70 65.37 51.23

Note: Table 12 presents the estimated ranking, team strengths and team specific error variances based

on models (1) and (5). The heteroscedastic model is estimated either by FGLS or by MLE.
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Table 13: Ranking, strength and team specific variances 2011-2012

2011-2012 rank OLS rank GLS rank MLE β̂OLS β̂FGLS β̂MLE σ̂2
GLS σ̂2

MLE

Chicago 1 1 1 4.87 4.86 4.70 80.76 102.14

San Antonio 2 2 2 4.68 4.57 4.59 80.67 66.34

Oklahoma City 3 3 3 4.04 3.90 3.83 15.03 8.47

Miami 4 4 4 3.44 2.95 3.00 83.12 86.04

Philadelphia 5 5 5 1.04 0.75 0.66 113.90 106.65

Denver 6 7 8 0.54 0.13 0.05 101.49 91.00

LA Clippers 7 8 7 0.20 0.09 0.11 44.66 68.77

Indiana 8 6 6 0.10 0.16 0.12 51.16 56.59

Atlanta 9 9 9 0.00 0.00 0.00 59.30 74.76

New York 10 13 14 -0.14 -0.76 -0.98 77.50 71.31

Memphis 11 10 10 -0.14 -0.46 -0.29 32.94 26.90

Boston 12 11 11 -0.18 -0.53 -0.69 68.54 66.14

LA Lakers 13 12 12 -0.46 -0.65 -0.70 21.65 32.02

Dallas 14 14 13 -0.64 -0.91 -0.96 72.24 69.97

Utah 15 16 16 -1.58 -2.14 -2.05 29.92 59.72

Houston 16 18 18 -2.03 -2.64 -2.51 38.58 40.34

Orlando 17 17 17 -2.04 -2.43 -2.40 74.61 86.46

Phoenix 18 15 15 -2.14 -1.97 -2.01 69.18 65.41

Milwaukee 19 20 20 -2.76 -3.60 -3.56 47.52 49.75

Portland 20 19 19 -2.76 -3.08 -3.05 140.57 136.12

Minnesota 21 21 21 -4.37 -4.76 -4.75 62.14 49.21

Golden State 22 23 23 -5.28 -5.76 -6.00 83.14 74.56

New Orleans 23 22 22 -5.68 -5.36 -5.39 26.12 14.38

Toronto 24 24 24 -6.17 -6.13 -6.13 89.52 97.46

Sacramento 25 25 25 -7.38 -7.05 -7.24 81.56 95.08

Detroit 26 26 27 -7.69 -8.01 -8.02 75.94 67.74

Washington 27 27 26 -7.74 -8.02 -7.93 98.56 99.42

New Jersey 28 28 28 -8.76 -9.10 -9.03 54.44 30.23

Cleveland 29 29 29 -9.56 -9.32 -9.20 83.20 94.20

Charlotte 30 30 30 -16.64 -16.74 -16.64 68.05 56.44

Note: Table 13 presents the estimated ranking, team strengths and team specific error variances based

on models (1) and (5). The heteroscedastic model is estimated either by FGLS or by MLE.
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Table 14: Ranking, strength and team specific variances 2012-2013

