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Abstract

In this paper we consider ML estimation for a broad class of parameter-driven models for

discrete dependent variables with spatial correlation. Under this class of models, which includes

spatial discrete choice models, spatial Tobit models and spatial count data models, the dependent

variable is driven by a latent stochastic state variable which is speci�ed as a linear spatial regres-

sion model. The likelihood is a high-dimensional integral whose dimension depends on the sample

size. For its evaluation we propose to use e�cient importance sampling (EIS). The speci�c spatial

EIS implementation we develop exploits the sparsity of the precision (or covariance) matrix of the

errors in the reduced-form state equation typically encountered in spatial settings, which keeps

numerically accurate EIS likelihood evaluation computationally feasible even for large sample

sizes. The proposed ML approach based upon spatial EIS is illustrated with estimation of a

spatial probit for US presidential voting decisions and spatial count data models (Poisson and

Negbin) for �rm location choices.
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1. Introduction

Modeling spatial dependence in linear regression frameworks for continuous dependent variables

has received much attention over the last three decades and speci�cations of cross-sectional spatial

correlation in form of a linear model with a spatial lag or spatial error term has become a standard

tool in econometrics. Excellent up-to-date overviews can be found in the monographs of Ariba (2009)

and LeSage and Pace (2009) as well as in the handbook edited by Anselin, et al. (2010).

Spatial models for discrete dependent variables such as counts or binary and multinomial outcomes

have received less attention in the spatial econometrics literature. This might be explained by the

fact that the introduction of spatial dependence in traditional discrete dependent variable models

greatly complicates estimation and speci�cation testing (see, e.g., Anselin, 1999). However, research

e�orts focusing on spatial models for discrete variables and developing appropriate methods for their

estimation have markedly expanded in recent years as they are sorely needed for empirical studies in

social sciences analyzing phenomena involving discrete outcomes of interacting agents.

Early spatial applications for binary outcomes are found in Case (1992) and McMillen (1992) who

consider probit models where the underlying latent model is speci�ed as a spatially dependent process

so that the likelihood takes the form of an analytically intractable high-dimensional integral whose

dimension is equal to the sample size n. For estimation Case (1992) relies on Maximum-Likelihood

(ML) based upon a normalized version of the latent model accounting for the heteroscedasticity

induced by spatial dependence but ignoring the spatial correlation in the binary outcomes, while

McMillen (1992) proposes an ML approach based on an Expectation-Maximization (EM) algorithm

avoiding direct evaluations of the high-dimensional likelihood integral. More recent studies propose

to estimate spatial probit models by Bayesian Markov-Chain Monte-Carlo (MCMC) techniques (see,

e.g., Smith and LeSage, 2004, and Franzese et al., 2010) or by simulated ML based upon the GHK

importance sampling procedure developed by Geweke (1991), Hajivassiliou (1990) and Keane (1994)

(see, e.g., Beron and Vijverberg, 2004). As illustrated by the Monte-Carlo (MC) study in Beron and

Vijverberg (2004) ML parameter estimates under the standard implementation of GHK are quite

accurate for moderate sample sizes n, but become very time consuming for large ns as it involves

the Cholesky-factorization of n× n precision matrices. In order to overcome the high computational
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costs of standard GHK for spatial probits, Pace and LeSage (2011) propose a GHK implementation,

which exploits the fact that in typical spatial applications (with spatial units having only a small

number of direct neighbors) those covariance (or precision) matrices are sparse. ML-GHK as well as

Bayesian MCMC are also applied for the estimation of spatial probit models for multiple outcomes,

such as the multinomial probit model (see Bolduc, 1997) and the ordered probit speci�cation (see

LeSage and Pace, 2009).

Existing spatial models for discrete count data can broadly be speci�ed as observation-driven

or parameter-driven. An early observation-driven approach to model spatially dependent count

data is the auto Poisson model proposed by Besag (1974), where the expected value of the count

variable is speci�ed as a function of neighboring counts. Direct extensions of this spatial count

data approach, which is amenable to standard ML estimation, are the speci�cation of Kaiser and

Cressie (1997) based upon a truncated (Winzorized) Poisson distribution and the semi-parametric

Negative-Binomial (Negbin) speci�cation proposed by Basile et al. (2010). Observation-driven count

data models where the expected value of a count variable is speci�ed as a function of spatially

lagged expectations are analyzed by Hays and Franzese (2009) and Lambert et al. (2010). In order

to estimate those models the former study rely on a nonlinear Least Squares (LS) approach and

the Generalized Method of Moments (GMM), while Lambert et al. (2010) use a two-step limited

information ML (LIML) procedure. For an overview of further spatial observation-driven count data

models � see Lambert et al. (2010).

An early parameter-driven approach for spatially dependent count variables is found in Clayton

and Kaldor (1987) who propose a Poisson model where the expected values of the count variable

depends on a latent stochastic and spatially correlated process accounting for cross-sectional spatial

random e�ects. Further closely related count data models with spatial random e�ects are proposed

by LeSage et al. (2007) and Gschlöÿl and Czado (2008). While parameter-driven approaches to

model count data are typically more �exible to include di�erent forms of spatial dependence and

often easier to analyze w.r.t. the spatial e�ects than the class of observation-driven models, they are

more di�cult to estimate. In fact, as it is the case for the spatial probit models, ML estimation

of parameter-driven count-data models requires high-dimensional numerical integration. In order to
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circumvent this integration, Clayton and Kaldor (1987) apply an empirical Bayes estimator based

upon quadratic local approximations of the log-likelihood function, while LeSage et al. (2007) and

Gschlöÿl and Czado (2008) rely on a Bayesian MCMC posterior analysis.

In the present paper, we consider a simulated ML approach for a broad class of parameter-driven

models for discrete dependent variables with spatial correlation. This class of models is characterized

by discrete conditional densities for the dependent variable given a latent stochastic state variable

which is speci�ed as a spatial linear regression model allowing for di�erent forms of spatial dependence

(spatially lagged states, spatial autoregressive errors, spatial moving average errors, or spatial random

e�ects). This class includes spatial probits for binary and multiple outcomes as well as parameter-

driven count data models with spatial e�ects.

For the high-dimensional interdependent integration required for ML estimation of this class of

models we propose to use the E�cient Importance Sampling (EIS) procedure developed by Richard

and Zhang (2007). EIS is a high-dimensional MC integration technique, which is based on simple

LS approximations, designed to maximize the numerical accuracy of MC likelihood estimation. The

speci�c implementation of EIS we develop follows the idea of Pace and LeSage (2011) in that it

explicitly exploits the sparsity of the precision (or covariance) matrix of the errors in the reduced-form

state equation typically found in spatial applications. This keeps numerically accurate EIS likelihood

evaluation computationally feasible even for large sample sizes (n = 5000+). When applied to

spatial probit models, the proposed EIS approach covers the spatial GHK implementation introduced

by Beron and Vijverberg (2004) as a special case obtained by omitting the LS optimization step.

However, the applicability of EIS is, in contrast to GHK, not restricted to truncated high-dimensional

Gaussian integrals de�ning the likelihood of spatial probits, so that it can be used for a much broader

class of spatial models compared to GHK. A further attractive feature of spatial EIS is that it is

highly generic in that its basic structure does not depend on a speci�c discrete conditional density of

the dependent variable or the speci�c form of spatial dependence. Hence, changes in the spatial model

being analyzed typically require only minor adjustments of a baseline spatial EIS implementation.

In order to illustrate the spatial EIS approach, we consider ML estimation for spatial probit,

Poisson and Negbin models. In particular, ML based on spatial EIS is illustrated through a set of MC
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experiments analyzing its statistical and numerical properties for a large sample size. Furthermore,

we use our procedure to estimate a spatial probit model for US presidential voting decisions and

spatial count data models for �rm investment location decisions.

The remainder of this paper is structured as follows. The class of parameter-driven discrete

dependent variable models with spatial correlation is introduced in Section 2. Section 3 describes ML

estimation based on spatial EIS and discusses its numerical and statistical performance. Empirical

applications to a spatial probit model for US presidential voting decisions and spatial count data

models for �rm location decisions are presented in Section 4. Section 5 concludes.

2. Discrete Dependent Variable Models with Spatial Correlation

The class of models with spatial correlation we consider is characterized by a discrete conditional

density f(yi|λi) for the dependent variable yi observed for spatial unit i (i = 1, ..., n) given a la-

tent stochastic state variable λi. Conditional on the states λ = (λ1, ..., λn)′ the dependent variables

y = (y1, ..., yn)′ are assumed to be stochastically independent. The speci�cation assumed for the state

variables is a Gaussian linear spatial regression model designed to account for spatial correlation in

y and to include observable exogenous variables. Here, we focus on the two most popular variants of

the linear regression model with spatial correlation. First, the spatial autoregressive lagged depen-

dent variable model (SAL), which includes spatially lagged dependent variables on the r.h.s. of the

regression equation, and second, the spatial autoregressive error model (SAE), which permits spatial

autocorrelation in the errors of the regression model (see, e.g., LeSage and Pace, 2009). The reduced

forms of the SAL and SAE model for the vector of states λ are given by

λ = m+ u, u ∼ N(0, H−1), (1)

with

SAL: m = (I − ρW )−1Xβ, H = (1/σ2)(I − ρW )′(I − ρW ), (2)

SAE: m = Xβ, H = (1/σ2)(I − ρW )′(I − ρW ), (3)
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where u = (u1, ..., un)′ is a vector of Gaussian (reduced form) errors with precision matrix H, the

vector m = (m1, ...,mn)′ represents the conditional mean of λ given the exogenous variables in the

