Data for Classification
This site contains data sets used in the joint project of the University of Cologne and the Hochschule Merseburg “Classifying real-world data with the DD?-procedure”. Comprehensive description of the methodology, and experimental settings and results of the study are presented in the work:
Mozharovskyi, P., Mosler, K. and Lange, T. (2014): “Classifying real-world data with the DD?-procedure”. Advances in Data Analysis and Classification, to appear.
For a more complete explanation of the technique and further experiments see:
Lange, T., Mosler, K. and Mozharovskyi, P. (2012): “Fast nonparametric classification based on data depth”. Statistical Papers 55(1), 49-69. (The final publication is available at www.springerlink.com).
50 binary classification tasks have been obtained from partitioning 33 freely accessible data sets. Multiclass problems were reasonably split into binary classification problems, some of the data set were slightly processed by removing objects or attributes and selecting prevailing classes. Each data set is provided with a (short) description and brief descriptive statistics. The name reflects the origination of the data. A letter after the name is a property filter, letters (also their combinations) in brackets separated by "vs" are the classes opposed. The letters (combinations or words) stand for labels of classes (names of properties) and are intuitive. Each description contains a link to the original data.
The data have been collected as open source data in January 2013. Owners of this web page decline any responsibility regarding their correctness or consequences of their usage. If you publish material based on these data, please quote the original source. Special requests regarding citations are found on data set's web page.
The general list of sources consists of:
http://archive.ics.uci.edu/ml, se also Frank, A. & Asuncion, A. (2010). UCI Machine Learning Repository [http://archive.ics.uci.edu/ml]. Irvine, CA: University of California, School of Information and Computer Science.
http://cran.r-project.org/web/packages
http://lib.stat.cmu.edu/datasets
http://stat.ethz.ch/Teaching/Datasets
http://www.stats.ox.ac.uk/pub/PRNN
All the data sets as *.zip:
Data table
# | Dataset | n1 | n2 | n1+n2 | d | ln(n1/n2) | (n1+n2)/d | # tied | Download |
---|---|---|---|---|---|---|---|---|---|
1. | Baby | 161 | 86 | 247 | 5 | 0,626 | 49,4 | 0 | |
2. | Banknoten | 100 | 100 | 200 | 6 | 0 | 33,3 | 0 | |
3. | Biomedical | 67 | 127 | 194 | 4 | -0,635 | 48,5 | 0 | |
4. | Blood Transfusion | 178 | 570 | 748 | 3 | -1,171 | 249,3 | 246 | |
5. | Breast Cancer Wisconsin | 458 | 241 | 699 | 9 | 0,642 | 77,7 | 236 | |
6. | Bupa Liver Disorder | 145 | 200 | 345 | 6 | -0,329 | 57,5 | 4 | |
7. | Chemical Diabetes (C vs N) | 36 | 76 | 112 | 5 | -0,755 | 22,4 | 0 | |
8. | Chemical Diabetes (C vs O) | 36 | 33 | 69 | 5 | 0,086 | 13,8 | 0 | |