2012-2013 rank OLS rank GLS rank MLE β̂OLS β̂FGLS β̂MLE σ̂2
GLS σ̂2

MLE

Oklahoma City 1 1 1 9.26 8.79 8.76 58.51 66.72

Miami 2 2 2 7.14 6.92 6.87 46.89 46.97

San Antonio 3 3 4 6.87 6.56 6.51 92.12 86.43

LA Clippers 4 4 3 6.63 6.52 6.54 87.72 95.09

Denver 5 5 5 5.46 5.04 5.09 39.67 30.69

Memphis 6 6 6 4.43 4.27 4.38 34.78 29.92

New York 7 7 7 3.90 4.06 4.06 82.61 90.31

Houston 8 8 8 3.88 3.60 3.69 99.96 114.10

Indiana 9 9 9 3.41 3.18 3.19 58.66 59.77

LA Lakers 10 10 10 1.67 1.46 1.52 38.99 43.93

Brooklyn 11 11 12 1.50 1.12 1.13 81.36 85.01

Golden State 12 12 11 1.42 1.12 1.21 68.83 51.55

Utah 13 13 14 0.39 0.26 0.22 41.42 38.46

Chicago 14 14 13 0.06 0.13 0.26 98.39 106.48

Atlanta 15 15 15 0.00 0.00 0.00 67.89 60.40

Dallas 16 16 16 -0.21 -0.43 -0.28 72.96 76.30

Boston 17 17 17 -0.39 -0.44 -0.39 64.77 53.86

Minnesota 18 19 19 -1.64 -2.16 -2.17 57.32 59.70

Milwaukee 19 18 18 -1.73 -2.00 -1.88 44.48 45.40

Toronto 20 20 20 -1.80 -2.24 -2.27 78.95 81.10

Portland 21 21 21 -2.47 -2.72 -2.64 72.96 57.05

Washington 22 22 22 -2.68 -2.74 -2.72 37.31 41.78

New Orleans 23 24 24 -2.96 -3.23 -3.01 66.26 79.53

Philadelphia 24 23 23 -3.32 -3.07 -2.88 50.19 52.97

Sacramento 25 27 27 -4.21 -4.54 -4.48 92.03 88.06

Detroit 26 25 25 -4.25 -4.13 -3.99 91.64 97.29

Cleveland 27 26 26 -4.78 -4.47 -4.28 40.23 28.42

Phoenix 28 28 28 -5.67 -5.73 -5.55 77.79 76.98

Orlando 29 29 29 -7.05 -7.04 -7.01 92.11 102.29

Charlotte 30 30 30 -9.19 -9.24 -9.27 56.55 58.35

Note: Table 14 presents the estimated ranking, team strengths and team specific error variances based

on models (1) and (5). The heteroscedastic model is estimated either by FGLS or by MLE.
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Table 15: Ranking, strength and team specific variances 2013-2014

2013-2014 rank OLS rank GLS rank MLE β̂OLS β̂FGLS β̂MLE σ̂2
GLS σ̂2

MLE

San Antonio 1 1 1 8.84 9.64 9.66 79.24 70.32

LA Clippers 2 2 2 7.92 8.21 8.27 82.13 74.79

Oklahoma City 3 3 3 7.48 7.16 7.36 59.27 69.95

Houston 4 5 5 5.86 6.16 6.37 70.48 54.04

Golden State 5 4 4 5.82 6.39 6.50 56.22 55.69

Portland 6 7 7 5.20 5.14 5.25 49.87 50.38

Miami 7 6 6 5.11 6.10 6.20 64.17 68.75

Indiana 8 9 9 4.53 4.65 4.78 88.06 85.47

Phoenix 9 8 8 3.95 4.71 5.00 43.55 36.20

Minnesota 10 12 11 3.94 4.17 4.16 75.88 63.61

Dallas 11 10 10 3.68 4.34 4.27 22.79 19.12

Toronto 12 11 12 3.28 4.26 4.14 0.77 2.45

Memphis 13 13 13 2.93 2.52 2.84 43.24 65.23

Chicago 14 14 14 1.81 2.07 2.21 95.17 111.65

Washington 15 15 15 1.47 1.60 1.78 39.32 50.19

Charlotte 16 16 16 0.04 0.82 0.84 67.37 84.83

Atlanta 17 19 20 0.00 0.00 0.00 46.42 59.23

New York 18 20 19 -0.46 -0.05 0.10 154.23 157.26

Denver 19 17 17 -0.58 0.30 0.45 98.23 98.42

Brooklyn 20 18 18 -0.63 0.17 0.22 109.36 89.03

Sacramento 21 21 21 -1.07 -0.33 -0.10 76.78 73.75

New Orleans 22 22 22 -1.20 -1.11 -1.30 23.80 24.21

Cleveland 23 23 23 -2.94 -2.54 -2.43 85.04 74.78

Detroit 24 24 24 -3.28 -3.17 -3.05 71.65 64.93

Boston 25 25 25 -4.05 -3.25 -3.09 46.00 36.98

LA Lakers 26 26 26 -4.31 -4.08 -3.99 102.43 101.73

Orlando 27 27 27 -4.99 -4.65 -4.67 32.04 24.60

Utah 28 28 28 -5.36 -5.19 -5.05 77.77 85.48

Milwaukee 29 29 29 -7.51 -7.02 -6.98 10.07 15.82

Philadelphia 30 30 30 -9.91 -9.72 -9.57 96.27 101.89

Note: Table 15 presents the estimated ranking, team strengths and team specific error variances based

on models (1) and (5). The heteroscedastic model is estimated either by FGLS or by MLE.

30



References

Andrews, D. W. K. (1993). Tests for parameter instability and structural change with

unknown change point. Econometrica 61 (4), 821–856.

Baghal, T. (2012). Are the ”four factors” indicators of one factor? An application of struc-

tural equation modeling methodology to nba data in prediction of winning percentage.

Journal of Quantitative Analysis in Sports 8 (1), Article: 4.

Bai, J. and P. Perron (1998). Estimating and testing linear models with multiple structural

changes. Econometrica 66 (1), 47–78.

Baltagi, B. H. and Q. Li (1998). Testing AR(1) against MA(1) disturbances in an error

component model. Econometrica 66 (1), 47–78.