(n × `) matrix X with an `-dimensional vector of regression coe�cients β, the variable I denotes

the identity matrix, and σ > 0 is a scale factor. The (n × n) matrix W contains non-stochastic

and pre-determined spatial weights wij specifying the distance or contiguity relation between the

spatial units i and j, and the scalar ρ represents the spatial autoregressive parameter measuring

the importance of spatial correlation. Speci�cally, under the SAL model ρ measures the strength of

global spatial feedback and feed-forward e�ects of shocks between locations, while under the SAE

speci�cation ρ controls spatial correlation in the error process. In typical applications the spatial

weights are non-negative numbers with wij > 0 for spatial units which are direct neighbors and

wij = 0 for others (by convention the diagonal elements wii are set to zero). Since spatial units can

be assumed to have only a small number of nearby neighbors, the spatial weight matrix W as well

as (I − ρW ) and the precision matrix H are sparse matrices containing a large portion of zeros. A

su�cient condition for invertibility of (I−ρW ) is that ρ ∈ (1/ζmin, 1/ζmax), where ζmin and ζmax are

the smallest (on the real line) and largest eigenvalue of W , respectively (see, LeSage and Pace, 2009,

Chap. 4.3.2.). Before we discuss some discrete conditional densities for f(yi|λi), we shall mention

that the SAL and SAE speci�cations (1)-(3) are examples and that other members of the family of

linear spatial regression models including a combination of SAL and SAE or spatial moving average

processes, can be easily accommodated by our estimation approach. Such alternatives are discussed,

e.g., in LeSage and Pace (2009, Chap. 2).

2.1. Spatial Probit Models

If the observed discrete dependent variable yi re�ects a binary choice outcome such that yi ∈ {0, 1},

the latent state λi can be interpreted as a utility or pro�t di�erence, with yi = 1 if λi ≥ 0 and yi = 0

for λi < 0. The corresponding conditional distribution of yi given the signal λi is a degenerated

distribution with a probability density function (pdf) which can be written as

f(yi|λi) = 1(ziλi < 0), with zi = 1− 2yi, (4)
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where 1(·) denotes an indicator function. Equation (4) together with Equations (1)-(3) de�ne spatial

probit models where for identi�cation the scaling parameter σ is set equal to 1. Such spatial probit

models have attracted considerable attention in the spatial-econometric literature (see, Case, 1992

and McMillen, 1992, for early contributions and LeSage and Pace, 2009, for a textbook treatment).

Applications of spatial probit models include analyses of the voting decisions of US counties in

presidential elections (Smith and LeSage, 2004), the di�usion of legislative term-limits among US

states and theWorld-War I entry decisions (Franzese et al., 2010). Various extensions of binary spatial

probit models can be framed in our set-up, including a spatial ordered probit model as discussed in

LeSage and Pace (2009, Chap. 10.2) and the multinomial probit model with spatial correlation as

proposed by Bolduc et al. (1997).

2.2. Spatial Count Data Models

In situations where yi represents a count variable with yi ∈ {0, 1, 2, 3, ...}, we can assume for the

conditional distribution of yi|λi a Poisson distribution with an appropriate link function b, whereby

the mean of the conditional Poisson distribution for yi|λi, denoted by θi, is expressed as b(θi) = λi.

Using a log-link function b(θi) = ln(θi), which ensures the positivity of the mean θi without parametric

restrictions on the parameters of the state model (β, ρ, σ2), the conditional pdf for yi is given by

f(yi|λi) =
1

yi!
exp{yiλi − exp{λi}}. (5)

The Poisson models de�ned by Equations (1)-(3) and (5) adapt naturally the class of parameter-

driven models for time-series of count-data with serial dependence introduced by Zeger (1988) to

cross-sectional count-data processes with spatial dependence. As such the parameter-driven spatial

count-data speci�cations (1)-(3) and (5) are closely related to the Poisson models with latent spatial

random e�ects proposed by LeSage et al. (2007) and Gschöÿl and Czado (2008) and di�er from the

observation-driven spatial Poisson model of Lambert et al. (2010), which speci�es the mean of the

Poisson distribution θi as a measurable function of spatially lagged θis and the regressors. In fact, the

spatial Poisson model proposed by Lambert et al. (2010) represents a special case of the parameter-

driven SAL Poisson model de�ned by Equations (1), (2), and (5) since it obtains by specifying the

6



process of the states λ in Equation (1) without the vector of errors u, which is tantamount to assume

in Equation (2) that the variance parameter tends to zero (σ2 → 0). The spatial Poisson models

proposed in the abovementioned studies are applied to analyses of knowledge spill-overs measured by

patent citation (LeSage et al., 2007), the number of claims for policyholders of insurance companies

(Gschöÿl and Czado, 2008), and the location choice of �rms (Lambert et al., 2010).

Under the Poisson distribution (5) the dispersion index (de�ned as the ratio between the variance

and the mean) equals one. However, count data often exhibit substantial overdispersion with a

dispersion index being signi�cantly larger than 1, which cannot be captured by a conditional Poisson

distribution even if marginalization of the conditional mean can generate by itself an over-dispersed

unconditional distribution. Hence, it might be important to replace the Poisson by a conditional

distribution which allows for overdispersion, such as the negative binomial (Negbin). For a log-link

function the conditional pdf of a Negbin distribution for yi is given by

f(yi|λi) =
Γ(yi + s)

Γ(s)Γ(yi + 1)

( 1

1 + exp{λi}/s

)s( exp{λi}
exp{λi}+ s

)yi
, (6)

where Γ(·) denotes the Gamma function. The over-dispersion is a decreasing function of the param-

eter s > 0 and the Poisson distribution in Equation (5) obtains as s→∞.

2.3. Spatial Tobit Models

Tobit models are used in situations where a subset of observations for the dependent variables yi

are censored with, say, yi = λi if λi > 0 and yi = 0 if λi ≤ 0 such that yi ∈ R+ (see, e.g.,

Winkelmann and Boes, 2006). This implies that for the uncensored observations with yi = λi, the

state variable is directly observed, while for the censored ones with yi = 0 the state remains latent.

Let {yi, i = 1, ..., n′} be the subset of censored observations, and {yi, i = n′ + 1, ..., n} the set of

uncensored observations, then the conditional distribution of yi given the state λi for the censored

yi's is a degenerated distribution with a pdf which can be written as

f(yi|λi) = 1(yi = 0) · 1(λi < 0), i = 1, ..., n′. (7)

7



This implies that the likelihood contribution of the censored variables has the same form as the

likelihood of the spatial probits of Section 2.1. The corresponding probit probabilities are obtained

under the conditional normal distribution for the unobserved states (λ1, ..., λn′) given the observed

ones (λn′+1, ...., λn) obtained from Equation (1), while the likelihood contribution of the uncensored

observations is that of a linear Gaussian spatial regression model. Such a spatial Tobit model with

a SAL speci�cation for λ is applied by LeSage and Pace (2009, Chap. 10) to model interregional

origin-destination commuting �ows using a data set where the �ow variable is zero for 15 percent of

the observations.

3. EIS Likelihood Evaluation

In order to estimate the parameters for speci�cations from the class of spatial discrete dependent

variable models introduced in Section 2 we propose to use ML based upon the EIS Monte-Carlo

integration technique introduced by Richard and Zhang (2007).

The likelihood for the spatial discrete dependent variable models obtains by integrating the con-

ditional joint pdf of the dependent variables y and the errors of the states u given the regressors

X with respect to u. Factorizing the joint Gaussian density for the errors f(u) given by Equations

(1)-(3) `back-recursively' yields

f(u) =
n∏
i=1

f(ui|u(i+1)), (8)

where u(i) = (ui, ..., un)′ with u(n+1) = ∅ and u(1) = u. It follows that the likelihood integral to be

evaluated can be written as

L(ψ) =

∫
Rn

n∏
i=1

ϕi(u(i))du, (9)

with

ϕi(u(i)) = f(yi|ui, X)f(ui|u(i+1)), (10)

where ψ regroups the model parameters and f(yi|ui, X) denotes the conditional density of yi given

(ui, X) obtained from the conditional density f(yi|λi) (see Equations 4-7). Under a probit and a
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Poisson model, e.g., we have

f(yi|ui, X) =

 1(ziui ≤ −zimi) (Probit)

1
yi!

exp{yi(mi + ui)− exp{mi + ui}} (Poisson).
(11)

The EIS algorithm facilitates numerically accurate MC-evaluations of likelihood integrals of the form

as given by Equations (9) and (10), and relies upon a sequence of auxiliary regressions used to obtain

recursively an IS density for u that closely mimics the target density kernel
∏
i ϕi which needs to be

integrated.

Based upon the factorization of the likelihood integrand used in Equations (9) and (10) we pro-

pose an EIS implementation for the spatial models under consideration which di�ers from existing

EIS algorithms in two critical ways. First, the fact that we use the factorization of the likelihood

integrand obtained from the back-recursive decomposition of the density for u given in Equation

(8) requires that the EIS-algorithm has to be implemented such that it constructs the IS density

forward-recursively. In contrast, existing EIS implementations, as that in Liesenfeld and Richard

(2010), are back-recursively as they would be based on a decomposition of the likelihood integrand

using the reverse factorization of the joint density for u given by f(u) =
∏n
i=1 f(ui|ui−1, ..., u1). The

reason for using a forward rather than a backward-recursive version of EIS is that for applications

to spatial probits the former represents a direct generalization of the spatial GHK implementations

proposed by Beron and Vijverberg (2004) and Pace and LeSage (2011), so that we can compare them

directly to EIS.