9. | Chemical Diabetes (N vs O) | 76 | 33 | 109 | 5 | 0,833 | 21,8 | 0 | |
10. | Cloud | 54 | 54 | 108 | 7 | 0 | 15,4 | 0 | |
11. | Crabs (B vs O) | 100 | 100 | 200 | 5 | 0 | 40,0 | 0 | |
12. | Crabs (M vs F) | 100 | 100 | 200 | 5 | 0 | 40,0 | 0 | |
13. | Crabs B (M vs F) | 50 | 50 | 100 | 5 | 0 | 20,0 | 0 | |
14. | Crabs F (B vs O) | 50 | 50 | 100 | 5 | 0 | 20,0 | 0 | |
15. | Crabs M (B vs O) | 50 | 50 | 100 | 5 | 0 | 20,0 | 0 | |
16. | Crabs O (M vs F) | 50 | 50 | 100 | 5 | 0 | 20,0 | 0 | |
17. | Cricket (C vs P) | 78 | 78 | 156 | 4 | 0 | 39,0 | 7 | |
18. | Diabetes (of Pima Indians) | 268 | 500 | 768 | 8 | -0,616 | 96,0 | 0 | |
19. | Ecoli (CP vs IM) | 143 | 77 | 220 | 5 | 0,621 | 44,0 | 0 | |
20. | Ecoli (CP vs PP) | 143 | 52 | 195 | 5 | 1,012 | 39,0 | 0 | |
21. | Ecoli (IM vs PP) | 77 | 52 | 129 | 5 | 0,392 | 25,8 | 0 | |
22. | Gemsen (M vs F) | 796 | 553 | 1349 | 6 | 0,365 | 224,8 | 27 | |
23. | Glass (F vs NF) | 70 | 76 | 146 | 9 | -0,083 | 16,2 | 1 | |
24. | Groessen (M vs F) | 116 | 114 | 230 | 3 | 0,020 | 76,7 | 0 | |
25. | Haberman's Survival | 225 | 81 | 306 | 3 | 1,022 | 102,0 | 23 | |
26. | Heart | 120 | 150 | 270 | 13 | -0,223 | 20,8 | 0 | |
27. | Hemophilia | 30 | 45 | 75 | 2 | -0,400 | 37,5 | 0 | |
28. | Indian Liver Patient (1 vs 2) | 414 | 165 | 579 | 10 | 0,920 | 57,9 | 13 | |
29. | Indian Liver Patient (M vs F) | 140 | 439 | 579 | 9 | -1,139 | 64,3 | 13 | |
30. | Iris Plants (SET vs VER) | 50 | 50 | 100 | 4 | 0 | 25,0 | 2 | |
31. | Iris Plants (SET vs VIR) | 50 | 50 | 100 | 4 | 0 | 25,0 | 3 | |
32. | Iris Plants (VER vs VIR) | 50 | 50 | 100 | 4 | 0 | 25,0 | 1 | |
33. | Irish Educational Transitions (M vs F) | 250 | 250 | 500 | 5 | 0 | 100,0 | 44 | |
34. | Kidney (M vs F) | 20 | 56 | 76 | 5 | -1,022 | 15,2 | 0 | |
35. | PIMA (training) | 132 | 68 | 200 | 7 | 0,663 | 28,6 | 0 | |
36. | Plasma Retinol and Beta-Carotene Levels (M vs F) | 273 | 42 | 315 | 13 | 1,872 | 24,2 | 0 | |
37. | Segmentation (C vs W) | 330 | 330 | 660 | 10 | 0 | 66,0 | 62 | |
38. | Social Mobility (I vs NI) | 578 | 578 | 1156 | 5 | 0 | 231,2 | 45 | |
39. | Social Mobility (W vs B) | 578 | 578 | 1156 | 5 | 0 | 231,2 | 8 | |
40. | Teaching Assistan Evaluation (E vs NE) | 29 | 122 | 151 | 5 | -1,427 | 30,2 | 43 | |
41. | Tennis (M vs F) | 42 | 45 | 87 | 15 | -0,073 | 5,8 | 0 | |
42. | Tips (D vs N) | 176 | 68 | 244 | 6 | 0,952 | 40,7 | 1 | |
43. | Tips (M vs F) | 87 | 157 | 244 | 6 | -0,598 | 40,7 | 1 | |
44. | US Crime (S vs N) | 16 | 31 | 47 | 13 | -0,654 | 3,6 | 0 | |
45. | Vertebral Column | 210 | 100 | 310 | 6 | 0,742 | 51,7 | 0 | |
46. | Veteran Lung Cancer (S vs T) | 69 | 68 | 137 | 7 | 0,010 | 19,6 | 0 | |
47. | Vowel (M vs F) | 528 | 462 | 990 | 13 | 0,131 | 76,2 | 0 | |
48. | Wine (1 vs 2) | 59 | 71 | 130 | 13 | -0,186 | 10,0 | 0 | |
49. | Wine (1 vs 3) | 59 | 48 | 107 | 13 | 0,207 | 8,2 | 0 | |
50. | Wine (2 vs 3) | 71 | 48 | 119 | 13 | 0,392 | 9,2 | 0 | |