Boulier, B. L. and H. O. Stekler (1999). Are sports seedings good predictors?: An evalu-

ation. International Journal of Forecasting 15, 83–91.

Bradley, R. A. and M. E. Terry (1952). The rank analysis of incomplete designs, 1. The

method of paired comparisons. Biometrika 39, 324–345.

Brown, W. O. and R. D. Sauer (1993). Does the basketball market believe in the hot

hand? Comment. American Economic Review 83, 1377–1386.

Camerer, C. F. (1989). Does the basketball market believe in the hot hand? American

Economic Review 79, 1257–1261.

Carlin, B. P. (1996). Improved NCAA basketball tournament modeling via point spread

and team strength information. The American Statistician 50, 39–43.

Caudill, S. B. (2003). Predicting discrete outcomes with the maximum score estima-

tor: The case of the NCAA men’s basketball tournament. International Journal of

Forecasting 19, 313–317.

Chow, G. (1960). Tests of equality between sets of coefficients in two linear regressions.

Econometrica 28, 591–605.

David, H. A. (1959). Tournaments and paired comparisons. Biometrika 46, 139–149.

Elo, A. E. (1978). The rating of chess players past and present. New York: Arco.

31



Entine, O. A. and D. S. Small (2008). The role of rest in the nba home-court advantage.

Journal of Quantitative Analysis in Sports 4 (2), Article: 6.

Fahrmeir, L. and G. Tutz (1994). Dynamic stochastic models for time-dependent ordered

paired comparison systems. Journal of the American Statistical Association 89, 1438–

1449.

Glickman, M. E. (1993). Paired comparison models with time-varying parameters. Phd

dissertation, Department of Statistics, Harvard University, Cambridge.

Glickman, M. E. (1999). Parameter estimation in large dynamic paired comparison ex-

periments. Applied Statistics 48, 377–394.

Glickman, M. E. (2001). Dynymic paired comparison models with stochastic variances.

Journal of Applied Statistics 28, 673–689.

Glickman, M. E. and H. S. Stern (1998). A state-space model for national football league

scores. Journal of the American Statistical Association 93, 25–35.

Hansen, P. R., A. Lunde, and J. M. Nason (2011). The model confidence set. Economet-

rica 79, 453–497.

Harville, D. A. (2003). The selection of seeding of college basketball or football teams for

postseason competition. Journal of the American Statistical Association 98, 17–27.

Harville, D. A. and M. H. Smith (1994). The home-court advantage: How large is it and

does it vary from team to team. The American Statistician 48, 22–29.

Jones, M. B. (2007). Home advantage in the NBA as a game-long process. Journal of

Quantitative Analysis in Sports 3 (4), Article: 2.

Jones, M. B. (2008). A note on team-specific home advantage in the NBA. Journal of

Quantitative Analysis in Sports 4 (3), Article: 5.

Koopman, S. J. and R. Lit (2014). A dynamic bivariate poisson model for analyzing and

forecasting match results in the english premier league. Journal of the Royal Statistical

Society A, forthcoming.

Kubatko, J., D. Oliver, K. Pelton, and D. T. Rosenbaum (2007). A starting point for

analyzing basketball statistics. Journal of Quantitative Analysis in Sports 3 (3), Article:

1.

32



Loeffelhold, B., E. Bednar, and K. W. Bauer (2009). Predicting NBA games using neural

networks. Journal of Quantitative Analysis in Sports 5 (1), Article: 7.

Page, G. L., G. W. Fellingham, and C. S. Reese (2007). Using box-scores to determine a

positions’s contribution to winning basketball games. Journal of Quantitative Analysis

in Sports 3 (4), Article: 1.

Rosenfeld, J. W., J. I. Fisher, D. Adler, and C. Morris (2010). Predicting overtime with

the pythagorean formula. Journal of Quantitative Analysis in Sports 6 (2), Article: 1.

Schwertman, N. C., T. A. McCready, and L. Howard (1991). Probability models for the

NCAA regional basketball tournaments. The American Statistician 45, 35–38.

Steckler, H. O., D. Sendor, and R. Verlander (2010). Issues in sports forecasting. Inter-

national Journal of Forecasting 26, 606–621.

Stefani, R. T. (1977a). Football and basketball prediction using least squares. IEEE

Transactions on Systems, Man, and Cybernetics SMC-7, 117–121.

Stefani, R. T. (1977b). Improved least squares football, basketball, and soccer predictions.

IEEE Transactions on Systems, Man, and Cybernetics SMC-7, 117–121.

Stekler, H. O. and A. Klein (2012). Predicting the outcomes of NCAA basketball cham-

pionship games. Journal of Quantitative Analysis in Sports 8 (1), Article: 1.
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