The second di�erence of the EIS implementation we propose for the spatial models introduced in

Section 2 relative to existing ones, is that it relies on a parametrization of the target density kernel

obtained by using the precision matrix of the latent states (H) rather than its covariance matrix

(Σ = H−1) as used by typical EIS applications (see, e.g., Richard and Zhang, 2007, and Liesenfeld

and Richard, 2010). This EIS adapted to work with the precision matrix takes advantage of the

fact that for the spatial speci�cations under consideration the precision matrix is, in contrast to

the covariance matrix, a sparse matrix (see Equations 2 and 3). Since matrix operations for sparse

matrices require, in general, less operation counts and reduced memory requirements than for dense
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matrices, the sparsity of the precision matrix can be exploited to reduce signi�cantly the computing

time relative to an EIS implementation based on the dense covariance matrix. Of course, if we

were considering spatial speci�cations where it is the covariance matrix Σ which is sparse rather

than the precision matrix H, we would need to use the standard EIS implementation based on the

covariance matrix in order to ensure computational e�ciency. An example for such a speci�cation is

the spatial moving average process, where the covariance of the reduced form error u has the form

Σ = σ2(I−ρW )(I−ρW )′. (For a discussion of the computational advantages of the GHK exploiting

the sparsity of precision (or covariance) matrices, see Pace and LeSage, 2011).

In Section 3.1 we outline the basic principle of EIS, and in Section 3.2 we illustrate its implemen-

tation for the spatial probit and Poisson models. Once the algorithm is implemented for a probit

or a Poisson model, it can be easily adapted to other speci�cations of the class of discrete spatial

models as it would require only minor modi�cations of a baseline spatial EIS implementation.

3.1. Basic Principle of EIS

EIS MC integration for the likelihood factorized as in Equations (9) and (10) is based on a back-

recursive sequence of auxiliary importance sampling densities for ui given u(i+1) of the form

gi(ui|u(i+1); ai) =
ki(u(i); ai)

χi(u(i+1); ai)
, with χi(u(i+1); ai) =

∫
R1

ki(u(i); ai)dui, (12)

for i = 1, ..., n, where {ki(u(i); ai), ai ∈ Ai} is a preassigned class of parametric density kernels with

(analytically) available integrating factors in ui denoted by χi(u(i+1); ai). The likelihood integral in

Equation (9) is then transformed into its importance sampling representation given by

L(ψ) = χn(an) ·
∫
Rn

n∏
i=1

ϕi(u(i)) · χi−1(u(i); ai−1)
ki(u(i); ai)

n∏
i=1

gi(ui|u(i+1); ai)du, (13)

where χ0(·) ≡ 1, and the corresponding IS MC likelihood estimate obtains as

L̄(ψ) = χn(an) · 1

S

S∑
s=1

w̃(s), with w̃(s) =

n∏
i=1

ϕi(ũ
(s)
(i) ) · χi−1(ũ(s)(i) ; ai−1)

ki(ũ
(s)
(i) ; ai)

, (14)
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where {ũ(s)}Ss=1 denotes S draws from the IS density g(u; a) =
∏n
i=1 gi(ui|u(i+1); ai) with a =

(a1, ..., an) ∈ A = ×ni=1Ai. The objective of EIS is to select a parametrization â ∈ A that mini-

mizes in Equation (14) for each i the MC variation of the ratios ϕiχi−1/ki de�ning the IS weights

w̃(s). According to the EIS principle of Richard and Zhang (2007) a near optimal solution to this

minimization problem for the back-recursive importance sampling representation of the likelihood

integrand in Equation (13) obtain as solutions of the following forward-recursive sequence of least

squares (LS) problems:

âi = arg min
ai∈Ai

S∑
s=1

{
ln
[
ϕi
(
ũ
(s)
(i)

)
· χi−1

(
ũ
(s)
(i) ; âi−1

)]
− ln ki

(
ũ
(s)
(i) ; ai

)}2

, i = 1, ..., n, (15)

where {ũ(s)}Ss=1 denotes S trajectories drawn from an initial IS sampling density g(u; a(0)). (Under

the reverse factorization of the target density kernel mentioned above, EIS would construct instead

a sequence of auxiliary sampling densities gi for ui given (ui−1, ..., u1) which would require a back-

recursive version of the sequence of EIS regressions in Equation (15), see Richard and Zhang, 2007.)

As initial samplers we can use densities obtained from local approximations to ϕiχi−1 or densities

associated with density kernels for u(i) included in ϕi. In the probit case we will use the GHK sampling

densities and for the Poisson application an appropriate second-order Taylor-series approximation

(TSA). As discussed in Richard and Zhang (2007), the sequence of EIS regressions (15) is iterated

over â = (â1, ..., ân)′ until a �xed-point solution is obtained. In order to achieve a �xed-point

convergence for â, the trajectories {ũ(s)}Ss=1 generated under di�erent values for a must be obtained

by transformation of a set of Common Random Numbers (CRNs). Note that â is an implicit function

of the model parameters ψ. Therefore, complete reruns of the EIS algorithm is required for each new

ψ value. The use of CRNs across those reruns ensures continuity of the MC likelihood approximation

L̄(ψ) with respect to ψ.

3.2. Spatial EIS Implementation

The implementation of the sequential EIS scheme described in Section 3.1 to the likelihood of a

particular model begins with selecting the class of parametric density kernels ki(u(i); ai) ought to
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approximate ϕi(u(i)) · χi−1(u(i); ai−1) as a function in u(i). Since the conditional pdf f(ui|u(i+1))

included in ϕi represents a Gaussian kernel in u(i), a natural choice for ki is the class of Gaussian

kernels. If ki is selected as a Gaussian kernel in u(i) it follows that its integrating constant χi w.r.t. ui

as given in Equation (12) itself includes a Gaussian kernel in u(i+1). This together with the fact that

the family of Gaussian distributions is closed under multiplications suggests to specify ki as the

product of the Gaussian kernels included in ϕiχi−1 and an additional Gaussian kernel designed to

best approximate the non-Gaussian terms in ϕiχi−1 via the EIS regression in Equation (15). In the

following we will provide the functional forms of those Gaussian EIS kernels ki and their integrating

factors χi which can be used for the EIS implementation for spatial probit and Poisson models.

The corresponding closed-form expressions for ki, χi, and the resulting EIS densities gi are obtained

from standard Gaussian algebra, which essentially consists of combining, regrouping and integrating

Gaussian kernels, and are derived in a sequence of lemmas provided in the Appendix. The MATLAB

codes for the spatial EIS implementations are available at http://www.stat-econ.uni-kiel.de.

Spatial Probit Models: Under the spatial probit models given by Equations (1)-(3), and (4),

the function ϕi de�nes according to Equations (10) and (11) a (truncated) Gaussian kernel in u(i),

such that we can select a Gaussian kernel for ki which includes ϕi. Due to the presence of the

indicator function in ϕi, the resulting integral χi of ki in ui given u(i+1) takes the form of a product

of a Gaussian kernel in u(i+1) and a Gaussian cumulative distribution function (cdf) in a linear

combination of the elements in u(i+1). In order to recursively derive its actual expression, we use the

following parametrization for χi−1:

χi−1(u(i), ai−1) = χ∗i−1(u(i), ai−1) · Φ(ωi), i− 1 = 1, ..., n, (16)

with

χ∗i−1(u(i); ai−1) = exp−1

2
(u′(i)P

∗
i−1u(i) − 2u′(i)q

∗
i−1 + r∗i−1), (17)

ωi = ci−1 + d′i−1u(i), (18)
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where Φ(·) denotes the standardized normal cdf and (P ∗i−1, q
∗
i−1, r

∗
i−1, ci−1, di−1) are functions of the

coe�cients characterizing the EIS kernel ki de�ned below. Their actual closed-form expressions

are derived in Lemma 3 in the Appendix. It follows from Equation (16) that the product to be

approximated by ki has the form ϕiχi−1 = ϕiχ
∗
i−1Φ(ωi), where Φ(ωi) is the sole non-Gaussian term.

Accordingly, we de�ne ki as

ki(u(i); ai) = 1(ziui ≤ −zimi) · f(ui|u(i+1)) · χ∗i−1(u(i); ai−1) · k∗i (ωi; ai), (19)

where k∗i denotes a Gaussian kernel in the linear function ωi of u(i) designed to approximate Φ(ωi).

It is parameterized as

k∗i (ωi, ai) = exp−1

2
(αiω

2
i − 2βiωi + κi), (20)

where ai = (αi, βi, κi)
′ de�nes the EIS auxiliary parameter. Note that the conditional Gaussian

density f(ui|u(i+1)) included in the EIS kernel (19) de�nes a Gaussian density kernel for u(i) whose

parameters depend on the precision matrix Hi of the normal distribution for u(i), which obtains

from the N(0, H−1) distribution of u = u(1) assumed in Equation (1). Since χ0 ≡ 1, the �rst

factor to be approximated by k1 is ϕ1χ0 = ϕ1, so that we can select the initial EIS kernel as

k1(u(1); ·) = 1(z1u1 ≤ −z1m1) · f(u1|u(2)) which generates a perfect �t and obtains by setting in

Equation (19) the corresponding parameters to P ∗0 = 0, q∗0 = 0, r∗0 = 0, and a1 = 0.

The selection of the EIS density kernel ki as given by Equations (19) and (20) implies that all

Gaussian factors common to ki and ϕiχi−1 cancel out in the EIS regression (15). It follows that this

regression for unit i reduces to the simple LS regression

ln Φ(ω̃
(s)
i ) = −1

2
αi[ω̃

(s)
i ]2 + βiω̃

(s)
i −

1

2
κi + ξ

(s)
i , s = 1, ..., S, (21)

where ω̃
(s)
i = ci−1 + d′i−1ũ

(s)
(i) , and ξ

(s)
i is the implicit regression error term. The functional form of ki

obtained by the combination of the three Gaussian kernels in Equation (19) is given by

ki(u(i); ai) = 1(ziui ≤ −zimi) · exp−1

2
(u′(i)Piu(i) − 2u′(i)qi + ri + ln(2π)), (22)
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where (Pi, qi, ri) are appropriate functions of the EIS auxiliary parameter ai, the coe�cients (P ∗i−1,

q∗i−1, r
∗
i−1, ci−1, di−1) characterizing χi−1, and the precision matrix Hi of the Gaussian density for

u(i) de�ning the moments of f(ui|u(i+1)) in Equation (19). Their closed-form expressions are derived

in Lemma 4 in the Appendix. The corresponding EIS sampling density gi(ui|u(i+1), ai) obtains by

dividing the kernel ki in Equation (22) by its integral in ui and is a truncated normal density given

in Lemma 5.

In summary, the sequential computation of the χi−1-parameters in Equations (16)-(18) and of the

ki-parameters in Equation (22) de�ne the following EIS recursion: In recursion step i the coe�cients

(P ∗i−1, q
∗
i−1, r

∗
i−1) are combined via Equation (19) with the EIS parameter âi = (α̂i, β̂i, κ̂i)

′ from

the EIS regression (21) and the precision matrix Hi of u(i) to obtain the coe�cients (Pi, qi, ri)

characterizing the EIS sampler gi as well as the coe�cients (P ∗i , q
∗
i , r

∗
i , ci, di) required for the next

EIS recursion step i + 1. This sequence of recursion steps for i = 1, ..., n is initialized by setting

P ∗0 = 0, q∗0 = 0, r∗0 = 0 and â1 = 0 and is iterated over the EIS parameters {âi} upon the EIS

regression until a �xed-point solution for the optimal EIS parameters is obtained. At convergence,

the EIS-likelihood estimate is computed as given in Equation (14) with IS weights which simplify to

w̃(s) =
n∏
i=2

Φ(ω̃
(s)
i )

exp−1
2(α̂i[ω̃

(s)
i ]2 − 2β̂iω̃

(s)
i + κ̂i)

, (23)

where {{ũ(s)(i)}
n
i=1}Ss=1 used to compute {{ω̃(s)

i }ni=2}Ss=1 are S independent trajectories from the se-

quence of EIS densities {gi(ui|u(i+1), âi)}ni=1.

As mentioned above, the spatial GHK implementation of Beron and Vijverberg (2004) and Pace

and LeSage (2011) represents a special case of our proposed EIS procedure. It uses as IS density

kernels

ki(u(i); ·) = ϕi(u(i)) = 1(ziui ≤ −zimi) · f(ui|u(i+1)), (24)

with an integrating factor, which has the form

χi(u(i+1); ·) = Φ(c∗i + d∗i
′u(i+1)), i = 1, ..., n− 1, χn(·) = Φ(c∗n), (25)
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where c∗i and d
∗
i are functions of zi, mi, and of the mean and variance associated with the Gaussian

density f(ui|u(i+1)). This Gaussian IS density kernel used by GHK and its integrating factor obtain

by setting in the EIS recursion âi = 0 for i = 1, ..., n, from which follows that the GHK-procedure is

numerically less e�cient than EIS (see, also Liesenfeld and Richard, 2010). In the EIS application

below, we use this GHK sampler as the initial sampling densities gi(ui|u(i+1), a
(0)
i ) with a

(0)
i = 0 to

initialize the �xed-point iterations over the EIS parameters â = {âi}. It follows from Equations (24),

and (25) that the IS weights used to obtain the GHK likelihood estimate according to Equation (14)

are given by

w̃(s) =

n−1∏
i=1

Φ(c∗i + d∗i
′ũ

(s)
(i+1)). (26)

The relevance of the sparsity of the precision matrix H = H1 for the vector of errors u = u(1),

mentioned above, is through the fact that this sparsity translates into the complete sequence of

precision matrices {Hi}ni=1 of the normal distributions for the u(i)s obtained from the N(0, H−1)-

distribution for u, which enter the sequence of matrix operations required for the EIS recursion. By

exploiting this sparsity using sparse matrix functions available in software packages such as GAUSS or

MATLAB, the computational time of running the EIS recursion for a large number of recursion steps

(n = 1000+) are dramatically lower than for the EIS recursion that obtains when using the dense

covariance matrix Σ = H−1. Furthermore, note that the computation of the matrices Pi and P
∗
i−1 in

Equations (17) and (22) critically depends on the �rst row of the (n− i+ 1× n− i+ 1)-dimensional

precision matrix Hi (see Lemmas 3 and 4). Hence, we can greatly reduce the total number of �oating-

point operations during the sparse matrix operations required for the EIS recursion by maximizing

the sparsity of the �rst row of Hi, when Hi is a large matrix which is the case for low values of the

index i. For this purpose we reorder, before running the EIS recursion, the rows and columns of H

by using a symmetric approximate minimum degree permutation which concentrates the non-zero

elements of H in its lower right corner (see Amestoy et al., 1996).

Spatial Poisson Models: The EIS implementation for the spatial Poisson models given by

Equations (1)-(3), and (5) requires only minor modi�cations of that for the probit models. According

to Equations (10) and (11), the function ϕi consists of the product of the Gaussian kernel in u(i)

de�ned by f(ui|u(i+1)) and the non-Gaussian term given by the Poisson density f(yi|ui, X). This
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suggests to select ki as a Gaussian kernel to include f(ui|u(i+1)) and a Gaussian approximation to

f(yi|ui, X) as a function in ui. It follows that its integrating constant χi is itself a Gaussian kernel

in u(i+1). Since there is no indicator function in ϕi and in the selected ki, which was the case under

the probit models, the functional form of χi−1 for the Poisson models simpli�es to

χi−1(u(i), ai−1) = exp−1

2
(u′(i)P

∗
i−1u(i) − 2u′(i)q

∗
i−1 + r∗i−1), (27)

where the parameters (P ∗i−1, q
∗
i−1, r

∗
i−1) have the same form as under the probit models � see Remark

1 to Lemma 3 of the Appendix. Since χ0 ≡ 1, the initial values are P ∗0 = 0, q∗0 = 0, r∗0 = 0.

Accordingly, we can de�ne the EIS density kernel as

ki(u(i); ai) = f(ui|u(i+1)) · χi−1(u(i); ai−1) · k∗i (λi; ai), (28)

where k∗i denotes a Gaussian kernel in the linear function λi = mi+ui of ui designed to approximate

the sole non-Gaussian term in ϕiχi−1 given by f(yi|ui, X). It is parameterized as

k∗i (λi, ai) = exp−1

2
(αiλ

2
i − 2βiλi + κi). (29)

Under this selection for ki, the EIS regression as given in Equation (15) reduces to the LS regression

[− ln(yi!) + yiλ̃
(s)
i − exp λ̃

(s)
i ] = −1

2
αi[λ̃

(s)
i ]2 + βiλ̃

(s)
i −

1

2
κi + ξ

(s)
i , s = 1, ..., S. (30)

The functional form of the Gaussian kernel ki which obtains from Equations (27)-(29) is given by

ki(u(i); ai) = exp−1

2
(u′(i)Piu(i) − 2u′(i)qi + ri + ln(2π)), (31)

where the corresponding closed-form expressions for the parameters (Pi, qi, ri) are given in Lemma

4. The EIS density gi for ui|u(i+1) associated with the kernel in Equation (31) is an (untruncated)

Gaussian density � see Remark 2 to Lemma 5.

All in all, the EIS-recursion for Poisson speci�cations is essentially the same as that for probit
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models except for the fact that the functional form of the parameters (Pi, qi, ri) and the terms entering

the EIS regressions need to be adjusted to changes of the functional form of ϕiχi−1 when moving

from the Probit to the Poisson speci�cation. In order to initialize the �xed-point iteration over the

EIS parameter â, we use for gi(ui|u(i+1), a
(0)
i ) the Gaussian density obtained by using in Equations

(28)-(31) for ln k∗i (λi, ·) a second-order TSA of ln f(yi|ui, X) around ui = 0. The IS weights used to

compute the EIS likelihood estimate for the Poisson models according to Equation (14) are given by

w̃(s) =

n∏
i=1

exp(yiλ̃
(s)
i − exp λ̃

(s)
i )/yi!

exp−1
2(α̂i[λ̃

(s)
i ]2 − 2β̂iλ̃

(s)
i + κ̂i)

, (32)

where {{ũ(s)(i)}
n
i=1}Ss=1 used to compute {{λ(s)i }ni=1}Ss=1 according to λ̃

(s)
i = mi+ũ

(s)
i are S independent

trajectories from the sequence of EIS densities {gi(ui|u(i+1), âi)}ni=1.

If we replace the conditional Poisson density in Equation (5) by the conditional Negbin density in

Equation (6), we only need to modify accordingly the dependent variable in the EIS regression (15),

which requires to change only a few lines in the program code.

Since the joint EIS sampling density g(u; â) =
∏n
i=1 gi(ui|u(i+1), âi) for the spatial count-data

models consists of untruncated conditional Gaussian densities gi, the implementation of the spatial

EIS for those models can be computationally simpli�ed. Rather than constructing the components

gi of the joint EIS density g(u; â) sequentially unit by unit i via the combination of the coe�cients

matrices (P ∗i−1, q
∗
i−1, r

∗
i−1) of the integrating constants χi−1 with the EIS parameter âi = (α̂i, β̂i, κ̂i)

′

from the EIS regression (30) and the precision matrix Hi of u(i), we can construct the joint EIS

density g(u; â) in a single step after running the sequence of independent EIS regressions. In fact,

we can rewrite the joint EIS sampling density obtained from the sequential EIS-recursion according

to Equation (12) together with Equations (28)-(29) as

g(u; a) =
f(u) · k∗(λ, a)

χn(an)
, with k∗(λ, a) =

n∏
i=1

k∗i (λi, ai), (33)

where k∗i is given by Equation (29), f(u) represents the Gaussian density (8), and χn(an) is the

integrating factor of the EIS density for the last unit gn(un; an) = k(un; an)/χn(an). Hence, the

joint Gaussian EIS density obtains directly in a single step from the Gaussian density kernel for u
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given by f(u)k∗(λ, a) with an integrating factor which obtains analytically from the corresponding

multivariate Gaussian integral in u so that χn(an) =
∫
Rn f(u)k∗(λ, a)du. This computational simpli-

�cation avoiding the sequential combination of large matrices when constructing the sequence of the

conditional EIS densities gi increases the computational speed of the spatial EIS by the factor 45.

Note that this simpli�cation of the spatial EIS implementation is not feasible for the probit models

since the conditional EIS densities gi are truncated Normals which implies that the integrating factor

for the corresponding joint EIS density g(u; a) is an n-dimensional Gaussian cdf.

3.3. Monte Carlo Study

We proceed by presenting a MC study designed to explore the sampling distribution and numerical

accuracy of the ML estimator based on EIS for spatial probit and Poisson models. In our design we

consider for the probit as well as the Poisson model both, the SAL and the SAE speci�cation given

by Equations (2) and (3), where the regression function (Xβ) for unit i is speci�ed as

x′iβ = β0 + β1xi. (34)

The regressors xi are assumed to be i.i.d. uniform random variables on the interval (−3, 4) for

the probit, and on the interval (0, 1) for the Poisson models. Following LeSage and Pace (2009,

Chap. 4.11), we construct the spatial weight matrix W by simulating for each spatial unit i a pair

of coordinates from a uniform-(0, 1) distribution. The points associated with those coordinates are

then transformed into a spatial weight matrix W assigning six neighbors to each unit by using

a Delaunay triangulation carried out with the function fasymneighbors2.m in Kelly Pace's spatial

statistics toolbox for MATLAB 2.0 (http://www.spatial-statistics.com). Finally, the spatial weight

matrix is row-standardized.

The parameter values for the four model speci�cations are selected as follows. For the SAL

and SAE probit model we �x the regression parameters at (β0, β1) = (−1.5, 3) and for the SAL

and SAE Poisson model at (β0, β1, σ) = (−0.25, 0.8, 0.3), where σ is the scaling parameter in the

precision matrix H (which is set equal to one for the probit models to ensure identi�cation). For

all four speci�cations we vary the degree of spatial correlation by taking ρ = 0.75 or ρ = 0.85, and
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considered di�erent sample sizes ranging from a moderate size of n = 100 to a fairly large size of

n = 5000. Here we will represent only the results for n = 5000 which represents the most challenging

situation for EIS.

Based on those data-generating processes (DGP) we construct the sampling distribution of the

ML-EIS estimator, distinguishing between the statistical and the numerical sampling distribution

(see, Richard and Zhang, 2007). The (conventional) statistical sampling distribution of the ML-EIS

estimator is obtained by repeating the ML-EIS estimation for 50 di�erent data sets using a single set of

CRNs for EIS. In contrast, the numerical properties of the ML-EIS estimates as MC approximations

to the true but infeasible ML estimates are analyzed by repeating the ML-EIS estimation for the �rst

of the simulated data sets using 50 di�erent sets of CRNs. For the probit speci�cations we compare

the statistical and numerical properties of the ML-EIS estimator to those of the ML estimator based

on the corresponding spatial GHK procedure described above. For the Possion models, however, no

such direct ML based competitor is readily available.

The ML-EIS estimator is implemented using a simulation sample size of S = 20 and three �xed-

point EIS iterations. One likelihood EIS evaluation for the probit models with a sample size of

n = 5000 takes about 45 s on a Intel i7 Core computer with 2.67 GHz for a code written in MATLAB

and that for the Poisson models using the simpli�ed implementation of EIS only 1 s. Since the GHK,

which we consider for the probit models, does not include a LS optimization step like that used by

EIS, it is for a given simulation sample size S typically numerically less accurate but computationally

faster than the EIS procedure (see, Liesenfeld and Richard, 2010). In order to make ML-GHK directly

comparable to ML-EIS, we select for GHK a simulation sample size such that the computing time

for a likelihood evaluation is nearly the same as for EIS with S = 20. This amounts to be S = 500.

For all ML-EIS and ML-GHK estimation we use the BFGS optimizer.

Spatial probit models: The results of our MC experiments for the spatial probit models are

summarized in Table 1. Reported are the statistical means, standard deviations and root mean

squared errors (RMSE) around the true parameter values obtained from 50 simulated data sets all

with one set of EIS CRNs. Also reported are the numerical means, standard deviations and RMSEs

around the `true' ML estimates obtained for the �rst simulated data set under 50 di�erent sets of
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CRNs. The `true' ML values are computed as the ML-EIS estimates using a simulation sample size

of S = 1000. The results for the statistical sampling distribution reported on the left hand side

of Table 1 indicate that the ML-EIS estimator for the spatial probit models is virtually unbiased

with estimates which are well centered around the true parameter values for both the SAL and the

SAE speci�cation and for all parameters. As for the numerical properties of the ML-EIS estimates

as MC approximations to the true ML values, the results on the right hand side of Table 1 reveal

that the numerical mean ML-EIS estimates are very close to the true ML values under all four

DGPs. The associated MC numerical standard deviations are in all cases substantially smaller than

the corresponding conventional statistical standard deviations of the ML-EIS estimator indicating a

high numerical accuracy. These results reveal a performance of ML-EIS which is remarkably good,

considering the fairly small simulation sample size of S = 20 used to estimate a 5000-dimensional

likelihood integral.

Next, we note that the statistical sampling distribution of the ML-GHK estimator with S = 500

also reported in Table 1 shows signi�cant biases with RMSEs which are for all parameters and all

DGPs substantially larger than those associated with ML-EIS. The largest RMSEs of the ML-GHK

estimator are observed for the parameters of the SAE speci�cation with a strong spatial dependence

(ρ = 0.85). We also note that the ML-GHK estimates exhibit fairly large numerical standard

deviations and severe biases relative to the true ML estimates. At the same time, the numerical biases

are in close accordance to their corresponding statistical biases, which suggest that the statistical

biases observed for the ML-GHK estimates for the parameters are driven by numerical biases of the

ML-GHK estimates as MC approximations to the true ML values.

A reason for this fairly poor performance of GHK for the spatial probit models with a sample size

as large as n = 5000 is that the GHK IS density as de�ned in Equations (24) and (25) represents

a poor global approximation to the very high dimensional target density kernel
∏n
i=1 ϕi(u(i)). In

order to verify this conjecture we analyzed for the GHK and EIS likelihood estimator their respective

normalized IS weights given by w̄(s) = w̃(s)/
∑S

τ=1 w̃
(τ), where w̃(s) is given by Equations (23) and

(26), respectively. The optimal IS density with a perfect global �t to the target density kernel would

produce IS weights given by w̄(s) = 1/S ∀s. Figure 1 plots the histogram of the normalized IS
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weights for the GHK and EIS procedure both implemented with S = 500 and applied to the SAE

probit speci�cation with ρ = 0.85 where we set the parameters in ψ equal to their true values. The

histogram of the normalized GHK IS weights shows an extremely skewed distribution, indicating that

only two of the 500 simulated u's carry weights which are e�ectively di�erent from zero (one with a

weight of 0.39 and the other with a weight of 0.61), while the remaining weights are essentially zero.

This corroborates our conjecture that the GHK IS density poorly approximates the target density

kernel. In contrast, the histogram of the EIS weights indicates a much better behaved EIS density.

We also note that our GHK results are consistent with the �ndings of Pace and LeSage (2011) who

report a similar distribution of the GHK IS weights for a spatial probit model applied to large data

sets (n = 100, 000). As a remedy they propose to replace the standard GHK likelihood estimator,

which is according to Equations (14) and (26) given by L̄ = χn · 1S
∑S

s=1

∏n−1
i=1 Φ(c∗i +d∗i

′ũ
(s)
(i+1)), with

a likelihood MC approximation of the form L̂ = χn ·
∏n−1
i=1 [ 1S

∑S
s=1 Φ(c∗i + d∗i

′ũ
(s)
(i+1))]. However, the

reliability of this MC likelihood approximation critically depends on the correlation structure of the

sequence {Φ(c∗i + d∗i
′u(i+1))}n−1i=1 under the GHK-IS density. In fact, if the elements in that sequence

are mutually uncorrelated, L̂ would produce unbiased likelihood estimates. However, this condition

is hard to verify theoretically and would need to be checked empirically for each application.

Spatial Poisson models: The MC results for the spatial SAL and SAE Poisson model are

summarized in Table 2. They show that for all four DGPs and for all parameters the statistical

distribution of the ML-EIS estimates with a simulation sample size as low as S = 20 is well centered

around the true parameter values. As to the numerical accuracy, the results obtained from the

repeated parameter estimation using di�erent sets of CRNs for one simulated data set indicate

a high numerical accuracy of ML-EIS with numerical standard deviations which are signi�cantly

smaller than their statistical counterparts and (numerical) means which are very close to the true

ML values.

All in all, the simulation results suggest that the ML-EIS estimator based on a simulation sample

size of S = 20 is a reliable estimator for the parameters of spatial probit and Poisson models under

an SAL and an SAE assumption for a sample size as large as n = 5000.
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4. Empirical Applications

We now turn to simple empirical applications, where we use ML-EIS to estimate a spatial probit

model for US presidential voting decisions (Section 4.1) and spatial count data models for �rm

investment location decisions (Section 4.2).

4.1 Spatial Probit for the 1996 Presidential Election

Following LeSage and Pace (2009, Chap. 10) we use an SAL probit speci�cation as given by Equations

(1), (2), and (4) to model the voting decisions from the 1996 US presidential election in each of the

n = 3110 US counties, where yi = 1 if in county i the Democratic candidate Clinton won the majority

of votes and yi = 0 for counties won by the Republican candidate Dole. Spatial dependence in the

election outcomes at the county level may well be expected since voters located at similar regions in

the US may tend to exhibit a similar voting behavior, so that the observed outcome of the election

in one county is similar to the voting behavior observed in nearby counties. The spatial weight

matrix W is constructed as for our MC study using the counties' geographical coordinates (latitude

and longitude) which are transformed via a Delaunay triangulation to assign to each county six

neighbors.

As explanatory variables in the vector xi we use the log of the urban population and the following

four education variables expressed as a proportion of the county population with degrees: the popu-

lation with some years at college, the population with associate degrees, the population with college

degrees, and the population with graduate or professional degrees. The data are taken from James

LeSage's spatial econometric toolbox (http://www.spatial-econometrics.com).

The ML-EIS parameter estimates based upon a simulation sample size of S = 20 and 3 EIS �xed-

point iterations are reported in Table 3 alongside with the ML-GHK estimates with S = 500. Also

reported are the estimates of the average marginal e�ects which are computed as (see, e.g., Beron

and Vijverberg, 2004)

1

n

n∑
i=1

∂prob(yi = 1|X,W )

∂xi
=

1

n

n∑
i=1

φ(h
1
2
i [Ai1x

′
1β + · · ·+Ainx

′
nβ]) · h

1
2
i Aiiβ, (35)
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where φ(·) denotes the standardized normal density function, Aij is the element (i, j) of the matrix

A = (I − ρW )−1, and hi is the precision of the marginal distribution of the error ui obtained from

the joint N(0, H−1)-distribution for the vector u (see Equation 1). The marginal e�ects as given by

Equation (35) jointly account for the direct impact of a change in x′iβ on λi and its indirect impact

caused by the spatial interdependence and captured by the matrix A.

The numerical standard deviations reported in Table 3 obtained from 50 ML-estimations under

di�erent CRNs con�rm the result of the MC study that ML-EIS is numerically much more accurate

than ML-GHK. The ML-EIS estimate for ρ indicates signi�cant spatial dependence in the counties'

voting behavior which is in line with the Bayesian MCMC results reported by LeSage and Pace (2009,

Table 10.3) for the voting behavior in the 2000 US presidential election. We also note that the ML-EIS

estimate for ρ is substantially larger than its ML-GHK counterpart. This appears to be consistent

with the downward bias of the ML-GHK estimates of the spatial correlation parameter found in our

MC study. Next, we see that the ML-EIS estimates for the β parameters and the associated marginal

e�ects are generally smaller in absolute values than the corresponding ML-GHK estimates and lead

to di�erent conclusions with respect to the statistical signi�cance at the 1% level for the impact of

the variable college degree compared to the ML-GHK estimates. The only two variables for which

ML-EIS indicates a signi�cant e�ect are the variable some college with a negative impact on Clinton

winning and the variable graduate/professional degree with a positive e�ect, which seems to suggest

that the higher the education level of a county population the higher the probability of voting for

Clinton. Finally, observe that ML-EIS estimation yields a maximized log-likelihood value which is

substantially larger than that obtained by using ML-GHK. This re�ects the fact that the GHK MC

approximation of the (log)likelihood values for probit models tend to be downward biased (see, also

Liesenfeld and Richard, 2010).

4.2 Spatial Count Data Models for Firm Location Choice

We now present an empirical application where we use the parameter driven spatial SAL count

data speci�cations as de�ned in Section 2.2 to model �rm location choices in the US manufacturing

industry at the county level (n = 3078) in the lower 48 United States. A reason to expect spatial
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dependence in the �rm location choices is that site selection in a given region may simultaneously be

determined by �rm birth events in neighboring regions due to localization economies, and modeling

such dependence would provide detailed information about regional linkages supporting local industry

clustering and regional economic development (see Lambert et al., 2010). Our application is based

upon the same dataset as that used in the study of Lambert et al. (2010), who propose to model

�rm location choices by an observation-driven spatial Poisson speci�cation, which obtains from our

SAL Poisson model given by Equations (1), (2), and (5) as σ2 → 0 (see, Section 2.2). In order to

estimate their model they use a two-step limited information ML (LIML) approach.

The dependent variable yi for county i is de�ned as the cumulative number of new single-unit

start-up �rms in the manufacturing industry observed between 2000 and 2004. Following Lambert

et al. (2010), we construct the weight matrix W based on the Delaunay triangulation algorithm and

assign to each county eight neighbors. The set of explanatory variables consists of location factors of

the counties related to agglomeration economies, market structure, labor market, infrastructure, and

the �scal policy regime. The agglomeration variables are the manufacturing share of employment

(Msemp), total establishment density (Tfdens), percentage of manufacturing establishments with

less than 10 (Pelt10), and more than 100 employees (Pemt100). The market structure variables are

median household income (Mhhi), population (Pop), and the share of workers in creative occupations

(Cclass). Properties of the regional labor markets are measured by the average wage per job (Awage),

net �ows of wages per commuter (Net�ow), Unemployment rate (Uer), percentage of adults with

associate degree (Pedas). The variables characterizing the regional infrastructure are the public

road density (Proad), interstate highway miles (Interst), public expenditures on highways per capita

(Hwypc), the percentage of farmland to total county area (Avland). The �scal policy variables are a

tax business climate index (Bci), per capita government expenditures on education (Educpc). Also

included in the set of regressors are dummy variables identifying counties as belonging to metropolitan

(Metro ) or micropolitan (Micro) areas.

The ML-EIS estimation results for the SAL Poisson model obtained for a simulation sample size

S = 20 and 3 �xed point iterations are summarized on the left-hand side of Table 4. The ML-EIS

parameter estimates for the impact of the counties' characteristics in xi obtained under the SAL
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Poisson speci�cation are in line with the LIML estimates of Lambert et al. under the observation-

driven Poisson model for most of the characteristics and con�rm their conclusion that counties

with agglomeration economies, labor availability, low costs for labor, availability of skilled labor, a

business-friendly infrastructure and �scal policy where more likely to attract new start-ups. Only

for the variables Pelt10, Uer, Awage, Net�ow, Educpc, Proad and Hwypc our estimate leads to

di�erent conclusions with respect to statistical signi�cance compared to Lambert et al.'s estimate.

The ML-EIS estimate of the spatial correlation parameter ρ is signi�cantly larger than zero suggesting

that start-ups in neighboring counties are important and its estimate of 0.51 is substantially larger

than its estimate of 0.18 reported by Lambert et al.. Next, we note that the ML-EIS estimate of

the variance parameter for the innovations of the state variable σ is statistically signi�cantly larger

than zero, which is the benchmark value expected under Lambert et al.'s observation-driven Poisson

model. Hence, there is strong evidence in favor of the parameter-driven SAL model and against its

observation-driven counterpart.

Since count data often exhibit over-dispersion, which cannot be fully captured by a conditional

Poisson distribution, we also �tted the corresponding SAL Negbin model to the �rm investment data,

which allows for over-dispersion in the conditional distribution for yi|λi. As explained in Section 3.2,

the replacement of the Poisson density in Equation (5) by the Negbin density (6) only requires minor

modi�cations of the ML-EIS algorithm implemented for the Poisson model. The ML-EIS results of the

SAL Negbin model are reported on the right-hand side of Table 4. They show that the substitution

of the Negbin for the Poisson assumption increases the maximized log-likelihood value by 395 which

indicates a much better �t. Also the estimate of the Negbin parameter s of 2.90 reveals a signi�cant

deviation from the Poisson distribution which obtains as s→∞. Nevertheless, the estimates for the

impact of counties' characteristics obtained under the Poisson and Negbin speci�cation are typically

quite similar. Only for the e�ect of the variables Tfdens and Proad the estimation under the Negbin

model leads to changes with respect to statistical signi�cance compared to the estimation under

the Poisson model. Finally, we note that the move from the Poisson to the Negbin assumption

has decreased the estimates for the ρ as well as the σ parameter, implying less spatial correlation

and less variation in the innovation of the latent state variable λi. These di�erences suggest that
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a signi�cant part of the variation in the �rm birth events across locations, which was attributed

to shocks with global spatial feedback and feed-forward e�ects between locations under the Poisson

model, is interpreted under the Negbin model as aspatial variation and attributed to conditional

over-dispersion (s <∞).

5. Conclusions

We have developed a generic simulation-based ML approach for parameter estimation in a broad

class of parameter-driven models for discrete dependent variables with spatial correlation. Under

this class of models the dependent variable is driven by a latent stochastic state variable which is

assumed to follow a linear spatial regression model. The estimation approach is based on the E�cient

Importance Sampling (EIS) technique for MC approximations of the likelihood, which is adapted to

spatial settings. Computational e�ciency of the spatial EIS implementation even for large sample

sizes is due to the ability to exploit the sparsity of the precision (or covariance) matrix of the spatially

correlated errors of the reduced form representation for the linear spatial regression model typically

found in spatial cross-sectional applications with spatial units having only a small number of direct

neighbors.

The spatial EIS is illustrated with ML estimation of spatial binary probit, Poisson and Negbin

models with spatially lagged states (SAL) and spatial autoregressive errors (SAE). In a set of MC

experiments we have shown that our proposed ML-EIS approach is numerically very accurate even

for sample sizes as large as n = 5000 and produces reliable parameter estimates. With empirical

applications to a spatial probit model for US presidential voting decisions and spatial count data

models for �rm investment location decisions we have illustrated the power of this approach.

Even if we have limited ourselves to illustrate spatial EIS with binary probits, Poisson and Negbin

models with spatial SAL and SAE speci�cations, it is due to its very generic structure easily applicable

to other spatial speci�cations for discrete and limited dependent variables including spatial ordered

and multinomial probits, spatial Tobit models, and spatial binomial models as well as other forms of

spatial dependence. This would require only minor adjustments in the spatial EIS implementations

we used for the binary probit or the Poisson model. All in all, we believe that the spatial EIS
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procedure provides a useful tool for the analysis of spatial models beyond the class of spatial linear

Gaussian models for continuous dependent variables.
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Appendix: Technical Details

This Appendix derives in a sequence of lemmas the recursive closed-form expressions for the EIS density

kernels ki de�ned in Section 3.2, their integrating factors χi and the resulting EIS sampling densities gi.

Let u ∈ Rn be jointly normally distributed with mean vector µ = P−1q and covariance matrix Σ = P−1.

Its density is denoted by

f(u) = fnN (u | P−1q , P−1). (A-1)

Let u, µ, q, Σ and P be partitioned conformably with one another into

u =

(
u1

u2

)
, µ =

(
µ1

µ2

)
, q =

(
q1

q2

)
, Σ =

(
Σ11 Σ12

Σ21 Σ22

)
, P =

(
P11 P12

P21 P22

)
, (A-2)

with ui ∈ Rni , i = 1, 2.

Lemma 1. The conditional density for u1 given u2 and the marginal density for u2 obtained from the

multivariate normal distribution in Equation (A-1) are given by

f(u1|u2) = fn1

N (u1 | P−111 [q1 − P12u2] , P−111 ) (A-3)

f(u2) = fn2

N (u2 | P−122.1q2.1 , P
−1
22.1) (A-4)

with

P22.1 = P22 − P21P
−1
11 P12, q2.1 = q2 − P21P

−1
11 q1. (A-5)

Proof. The partitioned inverse of P can be written as

Σ = P−1 =

(
P−111 + P−111 P12P

−1
22.1P21P

−1
11 −P−111 P12P

−1
22.1

−P−122.1P21P
−1
11 P−122.1

)
. (A-6)

It follows immediately that

Σ11.2 = Σ11 − Σ12Σ−122 Σ21 = P−111 , Σ12Σ−122 = −P−111 P12, Σ22 = P−122.1, (A-7)

µ1 + Σ12Σ−122 (u2 − µ2) = P−111 [q1 − P12u2], µ2 = P−122.1q2.1. � (A-8)
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Lemma 2. Let n1 = 1, z ∈ {−1, 1}, and m ∈ R1. Then

∫
R1

1(zu1 ≤ −zm)f(u)du1 = fn2

N (u2 | P−122.1q2.1 , P
−1
22.1) · Φ(c+ d′u2), (A-9)

where Φ(·) denotes the standardized normal cdf and

c = −z
√
P11(m+

q1
P11

), d′ = z
P12√
P11

. (A-10)

Proof. Equation (A-9) follows from the partitioning in Lemma 1. Integration of f(u1|u2) is carried out

under the standardizing transformation

x = (zu1 − zP−111 [q1 − P12u2])/

√
z2P−111 , (A-11)

where z2 = 1. �

Lemma 3. Let Pi and qi in the (truncated) Gaussian density kernel as given by Equation (22) be

partitioned conformably with u(i) = (ui, u
′
(i+1))

′ into

qi =

(
qi1

qi2

)
, Pi =

(
P i11 P i12

P i21 P i22

)
. (A-12)

The integral of ki(u(i), .) in ui is given by

χi(u(i+1), .) = χ∗i (u(i+1), .) · Φ(ωi+1), (A-13)

where

χ∗i (u(i+1), .) = exp−1

2
{u′(i+1)P

∗
i u(i+1) − 2u′(i+1)q

∗
i + r∗i }, (A-14)

P ∗i = P i22 −
P i21P

i
12

P i11
, q∗i = qi2 −

P i21q
i
1

P i11
, r∗i = ri −

(qi1)2

P i11
+ ln |P i11|, (A-15)

ωi+1 = ci + d′iu(i+1), ci = −zi
√
P i11
(
mi +

qi1
P i11

)
, d′i = zi

P i12√
P i11

. (A-16)

29



Proof. We �rst rewrite ki in Equation (22) as

ki(u(i), .) = 1(ziui ≤ −zimi) · fn−i+1
N (u(i) | P−1i qi , P

−1
i ) (A-17)

× exp−1

2
{ri − q′iP−1i qi + ln |Pi| − (n− i) ln(2π)}.

Next, we apply Lemma 2 to obtain

χi(u(i+1), .) = fn−iN (u(i+1) | (P ∗i )−1q∗i , (P ∗i )−1) · Φ(ci + d′iu(i+1)) (A-18)

× exp−1

2
{ri − q′iP−1i qi + ln |Pi| − (n− i) ln(2π)},

wherefrom Equations (A-13)-(A-16) follow with

r∗i = ri − q′iP−1i qi + (q∗i )′(P ∗i )−1q∗i + ln |Pi| − ln |P ∗i |, (A-19)

which simpli�es into the expression for r∗i as given in Equation (A-15) by application of the partitioned

inverse expression for P−1i as given by Equation (A-6) and by using the partitioned determinant for Pi, given

by |Pi| = |P i11| · |P i22 − P i21(P i22)−1P i12|. �

Remark 1. From Lemmas 2 and 3, it follows immediately, that the density kernel ki in Equation (22)

without the indicator function 1(·) as given in Equation (31) has an integral in ui, which is given by

χi(u(i+1), .) = χ∗i (u(i+1), .) = exp−1

2
{u′(i+1)P

∗
i u(i+1) − 2u′(i+1)q

∗
i + r∗i }. (A-20)

Lemma 4. Let the covariance and precision matrix of the joint normal distribution for u(i) = (ui, ..., un)′

obtained from u = (u1, ..., un) ∼ N(0,Σ) be denoted by Σi and Hi, respectively, and let Hi be partitioned

conformably with u(i) = (ui, u
′
(i+1))

′ into

Hi =

(
Hi

11 Hi
12

Hi
21 Hi

22

)
. (A-21)

Then the parameters (Pi, qi, ri) of the density kernel of the EIS sampling density ki(u(i), ai) in Equation (22)
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(probit case) are given by

Pi = H∗i + P ∗i−1 + αidi−1d
′
i−1, (A-22)

qi = q∗i−1 + (βi − αici−1)di−1, (A-23)

ri = r∗i−1 + κi + αic
2
i−1 − 2βici−1 − ln |Hi

11|, (A-24)

where

H∗i =

(
Hi

11 Hi
12

Hi
21 Hi

21H
i
12/H

i
11

)
, Hi+1 = Hi

22 −Hi
21H

i
12/H

i
11, (A-25)

with H1 = Σ−1.

The parameters (Pi, qi, ri) of the density kernel of the EIS sampling density ki(u(i), ai) in Equation (31)

(Poisson case) obtain as

Pi = H∗i + P ∗i−1 + αie(i)e
′
(i), (A-26)

qi = q∗i−1 + (βi − αimi)e(i), (A-27)

ri = r∗i−1 + κi + αim
2
i − 2βimi − ln |Hi

11|, (A-28)

where e(i) = (1, 0, ..., 0)′.

Proof. It follows from Lemma 1 (with q = µ = 0) that the conditional pdf of ui|u(i+1) associated with

u(i) ∼ N(0,Σi) is given by

f(ui|u(i+1)) = f1N

(
ui | −

Hi
12

Hi
11

u(i+1) ,
1

Hi
11

)
, (A-29)

and that the precision matrix Hi+1 for the distribution of u(i+1) obtains by the recursion given in Equation

(A-25). The quadratic term in the exponent of the pdf (A-29) is

−1

2
Hi

11

(
ui +

Hi
12

Hi
11

u(i+1)

)2

= −1

2
u′(i)H

∗
i u(i), (A-30)

wherefrom H∗i as given in Equation (A-25) follows. Whence, the conditional pdf f(ui|u(i+1)) represents a

density kernel of a joint normal distribution for u(i) given by

f(ui|u(i+1)) = exp−1

2
{u′(i)H

∗
i u(i) + ln(2π)− ln |Hi

11|}. (A-31)

Combining f(ui|u(i+1)) as given by Equation (A-31) with the remaining factors de�ning ki according to Equa-
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tions (19) and (28) yield the parameters as given in Equations (A-22)-(A-24) and (A-26)-(A-28), respectively.

�

Lemma 5. Let Pi and qi in the (truncated) Gaussian density kernel ki given by Equation (22) be partitioned

as in Lemma 3. Then the density for ui|u(i+1) obtained from the density kernel ki is

gi(ui|u(i+1); .) =
1(ziui ≤ −zimi) · f1N (ui|µ∗i , σ∗i

2)

Φ(ci + d′iu(i+1))
, (A-32)

where

µ∗i = (qi1 − P i12u(i+1))/P
i
11, σ∗i

2 = 1/P i11, (A-33)

and (ci, di) are given in Equation (A-16).

Proof. We �rst rewrite ki in Equation (22) as

ki(u(i), .) = 1(ziui ≤ −zimi) · fn−i+1
N (u(i) | P−1i qi , P

−1
i ) (A-34)

× exp−1

2
{ri − q′iP−1i qi + ln |Pi| − (n− i) ln(2π)}.

Next, we apply Lemma 1 to fn−i+1
N (u(i) | P−1i qi , P

−1
i ), where Pi and qi are partitioned as in Lemma 3 to

obtain

ki(u(i), .) = 1(ziui ≤ −zimi) · f1N (ui | (qi1 − P i12u(i+1))/P
i
11 , 1/P i11) (A-35)

× fn−iN (u(i+1) | (P ∗i )−1q∗i , (P ∗i )−1)

× exp−1

2
{ri − q′iP−1i qi + ln |Pi| − (n− i) ln(2π)},

where P ∗i and q∗i are given in Equation (A-15) of Lemma 3. Integrating the r.h.s. of Equation (A-35) in ui

and dividing it by the resulting integrating factor χi yields the truncated Gaussian density for ui|u(i+1) given

in Equation (A-32). �

Remark 2. From Lemma 5, it follows immediately, that the density for ui|u(i+1) associated with the

EIS-kernel ki in Equation (22) without an indicator function as given by Equation (31) is gi(ui|u(i+1); ·) =

f1N (ui|µ∗i , σ∗i
2).
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Figure 1. Histogram of the normalized IS weights w̃(s)/
∑S
τ=1 w̃

(τ) of the GHK (plotted for di�erent scales)

and EIS procedure with S = 500 for the likelihood of the SAE probit model with ρ = 0.85. The model

parameters ψ are set to their true values.
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Table 1. ML-EIS and ML-GHK for the SAL and SAE Probit Model

Parameter True Statistical True Numerical
properties ML properties

GHK EIS GHK EIS
SAL-probit model
ρ .750 .740 .750 .748 .739 .748

(.006) (.005) (.003) (.0001)
[.012] [.005] [.009] [.0001]

β1 −1.500 −1.354 −1.498 −1.502 −1.371 −1.502
(.061) (.050) (.025) (.0006)
[.158] [.050] [.134] [.0007]

β2 3.000 2.726 3.007 3.039 2.770 3.038
(.121) (.108) (.049) (.001)
[.300] [.108] [.273] [.001]

ρ .850 .839 .850 0.851 .840 .851
(.005) (.003) (.003) (.0001)
[.012] [.003] [.011] [.0001]

β1 −1.500 −1.243 −1.516 −1.489 −1.220 −1.488
(.076) (.070) (.034) (.002)
[.268] [.072] [.272] [.002]

β2 3.000 2.488 3.037 2.989 2.444 2.986
(.145) (.138) (.067) (.003)
[.532] [.142] [.549] [.004]

SAE-probit model
ρ .750 .380 .748 .747 .364 .748

(.033) (.028) (.024) (.001)
[.372] [.028] [.384] [.001]

β1 −1.500 −1.108 −1.480 −1.381 −1.027 −1.381
(.068) (.111) (.011) (.003)
[.398] [.113] [.354] [.003]

β2 3.000 2.246 2.987 2.879 2.133 2.880
(.096) (.158) (.015) (.006)
[.760] [.159] [.746] [.006]

ρ .850 .482 0.848 .843 .513 .843
(.033) (.016) (.021) (.0009)
[.369] [.016] [.331] [.0009]

β1 −1.500 −.894 −1.483 −1.444 −.898 −1.443
(.076) (.140) (.018) (.004)
[.610] [.141] [.546] [.004]

β2 3.000 1.829 3.013 2.845 1.759 2.844
(.067) (.176) (.019) (.007)
[1.173] [.177] [1.086] [.008]

NOTE: The reported numbers for ML-EIS are mean, standard deviation (in parentheses) and RMSE (in
brackets). The simulation sample size for EIS is S = 20 and for GHK S = 500. The true ML values are
the ML-EIS estimates based on S = 1000.
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Table 2. ML-EIS for the SAL and SAE Poisson Model

Parameter True Statistical True Numerical
properties ML properties

SAL-Poisson model
ρ .750 .750 .756 .756

(.019) (.0007)
[.019] [.0008]

β1 −.250 −.249 −.254 −.254
(.017) (.0001)
[.017] [.0001]

β2 .800 .800 .801 .800
(.032) (.0006)
[.032] [.0007]

σ .300 .294 .286 .285
(.015) (.0009)
[.016] [.0015]

ρ .850 .854 .841 .842
(.018) (.002)
[.018] [.002]

β1 −.250 −.241 −.188 −.186
(.022) (.003)
[.024] [.004]

β2 .800 .786 .737 .735
(.034) (.003)
[.036] [.004]

σ .300 .291 .285 .284
(.014) (.003)
[.016] [.003]

SAE-Poisson model
ρ .750 .747 .741 .741

(.031) (.002)
[.031] [.002]

β1 −.250 −.244 −.237 −.236
(.038) (.0006)
[.038] [.0007]

β2 .800 .794 .760 .760
(.048) (.0002)
[.048] [.0002]

σ .300 .301 .304 .303
(.026) (.002)
[.026] [.002]

ρ .850 .855 .849 .849
(.024) (.002)
[.025] [.002]

β1 −.250 −.223 −.276 −0.272
(.065) (.006)
[.070] [.008]

β2 .800 .794 .830 .830
(.043) (.0005)
[.043] [.0005]

σ .300 .289 .304 .302
(.033) (.003)
[.035] [.004]

NOTE: The reported numbers for ML-EIS are mean, standard deviation (in parentheses) and RMSE (in
brackets). The simulation sample size for EIS is S = 20. The true ML values are the ML-EIS estimates
based on S = 1000.
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Table 3. ML-EIS and ML-GHK results for the

SAL Probit Model for the 1996 U.S. Presidential Election

Variable Parameters Marg. E�.
GHK EIS GHK EIS

Constant .634* .597*
(.120) (.122)
[.033] [.0001]

Urban population 8.445 4.894 3.131 1.745
(5.494) (5.635) (2.058) (2.030)
[1.386] [.0003] [.512] [.0002]

Some college −3.192* −2.792* −1.183* −.996*
(.470) (.479) (.167) (.165)
[.122] [.0005] [.044] [.0002]

Associate degree 1.118 .901 .414 .321
(.893) (.909) (.331) (.323)
[.241] [.0005] [.089] [.0002]

College degree −2.056* −1.885 −.762* −.672
(.783) (.805) (.299) (.295)
[.171] [.0006] [.063] [.0002]

Graduate/professional degree 5.185* 4.610* 1.922* 1.644*
(1.371) (1.405) (.507) (.450)
[.317] [.0009] [.115] [.0004]

Spatial lag (ρ) .508* .633*
(.024) (.025)
[.009] [.0001]

Log-likelihood −1947.3 −1910.2

NOTE: The reported numbers are mean ML-EIS and ML-GHK estimates for the parameters and the
marginal e�ects, the asymptotic (statistical) standard deviation (in parentheses) and the numerical stan-
dard deviation (in brackets). The asymptotic standard deviation for the ML parameter estimates are
obtained from a numerical approximation to the Hessian and those for the marginal e�ects are obtained
as MC approximation using 2000 draws from the asymptotic distribution of the ML estimators. The
simulation sample size for EIS is S = 20 and for GHK S = 500; ∗ statistically signi�cant at the 1% level.
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Table 4. ML-EIS results for the SAL Poisson

and Negbin Model for Firm Location Choice

Variable Poisson Negbin
Constant −1.113* (.130) [.044] −.855* (0.139) [.0002]

Msemp .032* (.002) [.0005] .042* (0.002) [.00003]

Pelt10 .006* (.0009) [.0002] .005* (0.001) [.00001]

Pemt100 −.014* (.002) [.0004] −.015* (0.002) [.00002]

Tfdens −.003 (.011) [.004] −.056* (0.018) [.0001]

Mhhi −.250 (.278) [.134] .517 (0.369) [.005]

Pop .006* (.0002) [.0001] .013* (0.001) [.00002]

Cclass .059* (.003) [.001] .084* (0.004) [.00001]

Uer .030* (.006) [.003] .047* (0.010) [.0001]

Pedas .030* (.006) [.002] .035* (0.007) [.00002]

Awage −.025* (.003) [.001] −.035* (0.005) [.00003]

Net�ow −.004* (.0005) [.0002] −.016* (0.001) [.00001]

Proad .020 (.010) [.004] .053* (0.012) [.00003]

Interst .003* (.0004) [.0002] .004* (0.0006) [.000003]

Avland −.003* (.0005) [.0002] −.004* (0.0006) [.00001]

Bci .095* (.009) [.004] .028 (0.011) [.00002]

Educpc .006* (.001) [.0005] .004* (0.001) [.00001]

Hwypc −.044* (.007) [.003] −.032* (0.008) [.00006]

Metro 1.025* (.037) [.009] .823* (0.040) [.0002]

Micro .683* (.038) [.006] .541* (0.036) [.00003]

Spatial lag (ρ) .514* (.018) [.008] .321* (0.024) [.0006]

σ .697* (.013) [.002] .261* (0.042) [.002]

s 2.902* (0.204) [.008]

Log likelihood -10,720 -10,325

NOTE: The reported numbers are mean ML-EIS estimates for the parameters, the asymptotic (statistical)
standard deviation (in parentheses) and the numerical standard deviation (in brackets). The asymptotic
standard deviation for the ML parameter estimates are obtained from a numerical approximation to the
Hessian. The simulation sample size for EIS is S = 20; ∗ statistically signi�cant at the 1% level.
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